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Multiple Regression Analysis
Variance of the OLS Estimators in the Simple Regression Model

The Variances of the OLS Estimator conditional on the sample values
{xi : i = 1, 2, . . . , n} are given by

Var
(

β̂0
)

=
σ2

(n − 1) n S2
x

∑n
i=1 x2

i ,

Var
(

β̂1
)

=
σ2

(n − 1) S2
x

,

where S2
x = 1

(n−1) ∑n
i=1 (xi − x̄)2 .
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Multiple Regression Analysis
Variance of the OLS Estimators in the Simple Regression Model

Proof that Var
(

β̂1|x̃
)
= σ2

(n−1)S2
x
, where x̃ = (x1, x2, ..., xn)

Var
(

β̂1|x̃
)

= Var

(
∑n

i=1 (xi − x̄) yi

∑n
i=1 (xi − x̄)2 |x̃

)

=
1[

∑n
i=1 (xi − x̄)2

]2 Var
(
∑n

i=1 (xi − x̄) yi|x̃
)

.

Now notice that for i ̸= j

cov
(
(xi − x̄) yi,

(
xj − x̄

)
yj|x̃

)
=

(xi − x̄)
(
xj − x̄

)
cov
(
yi, yj|x̃

)
= 0

because yi and yj are independent.

4 / 31



Multiple Regression Analysis
Variance of the OLS Estimators

Therefore

Var
(

β̂1|x̃
)

=
1[

∑n
i=1 (xi − x̄)2

]2 Var
(
∑n

i=1 (xi − x̄) yi|x̃
)

=
1[

∑n
i=1 (xi − x̄)2

]2 ∑n
i=1 Var ((xi − x̄) yi|x̃)

=
1[

∑n
i=1 (xi − x̄)2

]2 ∑n
i=1 (xi − x̄)2 Var (yi|x̃) .

Now

Var (yi|x̃) = Var (yi|x1, x2, ..., xi, ..., xn)

= Var (yi|xi)

because yi is independent from xj for j ̸= i because we assumed that
we use a random sample {(xi, yi)}n

i=1 .
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Multiple Regression Analysis
Variance of the OLS Estimators

Now

Var (yi|xi) = Var (β0 + β1xi + ui|xi)

= Var (ui|xi)

= σ2

because Var (ui|xi) = σ2, therefore

Var
(

β̂1|x̃
)

=
1[

∑n
i=1 (xi − x̄)2

]2 ∑n
i=1 (xi − x̄)2 Var (yi|x̃)

=
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i=1 (xi − x̄)2

]2 ∑n
i=1 (xi − x̄)2 σ2

=
σ2[
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i=1 (xi − x̄)2

]2 ∑n
i=1 (xi − x̄)2

=
σ2

∑n
i=1 (xi − x̄)2

=
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(n − 1) 1
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=
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(n − 1) S2
x
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Multiple Regression Analysis
Variance of the OLS Estimators

Var
(

β̂1|x̃
)

=
σ2

∑n
i=1 (xi − x̄)2

=
σ2

(n − 1) 1
n−1 ∑n

i=1 (xi − x̄)2

=
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(n − 1) S2
x
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Multiple Regression Analysis
The Gauss-Markov Theorem

Given our 5 Gauss-Markov Assumptions it can be shown that OLS is
“BLUE”:

Best (have minimum variance, such that Var(β̂j) ≤ Var(β̂
∗
j ),

j = 1, ..., k where β̂
∗
j is any alternative estimator.

Linear - weighted sum of the dependent variable.

Unbiased- E(β̂j) = βj, E(β̂
∗
j ) = βj, j = 1, ..., k.

Estimator.
Thus, if the assumptions hold, use OLS.
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Multiple Regression Analysis
The Gauss-Markov Theorem- The Simple Regression Model

We prove here the The Gauss-Markov Theorem in the case of the
simple linear regression model for the estimator of the slope
parameter.
An estimator is said to be linear if it can be written as a simple
weighted sum of the dependent variable, where the weights do not
depend on this variable.
Consider the estimator for the slope coefficient

β̂1 =
∑n

i=1 (xi − x̄) (yi − ȳ)

∑n
i=1 (xi − x̄)2

=
∑n

i=1 (xi − x̄) yi

∑n
i=1 xi (xi − x̄)

= ∑n
i=1 wiyi,

where
wi =

xi − x̄
∑n

i=1 xi (xi − x̄)
.
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Multiple Regression Analysis
The Gauss-Markov Theorem- The Simple Regression Model

Outline of the proof:
1 Consider an alternative linear unbiased estimator.
2 Show that the new estimator can never have smaller variance

than the OLS estimator.
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Multiple Regression Analysis
The Gauss-Markov Theorem- The Simple Regression Model

Step 1: An alternative linear estimator for the slope coefficient will
have the form

β̄1 = ∑n
i=1 kiyi.

where ki is a function of the regressors. Unbiasedness means that
E
(

β̄1
)
= β1 and this requires that the weights should satisfy

∑n
i=1 ki = 0 and ∑n

i=1 kixi = 1.
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Multiple Regression Analysis
The Gauss-Markov Theorem- The Simple Regression Model

Step 2: Notice that conditional on the sample values
{xi : i = 1, 2, . . . , n} we have

Var
(

β̄1
)
= σ2 ∑n

i=1 k2
i , Var

(
β̂1
)
=

σ2

∑n
i=1 (xi − x̄)2 .

Hence

Var
(

β̄1
)
− Var

(
β̂1
)

= σ2 ∑n
i=1 k2

i −
σ2

∑n
i=1 (xi − x̄)2

= σ2
(
∑n

i=1 k2
i

)
[1 − 1

∑n
i=1 k2

i ∑n
i=1 (xi − x̄)2 ]

= σ2
(
∑n

i=1 k2
i

)
[1 − (∑n

i=1 kixi)
2

∑n
i=1 k2

i ∑n
i=1 (xi − x̄)2 ]

= σ2
(
∑n

i=1 k2
i

)
[1 − correlation(xi, ki)

2] ≥ 0
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Multiple Regression Analysis
Variance of the OLS Estimators - Misspecified Models

Suppose that we know that the model is

y = β0 + β1x1 + β2x2 + u

where E(u|x1, x2) = 0.
Consider again ỹ = β̃0 + β̃1x1 so that

Var(β̃1) =
σ2

(n − 1) S2
x1

.

where S2
x1

is the sample variance of x1.
Recall that

Var(β̂1) =
σ2

(n − 1) S2
x1

(
1 − R2

1
) .

Thus Var(β̃1) < Var(β̂1) unless x1 and x2 are uncorrelated, then
they are the same.
While the variance of the estimator is smaller for the misspecified
model, unless β2 = 0 the misspecified model is biased.
As the sample size grows, the variance of each estimator shrinks
to zero, making the variance difference less important.
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Multiple Regression Analysis
Estimating the Error Variance

Var(β̂j) =
σ2

SSTj

(
1 − R2

j

) ,

where the SSTj = ∑n
i=1
(
xij − x̄j

)2 and R2
j is the R2 from the regressing

xj on all other x′s.

We don’t know what the error variance, σ2, is, because we don’t
observe the errors, ui.
What we observe are the residuals, ûi.
We can use the residuals to form an estimate of the error
variance:

σ̂2 =
∑n

i=1 û2
i

n − k − 1
,

thus
se
(

β̂j

)
=

σ̂√
SSTj(1 − R2

j )
.
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Multiple Regression Analysis
Estimating the Error Variance

se
(

β̂j

)
is called the standard error of β̂j.

The square root of σ̂2 is called the regression standard error, or
standard error of the regression

df = n − (k + 1), or df = n − k − 1. df (i.e. degrees of freedom) is
the (number of observations) – (number of estimated
parameters). Therefore σ̂2 = SSR/df .
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Multiple Regression Analysis: Estimation
Incorporating Non-linearities

So far we have focussed on linear relationships between the
dependent and independent variable, however in applied work in
Economics we often encounter regression equations where the
dependent variable appears in logarithmic form.
Why is this done?
Recall the Wages-Education example:

Wages = β0 + β1Education + u,

E [u|Education] = 0. The sample regression function obtained was

Ŵages = −1.60468 + 0.81395 × Education.

Notice that this implies that:
For a person with 6 years of Education, an additional year will
increase the hourly wages by $0.81395.
For a person with 15 years of Education, an additional year will
increase the hourly wages by $0.81395.

Conclusion: This may not be reasonable.
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Multiple Regression Analysis: Estimation
Incorporating Non-linearities

In empirical research it has been found that a better
characterization of how the wages change is to assume that each
year of education increases wages by a constant percentage.
A model that gives (approximately) a constant percentage effect
is:

log(Wages) = β0 + β1Education + u,
Why?
The key reason lies in the following fact: If ∆y/y is close to zero:

log (y + ∆y)− log (y) ∼=
∆y
y

that is the difference between the natural logarithm of y + ∆y
and the natural logarithm of y is the percentage change divided
by 100.
Consider the linear regression model that where the dependent
variable is in the logarithm form (known as log-linear model)

log (y) = β0 + β1x + u.
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Multiple Regression Analysis: Estimation
Incorporating Non-linearities

Let us drop the error term u for simplicity

log (y) = β0 + β1x

and denote ∆y be the change in y when x changes by ∆x.
One can show that in this model

∆y
y

∼= β1∆x

In words: a unit change in x is associated with a 100 × β1%
expected change in y.
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Multiple Regression Analysis: Estimation
Incorporating Non-linearities

Running the regression of log(Wages) on Education we obtain:

Dependent variable: log(Wages)
Estimation Method: Ordinary Least Squares

Regressors Estimates
Intercept 0.98237

Education 0.08262

Hence, an additional year of education is expected to increase
the hourly wages by 8.262%.
For a person with 6 years of Education, an additional year is
expected to increase the hourly wages by 0.08262 × wages6
dollars, where wages6 are the wages of that person.
For a person with 15 years of Education, an additional year is
expected to increase the hourly wages by 0.08262 × wages15
dollars, where wages15 are the wages of that person.
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Multiple Regression Analysis: Estimation
Incorporating Non-linearities

Other cases: Linear-Log model
x is in logarithms and y is not, that is

y = β0 + β1 log(x) + u.

Denote ∆y be the change in y when x changes by ∆x.
Ignoring the error term one can show that

∆y ∼= β1∆x/x.

In words: a 1% change in x is associated with a 0.01 × β1 expected
change in y.
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Multiple Regression Analysis: Estimation
Incorporating Non-linearities

Other cases: Log-Log model or constant elasticity model
Both x and y are in logarithms, that is

log(y) = β0 + β1 log(x) + u.

Denote ∆y be the change in y when x changes by ∆x.
Ignoring the error term one can show that

∆y/y ∼= β1∆x/x.

In words: a 1% change in x is associated with a β1% expected change
in y (β1 is the elasticity of y with respect to x).
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Multiple Regression Analysis: Estimation
Incorporating Non-linearities

Example: Economists often fit models that take logs of variables such
as:

log(Output) = β0 + β1 log(Labour) + β2 log(Capital) + u,

Ignoring the error term u, this model corresponds to the Cobb-Douglas
production function. That is, it is equivalent to

Output = A × Labourβ1 × Capitalβ2 ,
A = exp(β0).

Thus:
β1 is the elasticity of Output with respect to Labour.
β2 is the elasticity of Output with respect to Capital.
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Multiple Regression Analysis: Estimation
Incorporating Non-linearities - Why use log models?

Log models are invariant to the scale of the variables.
They give a direct estimate of elasticity (if both the dependent
variable and regressors are in logarithms).
For models with y > 0, the conditional distribution is often
heteroskedastic or asymmetric, while log(y) is much less so.
The distribution of log(y) is more narrow, limiting the effect of
outliers.
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Multiple Regression Analysis: Estimation
Incorporating Non-linearities - Some Rules of Thumb

What types of variables are often used in log form?
Values measured in a currency that must be positive.
Very large variables, such as population.

What types of variables are often used in level form?
Variables measured in years. Example: Education, Experience,
tenure, age, etc.
Variables that are a proportion or percent.
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Multiple Regression Analysis: Inference
Introduction

Examples of test of hypothesis
Consider the model:

bwgth = β0 + β1cigs + β2educ + β3npvis + β4age + u,

where

bwgth -birth weight,
cigs -cigarettes smoked per day while pregnant,
educ -years of schooling for the mother,
npvis -total number of prenatal visits,
age -Age of the mother.
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Multiple Regression Analysis: Inference
Introduction

bwgth = β0 + β1cigs + β2educ + β3npvis + β4age + u,

Is the partial effect of age relevant after controlling for cigs,
education and npvis?

H0 : β4 = 0 vs H1 : β4 ̸= 0,
[Individual statistical significance]

Is the effect of smoking 10 cigarettes canceled by the effect of one
more prenatal visit?

H0 : 10β1 + β3 = 0 vs H1 : 10β1 + β3 ̸= 0,
[single linear combination of parameters]
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Multiple Regression Analysis: Inference
Introduction

bwgth = β0 + β1cigs + β2educ + β3npvis + β4age + u,

Are the partial effects of age, education and npvis jointly irrelevant
after controlling for the number of cigarettes smoked?

H0 : β2 = β3 = β4 = 0
vs

H1 : β2 ̸= 0 and/or β3 ̸= 0 and/or β4 ̸= 0,
[jointly statistical significance; Exclusion restrictions]

Is there any variable in the equation relevant to explain the birth
weight?

H0 : β1 = β2 = β3 = β4 = 0
vs

H1 : β1 ̸= 0 and/or β2 ̸= 0 and/or β3 ̸= 0 and/or β4 ̸= 0,
[Overall significance of the regression]
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Multiple Regression Analysis: Inference
Assumptions of the Classical Linear Model (CLM)

So far, we know that given the Gauss-Markov assumptions, OLS
is BLUE,
In order to do classical hypothesis testing, we need to add
another assumption (beyond the Gauss-Markov assumptions),
Assume that u is independent of x1,x2,. . . ,xk and u is normally
distributed with zero mean and variance σ2: u ∼ N

(
0, σ2) .
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Multiple Regression Analysis: Inference
CLM Assumptions (cont)

Under CLM, OLS is not only BLUE, but is the minimum variance
unbiased estimator:

BLUE means that the OLS estimator is the most efficient among the
class of linear unbiased estimators.
Under CLM the OLS estimator is the most efficient among all
unbiased estimators.

We can summarize the population assumptions of CLM as
follows

y|x ∼ N(β0 + β1x1 + . . . + βkxk, σ2).

While for now we just assume normality, clear that sometimes
not the case.
Large samples will let us drop normality.
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Multiple Regression Analysis: Inference
Normal Sampling Distributions

Under the CLM assumptions, conditional on the sample values of the
independent variables for j = 0, ..., k

β̂j ∼ N(βj, Var(β̂j)),

so that
β̂j − βj

sd(β̂j)
∼ N(0, 1),

where sd(β̂j) =
√

Var(β̂j).

β̂j is distributed normally because it is a linear combination of
independent errors that have the normal distribution.
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