

Investments and Portfolio Management

Raquel M. Gaspar

February 4 2022

Name:		\mathbf{N}	Number:			
Closed-book exam.	You can only use	the official formulas' sheet.	Duration: 2.5h			

Number:

MULTIPLE CHOICE (25 points)

There is only one correct answer per question. Mark your choices with circles. Each correct answer is worth 5 points and for each incorrect answer there is a deduction of 1.5 points.

- 1. The exchange markets and over the counter markets are considered as two types of
 - a) floating markets.
 - b) riskier markets.
 - c) secondary markets.
 - d) primary markets.

2. Consider the situation of a continuous market where the best pending bid is 25 euros and the bid-ask spread is 2 euros. If a market buy order is placed, we can conclude

- a) That order is fully satisfied at 25 euros.
- b) At least part of the order will be filled at 27 euros.
- c) The next market price is higher than 25 but lower than 27
- d) None of the above.
- 3. Financial Indices are:
 - a) Nothing but statistics about financial markets.
 - b) Real-life portfolios managed by the entities computing the indices.
 - c) Securities any investor can invest in.
 - d) None of the above.
- 4. The portfolio with the smallest VaR (value-at-risk) is also:
 - a) The safest portfolio according to Roy.
 - b) The safest portfolio according to Kataoka.
 - c) The safest portfolio according to Telser.
 - d) VaR has no relation to the safety first criteria of Roy, Kataoka or Telser.
- 5. Investment A stochastically dominates the investment B, considering second-order dominance.
 - a) Then A also dominates B when we consider first-order dominance.
 - b) The distribution function of returns of B is always higher or equal to that of A.
 - c) Investment A is also the preferred investment according to safety first criteria.
 - d) None of the above.

GROUP I (30 points)

Answer:

- - I. Since the correlation between stocks and bonds' returns is essentially zero, mean-variance theory is useless to determine the way mixed funds should built their portfolios.
 - II. We can rewrite any multi-index model with correlated indices as another equivalent multiindex model with uncorrelated indices.

GROUP II (20 points)

Consider a general utility function U(W), where W is the end-of-investment wealth.

Show that using a second order Taylor approximation around the initial investment W_0 , the associated risk tolerance function approximation reflect the same preferences as

$$f(\bar{R},\sigma) = \bar{R} - \frac{1}{2}r_0\left[\bar{R}^2 + \sigma^2\right]$$

where r_0 stands for the coefficient of relative risk aversion evaluated at W_0 and, as usual, \bar{R} and σ are the expected return and volatility over the investment period.

GROUP III (125 points)

Problem 1 (65 points)

In a given market, all *efficient portfolios* are well described by the expression

 $\bar{R}_p = 3.5\% + 0.3436\sigma_p$.

- 2. We know Mr. Silva preferences are well represented by $U(W) = 50W 0.01W^2$ and that he wishes to invest 1 000 euros in this market.

 - (b) What is the optimal risk level for Mr. Silva?.....[15p]
- 3. Knowing that the tangent portfolio has only two assets with return distributions as in the following table

Scenarios	Probability	Asset 1	Asset 2
Bad	0.25	-5%	10%
Average	0.5	0%	-5%
Good	0.25	50%	35%

- (b) What is the composition and expected return of Mr.Silva's optimal portfolio O?.....[10p]

Solution to Problem 1:

Solution to Problem 1 (cont.):

Solution to Problem 1 (cont.):

Problem 2 (60 points)

Consider two Gaussian risky assets with $\bar{R}_1 = 12\%$, $\bar{R}_2 = 6\%$, $\sigma_1 = 20\%$, $\sigma_2 = 15\%$ and $\rho = +0.5$. Shortselling is allowed without bound but it is not possible to get a loan to invest in risky assets. Still, there exist a riskless rate $R_f = 3\%$ for deposits.

- 2. Show that the equations of the efficient frontier are given by

$$EF: \begin{cases} \bar{R}_p = 0.03 + 0.451 \ \sigma_p & \text{for } \sigma_p \le 21.36\% \\ \sigma_p^2 = 9.0278 \ \bar{R}_p^2 - 1.3333 \ \bar{R}_p + 0.07 & \text{for } \sigma_p > 21.36\% \end{cases}$$

3. Consider that Mr. Exact wants a portfolio E with $\bar{R}_E = 15\%$ and $\sigma_E = 28\%$.

.....[12.5p]

- 4. Suppose now a new financial institution, Safety Bank, appears in this market. The Safety Bank is willing to give credit to investments in financial markets at a 3% interest rate, provided the probability of not getting paid (capital plus interest) is not higher than 10%.

Solution to Problem 2:

Solution to Problem 2:

Extra Space (if needed):