Foundations of Financial Economics

Bernardino Adao
Final Exam
Total time: 1:30 hours. Total points: 20
Instructions:
Please sit in alternate seats. This is a closed-book, closed-note exam. Please get rid of everything but pen/pencil. In your answer explain all the steps in your reasoning. Keep answers short; I don't give more credit for long answers, and I can take points off if you add things that are wrong or irrelevant.

Formulas:
If x and y are random variables then

$$
\begin{gathered}
E(x y)=E x E y+\operatorname{cov}(x, y) \\
\sigma^{2}(x)=E x^{2}-(E x)^{2}
\end{gathered}
$$

If x is normal distributed then $\exp (x)$ is lognormal, and

$$
E \exp (x)=\exp \left(E x+0.5 \sigma^{2}(x)\right)
$$

Brownian motion

$$
z_{t+\Delta}-z_{t} \sim N(0, \Delta)
$$

Differential

$$
\begin{gathered}
d z_{t}=\lim _{\Delta \backslash 0}\left(z_{t+\Delta}-z_{t}\right) \\
d z_{t}^{2}=d t, d z_{t} d t=0, d t^{\alpha}=0, \text { if } \alpha>1 \\
E_{t}\left(d z_{t}\right)=0, v a r_{t}\left(d z_{t}\right)=E_{t}\left(d z_{t}^{2}\right)=d z_{t}^{2}=d t
\end{gathered}
$$

Ito's Lemma

$$
\begin{aligned}
d f(x, t) & =f_{t} d t+f_{x} d x+\frac{1}{2} f_{x x} d x^{2} \\
& =\left(f_{t}+f_{x} \mu_{x}+\frac{1}{2} f_{x x} \sigma_{x}^{2}\right) d t+f_{x} \sigma_{x} d z
\end{aligned}
$$

(4 pts) 1. What is a complete market? Explain how we can complete the market with options.

Answer:
In a complete market all contingent claims are tradable. A contingent claim is an asset that pays one unit in a particular state of nature and zero in all the other states. Suppose the states of nature are indexed to the possible payoffs of a particular asset and the payoffs are discrete, specifically:

$$
S_{T}=\{0,1,2,3, \ldots, M\} .
$$

Then, the contingent claim that pays 1 unit when $S_{T}=3$ and zero when $S_{T} \neq 3$ is equivalent to buying 2 call options, 1 with strike price 2 and another with
strike price 4 , and selling 2 call options with strike price 3 . The payoff of buying 1 call option with strike price 2 and selling 1 call option with strike price 3 is $(0,0,0,1,1, \ldots)$ and the payoff of selling 1 call option with strike price 3 and buying 1 with strike price 4 is $-(0,0,0,0,1,1, \ldots)$. The remaining M contingent claims can obtained in a similar manner.
2. Consider a model with power utility, $u\left(C_{t}\right)=\frac{C_{t}^{1-\gamma}}{1-\gamma}$, and $\beta=1$. Assume that $\ln \left(\frac{C_{t+1}}{C_{t}}\right) \equiv \Delta c_{t+1}$ is normal distributed. Let m_{t+1} denote the stochastic discount factor.
(2 pts) a. Show that the ratio

$$
\frac{\sigma\left(m_{t+1}\right)}{E\left(m_{t+1}\right)}
$$

is approximately equal to $\gamma \sigma\left(\Delta c_{t+1}\right)$.
Answer:

$$
\begin{gathered}
m_{t+1}=\left(\frac{C_{t+1}}{C_{t}}\right)^{-\gamma} \\
\Longrightarrow m_{t+1} \text { is lognormal distributed } \\
E m_{t+1}=e^{E\left(\log m_{t+1}\right)+0.5 \sigma^{2}\left(\log m_{t+1}\right)} \\
\sigma^{2}\left(m_{t+1}\right)=E\left(m_{t+1}\right)^{2}-\left(E m_{t+1}\right)^{2} \\
=e^{2 E\left(\log m_{t+1}\right)+2 \sigma^{2}\left(\log m_{t+1}\right)} \\
\quad-e^{2 E\left(\log m_{t+1}\right)+\sigma^{2}\left(\log m_{t+1}\right)}
\end{gathered}
$$

Thus,

$$
\begin{aligned}
\frac{\sigma^{2}\left(m_{t+1}\right)}{\left(E\left(m_{t+1}\right)\right)^{2}} & =\frac{e^{2 E\left(\log m_{t+1}\right)+2 \sigma^{2}\left(\log m_{t+1}\right)}-e^{2 E\left(\log m_{t+1}\right)+\sigma^{2}\left(\log m_{t+1}\right)}}{e^{2 E\left(\log m_{t+1}\right)+\sigma^{2}\left(\log m_{t+1}\right)}} \\
& =e^{\sigma^{2}\left(\log m_{t+1}\right)}-1
\end{aligned}
$$

Now use the approximation (first order Taylor approximation)

$$
e^{x} \approx 1+x
$$

Replace above to get

$$
\frac{\sigma^{2}\left(m_{t+1}\right)}{\left(E\left(m_{t+1}\right)\right)^{2}} \approx \sigma^{2}\left(\log m_{t+1}\right)
$$

or

$$
\frac{\sigma\left(m_{t+1}\right)}{E\left(m_{t+1}\right)} \approx \gamma \sigma\left(\Delta c_{t+1}\right)
$$

(2 pts) b. Consider the market Sharpe ratio

$$
\left|\frac{E R_{m}-R_{f}}{\sigma\left(R_{m}\right)}\right| \leq \frac{\sigma(m)}{E(m)}
$$

where R_{m} is the return on the market portfolio. The postwar NYSE index excess return is around 8% per year, with standard deviation around 16%. The standard deviation of \log consumption growth is about 1%. Is this a challenge to the model? Explain.

Answer:

$$
0.5=\frac{0.08}{0.16}=\frac{E R_{m}-R_{f}}{\sigma\left(R_{m}\right)} \leq \gamma \sigma\left(\Delta c_{t+1}\right)=0.01 \gamma
$$

Need to assume that the relative risk aversion is extremely large, i.e. $\gamma>50$.
$(2 \mathrm{pts}) \mathrm{c}$. Assume that $E\left(\Delta c_{t+1}\right)=2$. What do the data and the model imply for the riskless interest rate? Discuss.

$$
\begin{gathered}
\left(R_{t+1}^{f}\right)^{-1}=E_{t}\left(m_{t+1}\right) \\
\left(R_{t+1}^{f}\right)^{-1}=E_{t} e^{\ln m_{t+1}}=E_{t} e^{\ln \left(C_{t+1} / C_{t}\right)^{-\gamma}}=E_{t} e^{-\gamma \Delta c_{t+1}} \\
=e^{-\gamma E_{t}\left(\Delta c_{t+1}\right)+0.5 \gamma^{2} \sigma_{t}^{2}\left(\Delta c_{t+1}\right)}
\end{gathered}
$$

or

$$
-r_{t+1}^{f} \equiv-\ln R_{t+1}^{f}=-\gamma E_{t}\left(\Delta c_{t+1}\right)+0.5 \gamma^{2} \sigma_{t}^{2}\left(\Delta c_{t+1}\right)
$$

As γ is very large then fluctuations in $E_{t}\left(\Delta c_{t+1}\right)$ or $\sigma_{t}^{2}\left(\Delta c_{t+1}\right)$ lead to large fluctuations in r_{t+1}^{f} which is something we do not observe in the data. In the data the risk free interest rate is pretty stable.
3. Consider the Epstein and Zin utility model

$$
V_{t} \equiv\left((1-\beta) C_{t}^{1-\gamma}+\beta\left(H_{t}\left(V_{t+1}\right)\right)^{1-\gamma}\right)^{\frac{1}{1-\gamma}}
$$

where, $H_{t}\left(V_{t+1}\right)=\left(E_{t} V_{t+1}^{1-\alpha}\right)^{\frac{1}{1-\alpha}}$.
(2 pts) a. Show that when $\alpha=0$ we have the usual standard time-separable expected discounted utility with discount factor β and risk aversion γ.

Answer:

$$
\begin{aligned}
\left(V_{t}\right)^{1-\gamma} & =(1-\beta) C_{t}^{1-\gamma}+\beta E_{t}\left(V_{t+1}\right)^{1-\gamma} \\
& =(1-\beta) C_{t}^{1-\gamma}+\beta E_{t}\left\{(1-\beta) C_{t+1}^{1-\gamma}+\beta E_{t+1}\left(V_{t+1}\right)^{1-\gamma}\right\}
\end{aligned}
$$

By repeated substitution we obtain

$$
\begin{aligned}
& \left(V_{t}\right)^{1-\gamma}=(1-\beta) \sum_{s=0}^{\infty} \beta^{s} E_{t} C_{t+s}^{1-\gamma} \\
& \frac{\left(V_{t}\right)^{1-\gamma}}{(1-\beta)(1-\gamma)}=\sum_{s=0}^{\infty} \beta^{s} E_{t} \frac{C_{t+s}^{1-\gamma}}{1-\gamma}
\end{aligned}
$$

Now, the sequence $\left\{C_{0}, C_{1}, \ldots\right\}$ that maximizes the right hand side also maximizes the V_{t}.
(2 pts) b. The stochastic discount factor with the Epstein and Zin utility is

$$
m_{t+1}=\beta^{\theta}\left(\frac{C_{t+1}}{C_{t}}\right)^{-\gamma \theta} R_{m, t+1}^{\theta-1}, \quad \theta=\frac{1-\alpha}{1-\gamma}
$$

Assume that $\log \left(\frac{C_{t+1}}{C_{t}}\right) \equiv \Delta c_{t+1}$ is normal distributed, $\log \left(R_{m, t+1}\right)=r_{m, t+1}$ is normal distributed and they are independently distributed. What is the expression for the riskless interest rate?

Answer

$$
\begin{gathered}
\left(R_{t+1}^{f}\right)^{-1}=E_{t} \exp \left(\log \left(\beta^{\theta}\left(\frac{C_{t+1}}{C_{t}}\right)^{-\gamma \theta} R_{m, t+1}^{\theta-1}\right)\right) \\
\left(R_{t+1}^{f}\right)^{-1}=e^{\log \beta^{\theta}} E_{t} e^{-\gamma \theta\left(\Delta c_{t+1}\right)} E_{t} e^{-(1-\theta) r_{m, t+1}} \\
\left(R_{t+1}^{f}\right)^{-1}=e^{\log \beta^{\theta}} e^{-\gamma \theta E_{t}\left(\Delta c_{t+1}\right)+\frac{1}{2}(\gamma \theta)^{2} \sigma^{2}\left(\Delta c_{t+1}\right)} e^{-(1-\theta) E_{t} r_{m, t+1}+\frac{1}{2}(1-\theta)^{2} \sigma^{2}\left(r_{m, t+1}\right)} \\
r_{t+1}^{f}=-\theta \log \beta+\gamma \theta E_{t}\left(\Delta c_{t+1}\right)-\frac{1}{2}(\gamma \theta)^{2} \sigma^{2}\left(\Delta c_{t+1}\right)+(1-\theta) E_{t} r_{m, t+1}-\frac{1}{2}(1-\theta)^{2} \sigma^{2}\left(r_{m, t+1}\right)
\end{gathered}
$$

(2 pts) c. Can these preferences explain the risk free rate puzzle?
Answer:
Unlike in the power utility function, where the relative risk aversion (RRA) was γ and the intertemporal elasticity of substitution (IES) was $\frac{1}{\gamma}$, with these preferences the RRA and the IES are 2 separate parameters. $R R A=\alpha$ and $\operatorname{IES}=\frac{1}{\gamma}$. In this case by appropriately choosing these two parameters can have a high equity premium and a low and stable risk free rate.
(4 pts) 4. Let there be N assets with payoffs over S states of nature given by $\mathbf{R}_{n}=\left(R_{n 1}, R_{n 2}, \ldots, R_{n S}\right) \in \mathcal{R}^{S}$ for $n=1, \ldots, N$. Let asset prices $\mathbf{P}=$ $\left(P_{1}, P_{2}, \ldots, P_{N}\right) \in \mathcal{R}^{N}$ be given by $P_{n}=\sum_{s=1}^{S} \lambda_{s} R_{n s}$, for some $\lambda_{s}>0, s=$ $1, \ldots, S$ and $n=1, \ldots, N$. Show that \mathbf{P} is arbitrage free. What is the relationship between the λ_{s} and the contingent claims?

Answer:
Suppose, to get a contradiction, that \mathbf{P} is not arbitrage free. Then there is a portfolio $\mathbf{y} \in \mathcal{R}^{N}$ with a cost $\mathbf{y P} \leq 0$ and returns $\mathbf{y R} \mathbf{R}_{s} \geq 0$ for all $s=1, \ldots, S$, with at least one strict inequality.

$$
\mathbf{y P}=\sum_{n=1}^{N} y_{n} P_{n}=\sum_{n=1}^{N} y_{n} \sum_{s=1}^{S} \lambda_{s} R_{n s}=\sum_{s=1}^{S} \lambda_{s} \sum_{n=1}^{N} y_{n} R_{n s}=\sum_{s=1}^{S} \lambda_{s} \mathbf{y} \mathbf{R}_{s} \leq 0
$$

By assumption $\mathbf{y} \mathbf{R}_{s} \geq 0$, for all $s=1, \ldots, S$ and strictly larger for at least one state s. Since $\lambda_{s}>0$, for all $s=1, \ldots, S$, then $\sum_{s=1}^{S} \lambda_{s} \mathbf{y} \mathbf{R}_{s}>0$, which is a contradiction.

The λ_{s} are the prices of the contingent claims, or the stochastic discount factor divided by the probability of the state.

