
Problem 1.
(a) The absolute risk aversion coeffi cient is ara = −u′′(c)

u′(c) . Some-

times is defined as u′′(c)
u′(c) . We scale by u

′(c) because expected utility is
only defined up to linear transformations —a+bu(c) gives the same pre-
dictions as u(c) —and this measure of the second derivative is invariant
to linear transformations. It is a measure of the intensity of an indi-
vidual’s aversion to risk. The higher it is, the higher the risk premium
require to induce full investment in a risky investment. Show that the
utility function with constant absolute risk aversion is u(c) = −e−αc.
Answer:

−u
′′(c)

u′(c)
=
α2e−αc

αe−αc
= α

(b) The coeffi cient of relative risk aversion in a one-period model
(i.e. when consumption equals wealth) is defined as rra = −cu′′(c)

u′(c) .
rra = c · ara. For instance under increasing relative risk aversion,
that is when ∂rra

∂c > 0 the proportion of an individual’s wealth invested
in the risky asset decreases as his wealth increases. Under constant
relative risk aversion ∂rra

∂c = 0, that proportion does not depend on the
wealth of the individual.
For power utility u(c) = c1−γ, show that the risk aversion coeffi cient

equals γ. What if u(c) = c−γ ?
Answer:
For u(c) = c1−γ :

rra = −cu
′′(c)

u′(c)
= −c(1− γ) (−γ) c

−γ−1

(1− γ) c−γ = γ

For u(c) = c−γ

rra = −cu
′′(c)

u′(c)
= −c− (1 + γ) (−γ) c−γ−2

(−γ) c−γ−1 = 1 + γ
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(c) The elasticity of intertemporal substitution is defined as ξI ≡

−
d(c1/c2)
c1/c2

dR/R
.

Show that with power utility u(c) = c1−γ, the intertemporal sub-
stitution elasticity is equal to 1/γ.
Solution:
Answer: The elasticity of intertemporal substitution is defined as

ξI ≡ −
d(c1/c2)
c1/c2
dR
R

d

(
c1
c2

)
=

∂
(
c1
c2

)
∂c1

dc1 +
∂
(
c1
c2

)
∂c2

dc2

=
dc1
c2
− c1dc2

(c2)
2

d
(
c1
c2

)
c1
c2

=
dc1
c1
− dc2

c2

Thus:

ξI ≡ −
d(c1/c2)
c1/c2
dR
R

= −
dc1
c1
− dc2

c2
dR
R

The budget constraints in a 2 period nonstochastic model are:

c1 + s = e1
c2 = e2 +Rs

where e1 and e2 are the endowments in period 1 and 2. The intertem-
poral budget constraint is

c1 +
c2
R
= e1 +

e2
R
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We can state the investor’s maximization problem in a 2 period
nonstochastic model as

max
{c1,c2}

u(c1) + βu(c2)

subject to the intertemporal budget constraint

The Lagrangian is

L = u(c1) + βu(c2) + λ
(
e1 +

e2
R
− c1 −

c2
R

)
The first order conditions are

u′(c1) = λ

βu′(c2) =
λ

R
.

Total differentiation of the first order conditions,

d (u′(c1)) =
∂u′(c1)

∂c1
dc1 = u′′(c1)dc1 = dλ

Divide the equation by u′(c1) the l.h.s. and by λ the r.h.s.

c1
u′′(c1)

u′(c1)

dc1
c1
= −γdc1

c1
=
dλ

λ

Total differentiation of the first order conditions,

d (βu′(c2)) =
∂βu′(c2)

∂c2
dc2 +

∂βu′(c1)

∂β
dβ =

∂ λR
∂λ

dλ+
∂ λR
∂R

dR

⇔ βu′′(c2)dc2 =
dλ

R
− λdR

R2
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Divide the equation by βu′(c2) the l.h.s. and by λ
R the r.h.s.

βc2
u′′(c2)

βu′(c2)

dc2
c2
=

(
λ

R

)−1(
dλ

R
− λdR

R2

)

−γdc2
c2
=
dλ

λ
− dR

R

Substituting in ξI ,

ξI = −
dc1
c1
− dc2

c2
dR
R

= −
− 1γ

dλ
λ +

1
γ

(
dλ
λ −

dR
R

)
dR
R

= 1/γ,

we obtain the result, i.e. ξI = 1/γ with a power utility function.
Problem 2.
The first order conditions for an infinitely lived consumer who can

buy an asset with dividend stream {Dt} are

pt = Et

{ ∞∑
s=1

βs
u′(ct+s)

u′(ct)
Dt+s

}
(39)

The first order conditions for buying a security with price pt and
payoff xt+1 = Dt+1 + pt+1 are

pt = Et

{
β
u′(yt+1)

u′(yt)
(Dt+1 + pt+1)

}
(40)

(a) Derive (40) from (39)
Answer:
(a) Rather obviously, use the equation at t and t+1, i.e. start with
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pt = Et

{
β
u′(ct+1)

u′(ct)
Dt+1 + β2

u′(ct+2)

u′(ct)
Dt+2 + ...

}
and

pt+1 = Et+1

{
β
u′(ct+2)

u′(ct+1)
Dt+2 + β2

u′(ct+3)

u′(ct+1)
Dt+3 + ...

}
These 2 equations together imply

pt = Et

(
β
u′(ct+1)

u′(ct)
Dt+1

)
+ Et

(
β
u′(ct+1)

u′(ct)
pt+1

)
(b) Derive (39) from (40). You need an extra condition. Show that

this extra condition is a first order condition for maximization. To do
this, think about what strategy the consumer could follow to improve
utility if the condition did not hold.
Answer:
(b) Substitute recursively,

pt = Et

(
β
u′(ct+1)

u′(ct)
pt+1

)
+ Et

(
β
u′(ct+1)

u′(ct)
Dt+1

)
= Et

(
β2
u′(ct+2)

u′(ct)
pt+2

)
+ Et

(
β2
u′(ct+2)

u′(ct)
Dt+2

)
+ Et

(
β
u′(ct+1)

u′(ct)
Dt+1

)
...

= Et

{ ∞∑
s=1

βs
u′(ct+s)

u′(ct)
Dt+s

}
+ lim

T−→∞
Et

(
βT
u′(ct+T )

u′(ct)
pt+T

)
The last term is not automatically zero. For example, if u′(c) is

a constant, then pt = βt or greater growth will lead to such a term.
It also has an interesting economic interpretation. Even if there are
no dividends, if the last term is present, it means the price today is
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driven entirely by the expectation that someone else will pay a higher
price tomorrow. People think they see this behavior in “speculative
bubbles” and some models of money work this way. The absence of
the last term is a first order condition for optimization of an infinitely-

lived consumer. If pt < (>)Et

{ ∞∑
s=1

βs
u′(ct+s)

u′(ct)
Dt+s

}
, he can buy (sell)

more of the asset, eat the dividends as they come, and increase utility.
This lowers ct, increases ct+s until the condition is filled.
If markets are complete – if he can also buy and sell claims to

the individual dividends – then he can do even more. For example,
if pt >, then he can sell the asset, buy claims to each dividend, pay
the dividend stream of the asset with the claims, and make a sure, in-
stant profit. He does not have to wait forever. (Advocates of bubbles
point out that you have to wait a long time to eat the dividend stream,
but they often forget the opportunities for immediate arbitrage that
a bubble can induce. The plausibility of bubbles relies on incomplete
markets.) Bubble type solutions show up often in models with over-
lapping generations, no bequest motive, and incomplete markets. The
OG gets rid of the individual first order condition that removes bub-
bles, and the incomplete markets gets rid of the arbitrage opportunity.
The possibility of bubbles figures in the evaluation of volatility tests.
Problem 3: If log x = µ+ σz and z ∼ N(0, 1) so that y ≡ log x ∼

N(µ, σ2) then Ex = E exp(y) = exp(µ+ σ2

2 ).

Answer: Ex = E exp(µ+σz) = exp(µ)
∫ +∞
−∞ exp(σz)f(z)dz, where

f(z) =
1√
2π
exp

(
−z

2

2

)
; thus

Ex = exp(µ)

∫ +∞

−∞

1√
2π
exp

(
σz − σ2

2
+
σ2

2
− z2

2

)
dz

= exp

(
µ+

σ2

2

)∫ +∞

−∞

1√
2π
exp

(
σz − σ2

2
− z2

2

)
dz
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= exp

(
µ+

σ2

2

)∫ +∞

−∞

1√
2π
exp

(
−(z − σ)

2

2
)
dz

= exp

(
µ+

σ2

2

)
,

since the integral is the normal cumulative distribution function with
mean σ and variance 1, i.e. z ∼ N (σ, 1). Remember if

z ∼ N
(
µ, σ2

)
then

f(z) =
1

σ
√
2π
exp

(
−(z − µ)

2σ2

2
)
.

Comment:
Let u(ct) =

c1−γt

1−γ , u
′(ct) = c−γt and assume log

ct+1
ct
∼ N(µ, σ2).

Observation: the combination of power utility function and log-
normal distribution is the usual trick to get an analytical solution to
the pricing equation.

pt = Et

(
β
u′(ct+1)

u′(ct)
xt+1

)

Let ct+1 =
(
1 + µc,t

)
ct, then log

(
ct+1
ct

)
= log

(
1 + µc,t

)
≈ µc,t (net

growth rate)

If
(
ct+1
ct

)
has a lognormal distribution

log

(
ct+1
ct

)
∼ N(µ, σ2)
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then

−γ log
(
ct+1
ct

)
∼ N(−γµt, γ2σ2t )

=⇒ E exp

(
−γ log

(
ct+1
ct

))
= exp

(
−γµt +

γ2σ2t
2

)
since

1 = Et

(
β

(
ct+1
ct

)−γ
Rf
t+1

)

=⇒ Rf
t+1 =

1

βEt

[(
ct+1
ct

)−γ] = 1

βEt

[
exp

(
log

(
ct+1
ct

)−γ)]

=
1

βEt

[
exp

(
−γ log

(
ct+1
ct

))] = [β exp(−γµt + γ2σ2t
2

)]−1

Take logarithms

rft+1 ≡ logR
f
t+1 = log

[
exp(−δ) exp

(
−γµt +

γ2σ2t
2

)]−1
where β = exp(−δ)

= δ + γµt −
γ2σ2t
2

.

The rft+1 is high when:
impatience δ is high. People want to save less because they prefer

to consume earlier.
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when consumption growth, µt, is high, and higher risk aversion
γ makes interest rates more sensitive to consumption growth, µt. Peo-
ple want to save less to smooth consumption and smoothing is more
important the more risk averse they are.
The term σ2t captures precautionary savings. When consumption

is more volatile, people are more worried about the low consumption
states, than they are pleased by the high consumption states. There-
fore, people want to save more now, driving down interest rates.
Problem 4: Is it true that the pricing of an asset does not depend

on the volatility of the asset’s return? why?
Answer: Yes.

pt = Et (mt+1xt+1)

=⇒ pt = Et(mt+1)Et(xt+1) + covt(mt+1, xt+1)

=⇒ pt = Et(xt+1)/R
f
t+1 + covt(mt+1, xt+1),

using Rf
t+1 = 1/Et(mt+1) or

pt =
Et(xt+1)

Rf
t+1

+ covt

(
β
u′(ct+1)

u′(ct)
, xt+1

)
The first term is the standard discounted present value formula.

This is the asset’s price in a risk-neutral world — if consumption is
constant or if utility is linear.
The second term is a risk adjustment. The price is high if the

payoff covaries negatively with consumption and is low if it covaries
positively.
Problem 5: What is the relation between the holding return

RB
2,t+1 =

B1,t+1
B2,t

and the riskless return R1,t =
1
B1,t
? Which is larger

in expected value?
Answer:
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B2,t = Et

{
β
u′(ct+1)

u′(ct)
B1,t+1

}
=⇒ 1 = Et

{
β
u′(ct+1)

u′(ct)

B1,t+1
B2,t

}
1 = Et

(
β
u′(ct+1)

u′(ct)

)
Et
B1,t+1
B2,t

+ covt

(
β
u′(ct+1)

u′(ct)
,
B1,t+1
B2,t

)
(*)

also

B1,t = Et

{
β
u′(ct+1)

u′(ct)
· 1
}

equation (*) can be writtten as

=⇒
Et
B1,t+1
B2,t
1

B1,t

= 1−
covt

(
β u
′(ct+1)
u′(ct)

, B1,t+1

)
B2,t

or

EtR
B
2,t+1

R1,t
= 1−

covt

(
β u
′(ct+1)
u′(ct)

, Et+1β
u′(ct+2)
u′(ct+1)

)
B2,t

Interpretation?
The expected excess holding return is positive i.e. EtR

B
2,t+1 > (<)R1,t

if covt (mt+1, Et+1mt+2) > (<) 0. Typically, growth rate of consumption

as positive autocorrelation, i.e. cov
(
ct+1
ct
,
ct+2
ct+1

)
> 0.

Problem 6: A stochastic process {pt} is amartingale ifEt {pt+1} =
pt. In a short period horizon is the price of a security (approximately)
a martingale?
Answer: In a short period horizon a security pays no dividends

between t and t + 1, β is close to one and ct ∼ ct+1. The pricing
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equation is pt = Et

{
β u
′(ct+1)
u′(ct)

pt+1

}
, under the conditions of the exercise

pt = Et {pt+1} .
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