Revision 1

Problem 1. Consider the following models:

$$y_t = \alpha_0 + \alpha_1 t + e_t \tag{1}$$

$$y_t = \rho y_{t-1} + v_t \tag{2}$$

where e_t and v_t are i.i.d.(0,1), and $\rho = 1$. A central banker considers the two models above to explain the Gross Domestic Product (GDP).

- (a) What is the name of each model?
- (b) Derive the unconditional mean and variance of y_t implied by each model. Is any of the two models covariance stationary or/and weak dependent?
- (c) Briefly explain what is meant by weak stationarity and weak dependence.
- (d) Predicting future GDP is of major importance in decision making regarding investment, spending and hiring (among other things). Hence we are interested in the *h*-step ahead forecast given the last observed information: $E(y_{t+h}|y_t)$. Derive $E(y_{t+h}|y_t)$ from model (1) and (2) assuming $\rho = 1$.
- (e) When $|\rho| < 1$, $E(y_{t+h}|y_t) = \rho^h y_t$. What happens with the *h*-step ahead forecast as $h \to \infty$ in model (2) for $|\rho| < 1$ and $\rho = 1$?
- (f) y_t in model (1) has trending behaviour, while y_t in model (2) with $\rho = 1$ has highly persistent behaviour. Show that y_t described by the model:

$$y_t = \delta + y_{t-1} + u_t \tag{3}$$

is highly persistent and has a clear linear trend, where u_t is i.i.d.(0,1).

1