Econometrics

Multiple Regression Analysis: Inference. Wooldridge (2013), Chapter 4 and Chapter 6 (section 6.4)

- The t Test
- Hypothesis testing - one-sided alternatives
- Hypothesis testing - two-sided alternatives
- Confidence Intervals
- Testing a Linear Combination
- Multiple Linear Restrictions
- Testing Exclusion Restrictions
- The F statistic
- Overall Significance
- Prediction for the conditional mean of y
- Prediction for y
- Predicting y in a log model

Multiple Regression Analysis: Inference

The t Test

Under the CLM assumptions

$$
\frac{\hat{\beta}_{j}-\beta_{j}}{\operatorname{se}\left(\hat{\beta}_{j}\right)} \sim t(n-k-1)
$$

where

$$
\operatorname{se}\left(\hat{\beta}_{j}\right)=\frac{\hat{\sigma}}{\sqrt{S S T_{j}\left(1-R_{j}^{2}\right)}} .
$$

- Note this is a t-student distribution because we estimate $\operatorname{sd}\left(\hat{\beta}_{j}\right)$ by the standard error of $\hat{\beta}_{j}$, se $\left(\hat{\beta}_{j}\right)$,
- Note the degrees of freedom: $n-k-1$ (sample size-number of parameters of the model).
- In the simple regression model $k=1$.

Multiple Regression Analysis: Inference

The t Test (cont)

- Knowing the sampling distribution for the standardized estimator allows us to carry out hypothesis tests.
- Start with a null hypothesis $H_{0}: \beta_{j}=b_{j}$, where b_{j} is a particular value.
- For example, $H_{0}: \beta_{j}=0$. If do not reject null, then x_{j} has no effect on the conditional mean of y, controlling for other x^{\prime} s.

Multiple Regression Analysis: Inference

The t Test (cont)

- To perform our test we first need to form the statistic : $t_{j}=\frac{\hat{\beta}_{j}-b_{j}}{\operatorname{se}\left(\hat{\beta}_{j}\right)}$.
- Besides our null, H_{0}, we need an alternative hypothesis, H_{1}, and a significance level α.

Alternatives:

- $H_{1}: \beta_{j}>b_{j}$ and $H_{1}: \beta_{j}<b_{j}$ are one-sided.
- $H_{1}: \beta_{j} \neq b_{j}$ is a two-sided alternative.

Multiple Regression Analysis: Inference

One-Sided Alternatives (cont)

$$
\begin{aligned}
y_{i} & =\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{k} x_{i k}+u_{i} \\
& \text { - } H_{0}: \beta_{j}=b_{j} \text { vs } H_{1}: \beta_{j}>b_{j} .
\end{aligned}
$$

Critical Value: t_{α} is defined as the constant that satisfies $\mathcal{P}\left(t_{j}>t_{\alpha}\right)=\alpha$, where t_{j} has the $t(n-k-1)$ distribution. Equivalently $\mathcal{P}\left(t_{j}<t_{\alpha}\right)=1-\alpha$. Rejection rule: Reject H_{0} if the value of the t-statistic $>t_{\alpha}$.

Multiple Regression Analysis: Inference

One-Sided Alternatives (cont)

- Example: Consider the following regression where the standard errors are in brackets:

$$
\begin{aligned}
\widehat{\log (\text { wages })} & =\underset{(0.104)}{0.284}+\underset{(0.007)}{0.092} \text { educ }+\underset{(0.0017)}{0.0041 \text { exper }}+\underset{(0.003)}{0.022 \text { tenure }} \\
n & =526, R^{2}=0.316
\end{aligned}
$$

Test whether, after controlling for education and tenure, higher work experience leads to higher hourly wages. Use the 5\% and the 1% significance levels.

- $H_{0}: \beta_{2}=0$ vs $H_{1}: \beta_{2}>0$.
- $t_{2}^{a c t}=\frac{0.0041}{0.0017}=2.41176$
- $d f=n-k-1=526-4=522$.
- $t_{0.05}=1.645$.
- $t_{0.01}=2.326$.
- Since $2.41176>1.645$, we reject H_{0} in favour of H_{1} at 5% level.
- Since $2.41176>2.326$, we reject H_{0} in favour of H_{1} at 1% level.
- Hence there is statistical evidence at both 5% and 1% that higher work experience leads to higher hourly wages

Multiple Regression Analysis: Inference

One-Sided Alternatives (cont)

$$
\begin{aligned}
& y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{k} x_{i k}+u_{i} \\
& \quad \text { - } H_{0}: \beta_{j}=b_{j} \text { vs } H_{1}: \beta_{j}<b_{j}
\end{aligned}
$$

Critical Value: $-t_{\alpha}$ that is the constant that satisfies $\mathcal{P}\left(t_{j}<-t_{\alpha}\right)=\alpha$. where t_{j} has the $t(n-k-1)$ distribution. Equivalently $\mathcal{P}\left(t_{j}>-t_{\alpha}\right)=1-\alpha$.
Rejection rule: Reject H_{0} if the value of the t-statistic $<-t_{\alpha}$.

Multiple Regression Analysis: Inference

One-Sided Alternatives (cont)

Example: Student performance and school size

- Consider the following regression

$$
\begin{aligned}
\widehat{\text { math } 10} & =\underset{(6.113)}{2.274}+\underset{(0.0001)}{0.00046 \text { totcomp }}+\underset{(0.04)}{0.048 \text { staff }}-\underset{(0.00022)}{0.0002} \text { enroll } \\
n & =408, R^{2}=0.0541
\end{aligned}
$$

where
math10 -percentage of students passing math test totcomp -average annual teacher compensation staff -staff per one thousand students enroll -School enrollment=school size

Test whether smaller school size leads to better student performance at 5% level and 10% level.

Multiple Regression Analysis: Inference

One-Sided Alternatives (cont)

- $H_{0}: \beta_{3}=0$ vs $H_{1}: \beta_{3}<0$.
- $t_{3}^{a c t}=\frac{-0.0002}{0.00022}=-0.90909$
- $d f=n-k-1=408-4=404$
- $-t_{0.05}=-1.645$.
- $-t_{0.1}=-1.282$.
- Given that $-1.645<-0.90909$ we fail to reject H_{0} in favour of H_{1} at 5\% level.
- Given that $-1.282<-0.90909$ we fail to reject H_{0} in favour of H_{1} at 10% level.
- Therefore, there is no statistical evidence (at 5% and 10% levels) that smaller school size leads to better student performance.

Multiple Regression Analysis: Inference

Two-Sided Alternatives

$$
\begin{gathered}
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{k} x_{i k}+u_{i} \\
\quad \text { - } H_{0}: \beta_{j}=b_{j} \text { vs } H_{1}: \beta_{j} \neq b_{j} .
\end{gathered}
$$

Critical Value: $t_{\alpha / 2}$ is defined as the constant that satisfies $\mathcal{P}\left(t_{j}>t_{\alpha / 2}\right)=\alpha / 2$, where t_{j} has the $t(n-k-1)$ distribution. Rejection rule: Reject H_{0} if the absolute value of the t-statistic $>t_{\alpha / 2}$.

Fail to reject

Multiple Regression Analysis: Inference

Two-Sided Alternatives

Example: Campus crime and enrollment
An interesting hypothesis is whether crime increases by one percent if enrollment is increased by one percent

$$
\begin{aligned}
\widehat{\log (\text { crime })} & =-\underset{(1.03)}{6.63}+\underset{(0.11)}{1.27} \log (\text { enroll }) \\
n & =97, R^{2}=0.0541
\end{aligned}
$$

The estimate 1.27 is different from one but is this difference statistically significant? (use the 5% significance level)?

- $H_{0}: \beta_{1}=1$ vs $H_{1}: \beta_{1} \neq 1$.
- $t_{1}^{a c t}=\frac{1.27-1}{0.11}=2.4545$
- df $=n-k-1=97-2=95$
- $t_{0.025}=1.985$
- In Wooldridge(2013)' book you can only find the critical values for the t-student distribution with $d f=90$. In this case $t_{0.025}=1.987$.
- Given that $|2.4545|=2.4545>1.985$ (also $|2.4545|>1.987$) we roinct H_{0} in fownurn of $H_{4}+5 \%$ lowal

Multiple Regression Analysis: Inference

Two-Sided Alternatives

Remarks on $H_{0}: \beta_{j}=0$ vs $H_{1}: \beta_{j} \neq 0$

- The quantity $t_{j}=\frac{\hat{\beta}_{j}}{\operatorname{se}\left(\hat{\beta}_{j}\right)}$ is called the t -ratio.
- If we reject the null, we typically say " x_{j} is statistically significant at the α level".
- If we fail to reject the null, we typically say " x_{j} is statistically insignificant at the α level".
- If asked to test whether a regressor is statistical significant, the alternative is assumed to be two-sided.

Multiple Regression Analysis: Inference

Two-Sided Alternatives

Example: Consider the following regression where the standard errors are in brackets:

$$
\begin{aligned}
\widehat{\log (\text { wages })} & =\underset{(0.104)}{0.284}+\underset{(0.007)}{0.092} \text { educ }+\underset{(0.0017)}{0.0041} \text { exper }+\underset{(0.003)}{0.022} \text { tenure, } \\
n & =526, R^{2}=0.316
\end{aligned}
$$

Test whether, after controlling for experience and tenure, education is statistically significant at 5% and the 1% significance levels.

- $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$.
- $t_{1}^{a c t}=\frac{0.092}{0.007}=13.1429$
- $d f=526-4=522$
- $t_{0.025}=1.96$.
- $t_{0.005}=2.576$.
- Since $|13.1429|=13.1429>1.96$, we reject H_{0} in favour of H_{1} at 5% level.
- Since $|13.1429|=13.1429>2.576$, we reject H_{0} in favour of H_{1} at 1% level.
- Therefore Education is statistically significant at 5% and 1%

Multiple Regression Analysis: Inference

 p -values- The smallest significance level at which the null hypothesis is still rejected, is called the p-value of the hypothesis test.
- A small p-value is evidence against the null hypothesis because one would reject the null hypothesis even at small significance levels.
- A large p-value is evidence in favor of the null hypothesis

Multiple Regression Analysis: Inference

Computing p-values for t tests

- Let $t_{j}^{a c t}$ be the actual value of the t -statistic in the sample.
- If the alternative hypothesis is $H_{1}: \beta_{j}>b_{j}$,

$$
p-\text { value }=\mathcal{P}\left(t_{j}>t_{j}^{\text {act }}\right) .
$$

- If the alternative hypothesis is $H_{1}: \beta_{j}<b_{j}$,

$$
p-\text { value }=\mathcal{P}\left(t_{j}<t_{j}^{\text {act }}\right) .
$$

- If the alternative hypothesis is $H_{1}: \beta_{j} \neq b_{j}$

$$
p-\text { value }=\mathcal{P}\left(\left|t_{j}\right|>\left|t_{j}^{a c t}\right|\right) .
$$

- Rejection rule: If p-value $<\alpha$, we reject the null hypothesis.

Multiple Regression Analysis: Inference

Example: We are studying the returns to education at junior colleges and four year colleges (universities) and we have the model

$$
\log (\text { wages })=\beta_{0}+\beta_{1} j c+\beta_{2} u n i v+\beta_{3} \text { exper }+u,
$$

where:

- $j c=$ number of years attending a two year college
- univ = number of years at a four year college
- exper $=$ months in workforce
- Data set taken from Kane and Rouse, 1995, "Labor Market Returns to Two- and Four-Year College", American Economic Review 85, 600-614. Sample size $n=6,763$.

Multiple Regression Analysis: Inference

Running a regression of \log (wages) on $j c$, univ and exper we obtain:

	Estimate	Std. Err.	t-Ratio	p-Value
Intercept	1.47233	0.02106	69.911	0
exper	0.00494	0.00016	30.901	0
jc	0.0667	0.00683	9.765	0
univ	0.07688	0.00231	33.28	0
$n=6763, R^{2}=0.2224$				

This is the typical output of a software in a regression model. The p -value computed in this table is for the hypothesis $H_{0}: \beta_{j}=0$ vs $H_{1}: \beta_{j} \neq 0$.
Given that for $j=1,2,3, p$ - value <0.05 we reject H_{0} in favour of H_{1} at 5% level.
The regressors exper, jc and univ are individually significant at 5\% level.

Multiple Regression Analysis: Inference

Confidence Intervals

- Another way to use classical statistical testing is to construct a confidence interval using the same critical value as was used for a two-sided test.
- Using

$$
\frac{\hat{\beta}_{j}-\beta_{j}}{\operatorname{se}\left(\hat{\beta}_{j}\right)} \sim t(n-k-1),
$$

we have

$$
\mathcal{P}\left(-t_{\alpha / 2}<\frac{\hat{\beta}_{j}-\beta_{j}}{\operatorname{se}\left(\hat{\beta}_{j}\right)}<t_{\alpha / 2}\right)=1-\alpha,
$$

where $t_{\alpha / 2}$ the constant that satisfies $\mathcal{P}\left(t_{j}<-t_{\alpha / 2}\right)=\alpha / 2$, where t_{j} is a random variable with distribution $t(n-k-1)$.
Equivalently $\mathcal{P}\left(t_{j}>t_{\alpha / 2}\right)=\alpha / 2$.

Multiple Regression Analysis: Inference

Confidence Intervals

- Now notice that

$$
\begin{aligned}
\mathcal{P}\left(-t_{\alpha / 2}\right. & \left.<\frac{\hat{\beta}_{j}-\beta_{j}}{\operatorname{se}\left(\hat{\beta}_{j}\right)}<t_{\alpha / 2}\right)=\mathcal{P}\left(-t_{\alpha / 2} \operatorname{se}\left(\hat{\beta}_{j}\right)<\hat{\beta}_{j}-\beta_{j}<t_{\alpha / 2} \operatorname{se}\left(\hat{\beta}_{j}\right)\right), \\
& =\mathcal{P}\left(-\hat{\beta}_{j}-t_{\alpha / 2} \operatorname{se}\left(\hat{\beta}_{j}\right)<-\beta_{j}<-\hat{\beta}_{j}+t_{\alpha / 2} \operatorname{se}\left(\hat{\beta}_{j}\right)\right) \\
& =\mathcal{P}\left(\hat{\beta}_{j}-t_{\alpha / 2} \operatorname{se}\left(\hat{\beta}_{j}\right)<\beta_{j}<\hat{\beta}_{j}+t_{\alpha / 2} \operatorname{se}\left(\hat{\beta}_{j}\right)\right)
\end{aligned}
$$

Therefore

$$
\mathcal{P}\left(\hat{\beta}_{j}-t_{\alpha / 2} \operatorname{se}\left(\hat{\beta}_{j}\right)<\beta_{j}<\hat{\beta}_{j}+t_{\alpha / 2} \operatorname{se}\left(\hat{\beta}_{j}\right)\right)=1-\alpha
$$

Multiple Regression Analysis: Inference

Confidence Intervals

- Hence a $100(1-\alpha) \%$ confidence interval is defined as

$$
\left(\hat{\beta}_{j}-t_{\alpha / 2} \operatorname{se}\left(\hat{\beta}_{j}\right), \hat{\beta}_{j}+t_{\alpha / 2} \operatorname{se}\left(\hat{\beta}_{j}\right)\right),
$$

- In repeated samples, the interval that is constructed in the above way will cover the population regression coefficient in $100(1-\alpha) \%$ of the cases. The interval that we compute with the actual sample is one of these intervals
- Relationship between confidence interval and hypotheses tests:
$b_{j} \notin$ conf. interval \Rightarrow reject $H_{0}: \beta_{j}=b_{j}$ in favour of $H_{1}: \beta_{j} \neq b_{j}$ at $100 \alpha \%$ level.

Multiple Regression Analysis: Inference

Confidence Intervals

Example: Running a regression of \log (wages) on $j c$, univ and exper we obtain:

	Estimate	Std. Err.	t-Ratio	p-Value
Intercept	1.47233	0.02106	69.911	0
exper	0.00494	0.00016	30.901	0
jc	0.0667	0.00683	9.765	0
univ	0.07688	0.00231	33.28	0

$$
n=6763, R^{2}=0.2224
$$

- Construct a 90% confidence interval for the coefficient of the variable exper.
- $d f=n-k-1=6763-4=6759$
- $t_{0.05}=1.645$.
- $(0.00494-1.645 \times 0.00016,0.00494+1.645 \times 0.00016)$
- $(0.0046768,0.0052032)$

Multiple Regression Analysis: Inference

Confidence Intervals

- Construct a 95% confidence interval for the coefficient of the variable j c.
- $t_{0.025}=1.96$.
- $(0.0667-1.96 \times 0.00683,0.0667+1.96 \times 0.00683)$
- (0.0533132,0.080 0868)
- Construct a 99% confidence interval for the coefficient of the variable univ.
- $t_{0.005}=2.576$.
- $(0.07688-2.576 \times 0.00231,0.07688+2.576 \times 0.00231)$
- (0.070 929 44, 0.08283056)

Multiple Regression Analysis: Inference

Testing a Linear Combination

- Suppose instead of testing whether β_{1} is equal to a constant, you want to test if it is equal to another parameter, that is $H_{0}: \beta_{1}=\beta_{2}$.
- Use same basic procedure for forming a t statistic

$$
t=\frac{\hat{\beta}_{1}-\hat{\beta}_{2}}{s e\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)}
$$

Multiple Regression Analysis: Inference

Testing Linear Combination (cont)

Notice that the standard error of $\hat{\beta}_{1}-\hat{\beta}_{2}$, $\operatorname{se}\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)$, is an estimator of the standard deviation of $\hat{\beta}_{1}-\hat{\beta}_{2}$:

$$
\sqrt{\operatorname{Var}\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)}
$$

Since

$$
\operatorname{Var}\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)=\operatorname{Var}\left(\hat{\beta}_{1}\right)+\operatorname{Var}\left(\hat{\beta}_{2}\right)-2 \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right),
$$

an estimator for $\sqrt{\operatorname{Var}\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)}$ is given by

$$
s e\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)=\sqrt{\operatorname{se}\left(\hat{\beta}_{1}\right)^{2}+\operatorname{se}\left(\hat{\beta}_{2}\right)^{2}-2 s_{12}}
$$

where s_{12} is an estimate of $\operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)$.

Multiple Regression Analysis: Inference

Testing a Linear Combination (cont)

In some cases you can always restate the problem to get the test you want.
Example: Consider the model on the returns to education at junior colleges and four year colleges

$$
\log (\text { wages })=\beta_{0}+\beta_{1} j c+\beta_{2} u n i v+\beta_{3} \text { exper }+u
$$

- We would like to test whether one year at a junior college is worth one year at a university, that is $H_{0}: \beta_{1}=\beta_{2}$.
- The alternative hypothesis is that a year at junior college is worth less than a year at a university. That is $H_{1}: \beta_{1}<\beta_{2}$.
- One can test H_{0} by using the approach described before.
- However there is an easier way.

Multiple Regression Analysis: Inference

Testing a Linear Combination (cont)

Define a new parameter $\theta=\beta_{1}-\beta_{2}$. Hence the null hypothesis becomes

$$
H_{0}: \theta=0
$$

and the alternative hypothesis becomes:

$$
H_{1}: \theta<0,
$$

We can always write the model in terms of θ. Under H_{0}, the model is equivalent to

$$
\log (\text { wages })=\beta_{0}+\theta j c+\beta_{2} \text { totcoll }+\beta_{3} \text { exper }+u,
$$

where totcoll $=j c+u n i v$.
This model is linear in the parameters so one can use the usual tests on hypothesis for single parameters described before.

Multiple Regression Analysis: Inference

Testing a Linear Combination (cont)

- Running the regression of \log (wages) on exper, $j c$ and totcoll we obtain:

	Estimate	Std.Err.	t-ratio
Intercept	1.47233	0.02106	69.911
exper	0.00494	0.00016	30.901
jc	-0.01018	0.00694	-1.467
totcoll	0.07688	0.00231	33.28

$$
n=6763, R^{2}=0.2224
$$

Test $H_{0}: \theta=0$ vs $H_{1}: \theta<0$ (use the 5% significance level).

Multiple Regression Analysis: Inference

Testing a Linear Combinations (cont)

Example (cont):

- This is the same model as originally, but now you get a standard error for $\hat{\beta}_{1}-\hat{\beta}_{2}$ directly from the basic regression
- Any linear combination of parameters could be tested in a similar manner
- Other examples of hypotheses about a single linear combination of parameters: $\beta_{1}=1+\beta_{2} ; \beta_{1}=5 \beta_{2} ; \beta_{1}=-(1 / 2) \beta_{2} ;$ etc.

Multiple Regression Analysis: Inference

Multiple Linear Restrictions

- Everything we've done so far has involved testing a single linear restriction, (e.g. $\beta_{1}=0$ or $\beta_{1}=\beta_{2}$)
- However, we may want to jointly test multiple hypotheses about our parameters.
- A typical example is testing "exclusion restrictions" - we want to know if a group of parameters are all equal to zero.

Multiple Regression Analysis: Inference

Testing Exclusion Restrictions

- Now the null hypothesis might be something like $H_{0}: \beta_{1}=0, \ldots, \beta_{q}=0$ in the model

$$
y=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{q} x_{q}+\ldots+\beta_{k} x_{k}+u .
$$

That is, we want to test whether the parameters of the first q regressors (x_{1} to x_{q}) are equal to zero.

- The alternative is just H_{1} : At least one of the $\beta_{j} \neq 0, j=1, \ldots, q$.
- Can't just check each t statistic separately, because we want to know if the q parameters are jointly significant at a given level it is possible for none to be individually significant at that level.

Multiple Regression Analysis: Inference

Exclusion Restrictions (cont)

- To do the test we need to estimate the "restricted model" without x_{1}, \ldots, x_{q} included, as well as the "unrestricted model" with all x^{\prime} s included and compute

$$
F=\frac{\left(S S R_{r}-S S R_{u r}\right) / q}{S S R_{u r} /(n-k-1)},
$$

where $S S R_{r}$ is the sum of squared residuals of the restricted model and $S S R_{u r}$ is the sum of squared residuals of the unrestricted model.

- Intuitively, we want to know if the change in $S S R$ is big enough to warrant inclusion of x_{1}, \ldots, x_{q}.

Multiple Regression Analysis: Inference

The F statistic

- The F statistic is always positive, since the SSR from the restricted model can't be less than the $S S R$ from the unrestricted.
- Essentially the F statistic is measuring the relative increase in SSR when moving from the unrestricted to restricted model.
- $q=$ number of restrictions, or $d f_{r}-d f_{u r}$.
- $n-k-1=d f_{u r}$.
- $n-k-1+q=d f_{r}$.

Multiple Regression Analysis: Inference

The F statistic (cont)

- To decide if the increase in $S S R$ when we move to a restricted model is "big enough" to reject the exclusions, we need to know about the sampling distribution of our F statistic.
- $F \sim F(q, n-k-1)$, where q is referred to as the numerator degrees of freedom and $n-k-1$ as the denominator degrees of freedom.
- Denote $F^{a c t}$ the actual value of the statistic in a given sample.
- The critical value is denoted as f_{α} and corresponds to the constant that satisfies

$$
\mathcal{P}\left(F>f_{\alpha}\right)=\alpha .
$$

Multiple Regression Analysis: Inference

The F statistic (cont)

- Rejection rule: Reject H_{0} if $F^{a c t}>f_{\alpha}$.

Multiple Regression Analysis: Inference

Exclusion Restrictions (cont)

Example: Consider the following model that explains major league baseball players' salaries:
$\log ($ salary $)=\beta_{0}+\beta_{1}$ years $+\beta_{2}$ gamesyr $+\beta_{3}$ bavg $+\beta_{4}$ hrunsyr $+\beta_{5} r b i s y r+u$, where

- salary= salary of major league baseball player
- years $=$ Years in the league
- gamesyr =Average number of games per year
- bavg = Batting average
- hrunsyr =Home runs per year
- $r b i s y r=$ Runs batted in per year

We would like to test $H_{0}: \beta_{3}=0, \beta_{4}=0, \beta_{5}=0$ vs $H_{1}: H_{0}$ is not true.

Multiple Regression Analysis: Inference

Exclusion Restrictions (cont)

- Estimating the unrestricted model we obtain

$$
\begin{aligned}
\widehat{\log (\text { salary })=} & \underset{(0.29)}{11.19}+\underset{(0.0121)}{0.0689} \text { years }+\underset{(0.0026)}{0.0126} \text { gamesyr } \\
& +\underset{(0.00110)}{0.00098 \text { bavg }}+\underset{(0.0161)}{0.0144 \text { hrunsyr }}+\underset{(0.0072)}{0.0108 \text { rbisyr }} \\
n= & 353, S S R=183.186, R^{2}=0.6278
\end{aligned}
$$

- Estimating the restricted model we obtain

$$
\begin{aligned}
\widehat{\log (\text { salary })} & =\underset{(0.11)}{11.22}+\underset{(0.0125)}{0.0713 \text { years }}+\underset{(0.0013)}{0.0202 \text { gamesyr }} \\
n & =353, S S R=198.311, R^{2}=0.5971
\end{aligned}
$$

- Test $H_{0}: \beta_{3}=0, \beta_{4}=0, \beta_{5}=0$ vs $H_{1}: H_{0}$ is not true at 5% level

Multiple Regression Analysis: Inference

The R^{2} form of the F statistic

- Because the SSR's may be large and unwieldy, an alternative form of the formula is useful.
- We use the fact that $\operatorname{SSR}=\operatorname{SST}\left(1-R^{2}\right)$ for any regression, so can substitute in for $S S R_{r}$ and $S S R_{u r}$:

$$
\begin{equation*}
F=\frac{\left(R_{u r}^{2}-R_{r}^{2}\right) / q}{\left(1-R_{u r}^{2}\right) /(n-k-1)} \tag{1}
\end{equation*}
$$

where R_{r}^{2} is the R^{2} of the restricted model and $R_{u r}^{2}$ is the R^{2} of the unrestricted model.
Example: For the baseball salary example, use (1) to obtain the F statistic.

Multiple Regression Analysis: Inference

Overall Significance

- A special case of exclusion restrictions is to test $H_{0}: \beta_{1}=\beta_{2}=\ldots=\beta_{k}=0$.
- Since the R^{2} from a model with only an intercept will be zero, the F statistic is simply

$$
F=\frac{R^{2} / k}{\left(1-R^{2}\right) /(n-k-1)} .
$$

Multiple Regression Analysis: Inference

- Example: Consider the estimated model

$$
\begin{aligned}
\widehat{\log (\text { salary })=} & \underset{(0.29)}{11.19}+\underset{(0.0121)}{0.0689} \text { years }+\underset{(0.0026)}{0.0126 \text { gamesyr }} \\
& +\underset{(0.00110)}{0.00098 b a v g}+\underset{(0.0161)}{0.0144 \text { hrunsyr }}+\underset{(0.0072)}{0.0108 r b i s y r} \\
n= & 353, S S R=183.186, R^{2}=0.6278
\end{aligned}
$$

We would like to test

$$
H_{0}: \beta_{1}=0, \beta_{2}=0, \beta_{3}=0, \beta_{4}=0, \beta_{5}=0
$$

vs
$H_{1}: H_{0}$ not true
at 5\% level.

Multiple Regression Analysis: Inference

General Linear Restrictions

- The basic form of the F statistic will work for any set of linear restrictions.
- First estimate the unrestricted model obtain $S S R_{u r}$ and then estimate the restricted model and obtain $S S R_{u r}$.
- The F statistic as the usual form

$$
F=\frac{\left(S S R_{r}-S S R_{u r}\right) / q}{S S R_{u r} /(n-k-1)} \sim F(q, n-k-1)
$$

where q is the number of restrictions being tested.

- Imposing the restrictions can be tricky - will likely have to redefine variables again.

Multiple Regression Analysis: Inference

General Linear Restrictions

Example: Test whether house price assessments are rational

$$
\begin{aligned}
\log (\text { price })= & \beta_{0}+\beta_{1} \log (\text { assess })+\beta_{2} \log (\text { lotsize }) \\
& +\beta_{3} \log (\text { sqrft })+\beta_{4} b d r m s+u
\end{aligned}
$$

- price $=$ Actual house price
- assess =The assessed housing value before the house was sold
- lotsize $=$ Size of lot (in feet)
- $s q r f t=$ Square footage
- bdrms =number of bedrooms

Multiple Regression Analysis: Inference

General Linear Restrictions

- Now, suppose we would like to test whether the assessed housing price is a rational valuation. If this is the case, then a 1% change in assess should be associated with a 1% change in price; that is, $\beta_{1}=1$. In addition, lotsize, sqrft, and bdrms should not help to explain \log (price), once the assessed value has been controlled for.
- Hence we want to test $H_{0}: \beta_{1}=1, \beta_{2}=0, \beta_{3}=0, \beta_{4}=0$ vs $H_{1}: H_{0}$ not true
- Sample size: 88.
- Running the regression of \log (price) on \log (assess), \log (lotsize), $\log (s q r f t)$ and $b d r m s$ we obtain $S S R_{u r}=1.822$
- Imposing the restriction given by H_{0} we have

$$
\log (\text { price })-\log (\text { assess })=\beta_{0}+u .
$$

- Estimating the parameter of this model by OLS we obtain $S S R_{r}=1.88$.
- Test $H_{0}: \beta_{1}=1, \beta_{2}=0, \beta_{3}=0, \beta_{4}=0$ vs $H_{1}: H_{0}$ not true at 5% level.

Prediction for the conditional mean of y

Suppose that we want an estimate of

$$
E\left(y \mid x_{1}=x_{1,0}, \ldots, x_{k}=x_{k, 0}\right)=\beta_{0}+\beta_{1} x_{1,0}+\ldots+\beta_{k} x_{k, 0} .
$$

That is, we would like to estimate the the mean of y when the regressors are equal to known values $x_{1,0}, \ldots, x_{k, 0}$.

- This is easy to obtain by substituting the x^{\prime} s in our estimated model with x_{0} 's,

$$
\hat{y}_{0}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1,0}+\ldots+\hat{\beta}_{k} x_{k, 0} .
$$

- We would like to construct confidence intervals for $E\left(y \mid x_{1}=x_{1,0}, \ldots, x_{k}=x_{k, 0}\right)$.
- But what about a standard error of \hat{y}_{0}, ?
- There is general formula for this standard error in the case $k>1$, but it requires knowledge of matrix algebra. However there is a simple way to obtain this standard error.
- Let us change notation and define
$\theta=E\left(y \mid x_{1}=x_{1,0}, \ldots, x_{k}=x_{k, 0}\right)$.
- Thus now the objective becomes to construct a confidence interval for θ.
- θ is just a linear combination of the parameters.

Prediction for the conditional mean of y

- Can rewrite

$$
\beta_{0}+\beta_{1} x_{1,0}+\ldots+\beta_{k} x_{k, 0}=\theta
$$

as

$$
\beta_{0}=\theta-\beta_{1} x_{1,0}-\ldots-\beta_{k} x_{k, 0}
$$

- Substitute in

$$
y=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+u, u \sim N\left(0, \sigma^{2}\right)
$$

to obtain

$$
y=\theta+\beta_{1}\left(x_{1}-x_{1,0}\right)+\ldots+\beta_{k}\left(x_{k}-x_{k, 0}\right)+u
$$

- So, if you regress y on $\left(x_{j}-x_{j, 0}\right), j=1, \ldots, k$, the intercept will give the predicted value and its standard error.
- Hence constructing a confidence interval for θ is similar to constructing a confidence interval for a parameter.
- se $\left(\hat{y}_{0}\right)$ is the standard error of the intercept in the regression of y on an intercept and $\left(x_{j}-x_{j, 0}\right), j=1, \ldots, k$.

Prediction for the conditional mean of y

Remark: In the simple regression model we have

$$
y=\beta_{0}+\beta_{1} x+u, E(u \mid x)=0, \operatorname{var}(u \mid x)=\sigma^{2}
$$

Suppose that we would like to predict the value of

$$
E\left(y \mid x=x_{0}\right)=\beta_{0}+\beta_{1} x_{0}
$$

In this case

$$
\operatorname{se}\left(\hat{y}_{0}\right)^{2}=\hat{\sigma}^{2}\left[\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right]
$$

where $\hat{\sigma}^{2}=\sum_{i=1}^{n} \hat{u}_{i}^{2} /(n-2)$ (recall that $k=1$ in the simple regression model).

Prediction for the conditional mean of y in the multiple regression model

Example: Consider the following equation:

$$
y_{i}=\beta_{1}+\beta_{2} x_{i}+u_{i}, i=1, \ldots, 60
$$

The results from estimating this equation using 60 observations by Ordinary Least Squares were (standard errors in parentheses) are:

$$
\begin{gathered}
\hat{y}=\underset{(0.125)}{0.395}-\underset{(0.189)}{0.550 x}, \\
S S R=42.307, S S E=6.1771, \\
S_{x}^{2}=\frac{1}{n}_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=0.34033
\end{gathered}
$$

Given that $x_{0}=0.075$, the sample mean of x is 0.105 and that $u \sim N\left(0, \sigma^{2}\right)$, calculate the 95% confidence intervals for $E\left(y \mid x=x_{0}\right)$

Prediction for y

Suppose now that we would like to construct a confidence interval for y when when the regressors are equal to known values $x_{1,0}, \ldots, x_{k, 0}$ and denote this value as y_{0}.

- How can we construct a confidence interval for y_{0} ?
- Notice that

$$
y_{0}=\beta_{0}+\beta_{1} x_{1,0}+\ldots+\beta_{k} x_{k, 0}+u_{0}
$$

- Our best prediction for y_{0} is the regression line

$$
\hat{y}_{0}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1,0}+\ldots+\hat{\beta}_{k} x_{k, 0}
$$

- The prediction error is given by

$$
\begin{aligned}
\hat{u}_{0} & =y_{0}-\hat{y}_{0} \\
& =\beta_{0}+\beta_{1} x_{1,0}+\ldots+\beta_{k} x_{k, 0}+u_{0}-\hat{y}_{0}
\end{aligned}
$$

- Therefore, as u_{0} and \hat{y}_{0} are independent (conditional on the regressors):

$$
\begin{aligned}
\operatorname{Var}\left(\hat{u}_{0}\right) & =\operatorname{Var}\left(u_{0}\right)+\operatorname{Var}\left(\hat{y}_{0}\right) \\
& =\sigma^{2}+\operatorname{Var}\left(\hat{y}_{0}\right) .
\end{aligned}
$$

$$
\operatorname{Var}\left(\hat{u}_{0}\right)=\sigma^{2}+\operatorname{Var}\left(\hat{y}_{0}\right) .
$$

- Hence an estimator for $\operatorname{Var}\left(\hat{u}_{0}\right)$ is given by

$$
s e_{0}^{2}=\hat{\sigma}^{2}+s e\left(\hat{y}_{0}\right)^{2},
$$

where $s e\left(\hat{y}_{0}\right)$ is the standard error of the intercept in the regression of y on $\left(x_{j}-x_{j, 0}\right), j=1, \ldots, k$, and
$\hat{\sigma}^{2}=\sum_{i=1}^{n} \hat{u}_{i}^{2} /(n-k-1)$.

- It can be shown that if $u \sim N\left(0, \sigma^{2}\right)$,

$$
\frac{y_{0}-\hat{y}_{0}}{s e_{0}} \sim t(n-k-1)
$$

- Hence the $(1-\alpha) \%$ prediction interval for y_{0} is given by

$$
\left(\hat{y}_{0}-t_{\alpha / 2} s e_{0}, \hat{y}_{0}+t_{\alpha / 2} s e_{0}\right),
$$

where $t_{\alpha / 2}$ is the percentile $(1-\alpha / 2)^{\text {th }}$ of the the t distribution with $n-k-1 d f$.

Prediction for y

Example: Suppose we have the following regression model

$$
\begin{aligned}
y= & \beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3} \\
& +\beta_{4} x_{3}^{2}+u .
\end{aligned}
$$

We have a sample of 4,137 observations . The estimated model is

$$
\begin{aligned}
\hat{y}= & \underset{(0.075)}{1.493}+\underset{(0.00007)}{0.00149} x_{1}-\underset{(0.00056)}{0.01386} x_{2}-\underset{(0.01650)}{0.06088} x_{3} \\
& +\underset{(0.00227)}{0.00546} x_{4} \\
\hat{\sigma}= & 0.56
\end{aligned}
$$

Prediction for y

Objectives:

- Construct a 95% confidence interval for the mean of y when $x_{1}=1,200, x_{2}=30$ and $x_{3}=5, x_{4}=25$.
- Construct a 95% confidence interval for y when $x_{1}=1,200$, $x_{2}=30, x_{3}=5, x_{4}=25$.
- Define a new set of regressors:

$$
\begin{aligned}
& \text { - } x_{1}^{*}=x_{1}-1,200 \text {. } \\
& \text { - } x_{2}^{*}=x_{2}-30 \text {. } \\
& \text { - } x_{3}^{*}=x_{3}-5 \text {. } \\
& \text { - } x_{4}^{*}=x_{4}-25 \text {. }
\end{aligned}
$$

Running the regression of y on these new regressors we obtain

$$
\begin{aligned}
\hat{y}= & \underset{(0.020)}{2.700}+\underset{(0.00007)}{0.00149} x_{1}^{*}-\underset{(0.00056)}{0.01386} x_{2}^{*}-\underset{(0.01650)}{0.06088} x_{3}^{*} \\
& +\underset{(0.00227)}{0.00546} x_{4}^{*} . \\
\hat{\sigma}= & 0.56
\end{aligned}
$$

Predicting y in a \log model

Suppose that we have the model

$$
\log (y)=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+u
$$

$E\left(u \mid x_{1}, \ldots, x_{k}\right)=0, \operatorname{Var}\left(u \mid x_{1}, \ldots, x_{k}\right)=\sigma^{2}$ and we would like to predict the mean of y for any value of the regressors: $E\left(y \mid x_{1}, \ldots, x_{k}\right)$.
What can we do?
Given the OLS estimators the predicted value for the mean of $\log (y)$ for any values of the regressors is

$$
\widehat{\log (y)}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\ldots+\hat{\beta}_{k} x_{k}
$$

Our first guess would be to exponentiate $\widehat{\log (y)}$.
However, simple exponentiation of $\widehat{\log (y)}$ will underestimate the expected value of y as $\widehat{\log (y)}$ is and estimator of $E\left(\log (y) \mid x_{1}, \ldots, x_{k}\right)$ and it can be shown using an inequality known as Jensen's inequality that

$$
\exp \left[E\left(\log (y) \mid x_{1}, \ldots, x_{k}\right)\right] \leq E\left(y \mid x_{1}, \ldots, x_{k}\right)
$$

Predicting y in a log model

If $u \sim N\left(0, \sigma^{2}\right)$, in can be shown that

$$
E\left(y \mid x_{1}, \ldots, x_{k}\right)=\exp \left(\frac{\sigma^{2}}{2}\right) \exp \left(\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}\right)
$$

Therefore, a simple way to predict y is

$$
\hat{y}=\exp \left(\frac{\hat{\sigma}^{2}}{2}\right) \exp \left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\ldots+\hat{\beta}_{k} x_{k}\right) .
$$

