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a b s t r a c t 

The Traveling Purchaser Problem (TPP) has been one of the most studied generalizations of the Traveling 

Salesman Problem. In recent decades, the TPP attracted the attention of both researchers in combinatorial 

optimization and practitioners, thanks to its double nature of procurement and transportation problem. 

The problem has been used to model several application contexts and is computationally challenging, 

dealing at the same time with the suppliers selection, the optimization of the purchasing plan and the 

routing decisions of the purchaser. For the first time after 50 years from its birth, we survey all the 

research done on the TPP including the most interesting and best performing solution methods proposed 

so far. We conclude providing some interesting future developments. 

© 2016 Elsevier B.V. All rights reserved. 

1

 

u  

s  

e  

s  

c  

s  

o  

p  

a  

c  

s  

r

 

i  

fi  

o  

p  

h  

P

r

 

p  

v  

P  

i  

p  

i  

p  

c  

m

 

S  

w  

e  

l  

s  

t  

t  

m  

o

 

fi  

h

0

. Introduction 

Procurement problems , optimizing costs and revenues for man-

facturing companies or firm retailers, have a long history in the

pecialized literature. The aim of a procurement problem is, in gen-

ral, to elaborate a purchasing plan that satisfies the demand for a

et of products/raw materials while minimizing the procurement

osts. Usually, the plan is formalized in terms of two joint deci-

ions, one concerning which suppliers should be selected, and the

ther one deciding how much should be ordered from each sup-

lier ( Aissaoui, Haouari, & Hassini, 2007 ). This activity is critical in

ny organization, considering that procurement expenditure typi-

ally accounts for a large portion of a firm total cost. For this rea-

on, nowadays, the procurement logistics is still a vivid stream of

esearch ( Manerba, 2015 ). 

The study of routing/transportation problems optimizing travel-

ng costs dates even back. A routing problem generally aims at

nding one or more optimal tours in order to visit a set of ge-

graphical locations (customers, suppliers, etc.) from a central de-

ot. The well-known Traveling Salesman Problem (TSP) and the Ve-

icle Routing Problem (VRP) belong to this category (see Gutin and

unnen, 2002 ; Toth & Vigo, 2014 ). 
∗ Corresponding author. 
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The joint evaluation of both transportation and procurement

roblems is a more recent stream of research combining the rele-

ant features of the two previous contexts. The Traveling Purchaser

roblem (TPP) belongs to this stream. In the TPP, given a list spec-

fying products and quantities required, a purchaser has to find a

urchasing plan that exactly satisfies the products demand by vis-

ting a subset of suppliers in a unique tour. The objective of the

urchaser is to minimize the combined traveling and purchasing

ost. In the classical TPP only a single vehicle is involved, even if

ulti-vehicle variants have already been studied in the literature. 

According to Golden, Levy, and Dahl (1981) and Fischetti,

alazar-Gonzalez, and Toth (2007) , the TPP represents, together

ith the family of orienteering problems, one of the most inter-

sting generalizations of the TSP. The large number of papers pub-

ished on this problem in the last decade demonstrates that it is

till attractive for researchers and practitioners. For these reasons,

he purpose of the present paper is to survey, for the first time,

he existing literature on the TPP. In particular, we will focus on its

odeling aspects and solution methods, also including the analysis

f its several variants, as the multi-vehicle ones. 

The paper is organized as follows. In Section 2 , we formally de-

ne the TPP, standardize its classifications, point out some inter-

sting properties, and present its many practical applications. In

ections 3 and 4 , we survey different Mixed Integer Linear Pro-

ramming (MILP) formulations for the TPP and the most impor-

ant polyhedral results, respectively. Sections 5 and 6 present ex-

ct and heuristic approaches, respectively. Section 7 analyzes de-

erministic, dynamic, and stochastic variants of the TPP, as well as

ts multi-vehicle extensions. Conclusions and open lines of research

http://dx.doi.org/10.1016/j.ejor.2016.12.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
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Fig. 1. Components of the TPP in a layered structure. 
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2

are drawn in Section 8 . Finally, Appendix A presents and compares

different sets of benchmark instances. 

2. Problem definition and properties 

The TPP, in its original form, is a single-vehicle routing and pro-

curement problem defined as follows. Consider a depot 0, a set K

of products/items to purchase, and a set M of geographically dis-

persed suppliers/markets. A discrete demand d k , specified for each

product k ∈ K , can be accomplished in a subset M k ⊆ M of sup-

pliers at a price p ik > 0, i ∈ M k . Moreover, a product availabil-

ity q ik > 0 is also defined for each product k ∈ K and each sup-

plier i ∈ M k . Note that, to guarantee the existence of a feasible

purchasing plan with respect to the product demand, the condi-

tion 

∑ 

i ∈ M k 
q ik ≥ d k , ∀ k ∈ K has to hold. The problem is defined on a

complete directed graph G = (V, A ) where V := M ∪ {0} is the node

set, and A := {( i , j ): i , j ∈ V , i � = j } is the arc set. A traveling cost

c ij is associated with each arc ( i , j ) ∈ A . The TPP looks for a sim-

ple tour in G starting and ending at the depot, visiting a subset of

suppliers and deciding how much to purchase for each product in

each supplier so to satisfy the demand at minimum traveling and

purchasing costs. 

The great interest in the TPP is probably due to the fact that

it challengingly combines supplier selection, routing construction,

and product purchase planning. Fig. 1 shows the three compo-

nents of the problem in a layered framework. It is clear that op-

timally solving each subproblem separately does not guarantee to

achieve the optimal solution for the TPP. The supplier selection

(first layer) is a crucial aspect that differentiates TPP from tradi-

tional routing problems, linking it to the so-called routing problems

with profits ( Feillet, Dejax, & Gendreau, 2005 ). Since the main goal

of the purchaser is to satisfy products demand, not all the suppli-

ers have to be visited necessarily. In general, the convenience of

a visit depends on the trade-off between the additional traveling

cost for reaching the supplier and the possible saving obtained by

purchasing products at lower prices 1 . The TPP has, in fact, a bi-

objective nature, linearly combining in a single objective function
1 We remark that suppliers selection in the TPP has to be intended only at an 

operating level, and depending on the daily product demand, prices, and availabili- 

ties. Strategic decisions for selecting the best suppliers based on qualitative criteria 

(e.g., service quality and reliability) concern another well-studied stream of research 

( Degraeve, Labro, & Roodhooft, 20 0 0 ). 

 

c  

s  

t  

j  
he minimization of both traveling and purchasing costs (second

nd third layer, respectively). This makes the problem of selecting

ptimal suppliers more complex since the traveling costs optimiza-

ion pushes the purchaser to select only suppliers that are strictly

ecessary to satisfy products demand, while the purchasing costs

inimization pushes to select a more convenient and potentially

arger set of suppliers. 

.1. Common classifications 

A first classification comes from the TPP routing nature. As for

he TSP, a TPP modeled on a directed graph, where the cost c ij is

otentially different from c ji , is named asymmetric (ATPP). Other-

ise, if c i j = c ji for each arc ( i , j ) ∈ A , the problem is called symmet-

ic TPP (STPP). In the literature, ATPP and STPP are often referred

o as directed and undirected TPP, respectively. 

A second common classification concerns the availability of

roducts at the suppliers. If the available quantity of a product

 ∈ K in a supplier i ∈ M k is defined as a finite value q ik , potentially

maller than product demand d k , then the TPP is called restricted

R-TPP). The unrestricted TPP (U-TPP), instead, considers the case in

hich supplies are unlimited, i.e., where q ik ≥ d k , k ∈ K , i ∈ M k .

ote that U-TPP represents a special case of R-TPP, since having

nlimited supplies is equivalent to consider d k = 1 and q ik = 1 , ∀ k

 K , ∀ i ∈ M k . In the literature, several papers refer to R-TPP and U-

PP as capacitated and uncapacitated TPP, respectively. However, we

refer to adopt the former nomenclature in order to avoid confu-

ion with the concept of vehicle capacity, appearing in the multi-

ehicle case. Rarely, these variants are also called limited-supply

nd unlimited-supply TPP. 

.2. Complexity 

The TPP is N P -hard in the strong sense since it generalizes

oth the TSP and the Uncapacitated Facility Location Problem

UFLP). This can be proved by the following reductions: (1) the TSP

orresponds to an U-TPP where each supplier offers a product that

annot be purchased elsewhere; (2) the UFLP can be seen as an

-TPP where each potential facility location corresponds to a sup-

lier and each customer to a product, M k = M for all k ∈ K , p ik is

he cost of serving customer k from facility i , and c i j := (b i + b j ) / 2 ,

 ( i , j ) ∈ A , with b i the cost of opening facility i . 

However, as highlighted by Teeninga and Volgenant (2004) ,

ome TPP special cases can be solved trivially, namely (a) when

he supplier nearest to the depot sells, for each product, all the

equired quantity at the lowest price, and (b) when the traveling

osts are null. In the latter case, an optimal U-TPP solution can

e found by purchasing each product from its cheapest supplier,

ince any tour connecting these suppliers is optimal (in the R-TPP,

nstead, the suppliers are first sorted in non-decreasing order of

rice for each product k , then each product is purchased from its

heapest suppliers in an amount equal to the minimum between

he available quantity and the residual demand). 

Finally, note that the problem feasibility can be checked polyno-

ially just by inspection of the input data. If a product is not avail-

ble at any supplier, then no solution exists for the U-TPP. Simi-

arly, for the R-TPP, the infeasibility occurs if it exists a product k

uch that 
∑ 

i ∈ M k 
q ik < d k . 

.3. Applications 

In the previous sections, we have presented the TPP as a pro-

urement logistics problem. Interesting enough, its combinatorial

tructure appears for the first time (in the unrestricted form) in

he work by Burstall (1966) to model the scheduling of different

obs on a multi-purpose production line. In that case, products
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orrespond to required jobs and suppliers to particular produc-

ion line configurations. The cost p ik represents the time needed

o process job k in configuration i , while cost c ij represents the

ime needed to changeover from configuration i to j . The objec-

ive is to choose the sequence of configurations and jobs so to

inimize the overall time to conclude the jobs’ batch. In the cited

ork the application was that of manufacturing steel tubes, but it

s easy to imagine how this setting can be generalized to schedule

obs in any application involving general-purpose machineries. E.g.,

attrysse, Beullens, Collin, Duflou, and van Oudheusden (2006) use

 TPP model to control a sheet metal bending machine in the press

rakes production and show that is possible to save about the 10%

n makespan time on real-life work orders taken from several com-

anies. 

However, the TPP has started gaining a lot of attention from

he operation research community only after its reinterpretation

s a vehicle routing problem by Ramesh (1981) 2 . In real procure-

ent settings, in fact, it is very common that a company is di-

ectly involved in the purchasing and collection of raw materi-

ls, spare parts, or products from some reliable suppliers. With

he evolution of more and more efficient solution algorithms, the

PP has become a useful tool for companies’ information systems

n supporting their procurement operations. A notable example is

epresented by the commercial web application “Le Bon Côté des

hoses ” ( http://www.leboncotedeschoses.fr/ ) implementing the ap- 

roach proposed by Cambazard and Penz (2012) , in which a pur-

haser selects his location, the products list, and a maximum num-

er of markets to visit, and receives the most convenient shopping

lan (see Section 5.3 ). Other routing applications include, e.g., the

roblem of planning the tour needed for a school bus to pick-up

tudents from several stops (see Section 7.3 ) or, as suggested by

ingh and van Oudheusden (1997) , warehousing operations for dis-

atching a vehicle to pick up the ordered items (stored in different

ocations) and transport them to the shipping area. 

Some works have considered the TPP to model operations

n maritime transport networks. A ship–truck intermodal freight

ransportation problem has been modeled as a TPP by Infante,

aletta, and Vocaturo (2009) . Here, seaport terminals play the role

f exchange hubs in which containers, addressed to hinterland

ogistic centers, are moved from ship to trucks and vice versa.

chwarze and Voß (2015) , instead, propose a two-level hierarchical

lanning problem to enhance the optimized interaction between

aritime shipping and hinterland traffic and show how, under sev-

ral assumptions, the problem can be reduced to a single or multi-

ehicle TPP, or to other standard routing models (TSP, VRP). 

The TPP can also be employed in many network design applica-

ions such as subway/rail lines, irrigation networks, and so on. Not

urprisingly, along with the extraordinary worldwide expansion of

elecommunication networks in the nineties, Voß (1990) and Ravi

nd Salman (1999) highlighted the possibility of using TPP to de-

ign special configurations in industrial and generic communica-

ion networks. Such infrastructures consist of several local access

etworks (LANs) collecting traffic of user nodes at the switching

enters and of a backbone network that routes high volume traffic

mong switching centers. Because of its reliability and self-healing

roperties, an optimized network structure requires a ring archi-

ecture for the backbone and a star architecture for the LANs. The

roblem is to determine a tour (the ring backbone) on a subset

f the network nodes and connect the remaining nodes to others

n the tour (star configuration) minimizing the overall connection

ost. This problem, named the ring–star problem , is actually a TPP
2 Actually, in contrast to what claimed in many papers, the applicability of the 

PP in a procurement context has appeared along with the Decorator’s Problem 

xample discussed by Buzacott and Dutta (1971) , ten years before the work by 

amesh (1981) . 

l  

t  

i  

p  

(  
pecial case where the graph nodes correspond to both the set of

uppliers and the set of products. 

Finally, to further underline its wide applicability, we remark

hat even a stand management problem for bio-diversity sustain-

ble forests ( Wikström & Eriksson, 20 0 0 ) have been related to the

PP. The authors want to determine harvest periods and the num-

er of every tree type to be cut in these periods, while maximizing

he net present value of harvests after deduction of entry costs for

he harvesting periods. Some similarities induced the authors to

dapt an heuristic procedure proposed by Voß (1996) for the TPP

see Section 6.1.2 ) to their problem. In the recent years, along with

he study of TPP variants and generalizations, other applications

uch as home health-care and scheduling of surgeries in operating

ooms have appeared. We will describe them in Section 7 . 

. Mathematical programming formulations 

In this section, we present different MILP formulations for the

TPP and the STPP. 

.1. Asymmetric TPP 

Let y i , i ∈ M , be a binary variable taking value 1 if supplier i

s selected, and 0 otherwise. Let x ij , ( i , j ) ∈ A , be a binary vari-

ble taking value 1 if arc ( i , j ) is traversed, and 0 otherwise. Let

 ik , k ∈ K , i ∈ M k , be a variable representing the number of units

f product k purchased from supplier i . Moreover, for any subset

 

′ of nodes, let us define δ+ (V ′ ) := 

{
(i, j) ∈ A : i ∈ V ′ , j �∈ V ′ 

}
and

−(V ′ ) := 

{
(i, j) ∈ A : i �∈ V ′ , j ∈ V ′ 

}
. Then, the ATPP can b e formu-

ated as follows: 

(AT P P ) min 

∑ 

(i, j) ∈ A 
c i j x i j + 

∑ 

k ∈ K 

∑ 

i ∈ M k 

p ik z ik (1)

ubject to 

∑ 

i ∈ M k 

z ik = d k k ∈ K (2) 

 ik ≤ q ik y i k ∈ K, i ∈ M k (3) 

∑ 

i, j) ∈ δ+ ({ h } ) 
x i j = 

∑ 

(i, j) ∈ δ−({ h } ) 
x i j = y h h ∈ M (4) 

∑ 

i, j) ∈ δ−(M 

′ ) 
x i j ≥ y h M 

′ ⊆ M, h ∈ M 

′ (5) 

 i j ∈ { 0 , 1 } (i, j) ∈ A (6) 

 i ∈ { 0 , 1 } i ∈ M (7) 

 ik ≥ 0 k ∈ K, i ∈ M k . (8) 

bjective function (1) aims at the joint minimization of the trav-

ling and purchasing costs. Eqs. (2) ensure that each product de-

and is satisfied exactly. Constraints (3) impose that each sup-

lier has to be visited to purchase a product from it and the pur-

hased quantity should not exceed the corresponding availability.

onstraints (4) and (5) rule the visiting tour feasibility. Eqs. (4) im-

ose that, for each visited supplier, exactly one arc must enter and

eave the relative node. Inequalities (5) are connectivity constraints

hat prevent the creation of sub-tours not including the depot by

mposing that at least one arc must enter each subset M 

′ of sup-

liers in which at least one supplier h is visited. Finally, constraints

6) –(8) impose binary and non-negative conditions on variables.

http://www.leboncotedeschoses.fr/
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No integrality conditions are required for z -variables, even if they

actually represent the number of units purchased for each prod-

uct in each supplier. If all input data are integer, in fact, then an

optimal solution where all z -variables have integer values always

exists. 

A first trivial preprocessing can be applied to strengthen

model (1) –(8) . To this aim, we define M 

∗ := { 0 } ∪{
i ∈ M : ∃ k ∈ K such that 

∑ 

j∈ M k \{ i } q jk < d k 
}

as the node set

that must be necessarily part of any feasible TPP solution, and

K 

∗ := 

{
k ∈ K : 

∑ 

i ∈ M k 
q ik = d k 

}
as the product set for which suppli-

ers selection and purchasing plan decisions can be predetermined.

Thus, constraints (7) can be replaced by y i = 1 when i ∈ M 

∗, and

constraints (2) by z ik = q ik when k ∈ K 

∗, i ∈ M k . 

3.1.1. Compact formulations 

The formulation (1) –(8) cannot be implemented through a com-

mercial solver even for small-size instances since the number of

constraints (5) is exponential in the size of M . We will see in

Section 5.2 that it is possible, and often efficient, to initially ex-

clude constraints (5) from the model and then to identify in poly-

nomial time (and add dynamically during a branch-and-bound ap-

proach) only those constraints that are necessary for the opti-

mal solution. However, there exist other subtour elimination con-

straints that yield, expanding the variables subspace, compact for-

mulations with a polynomial number of constraints. The Miller–

Tucker–Zemlin (MTZ) and the commodity flow (CF) formulations can

be directly inherited from TSP and adapted to the TPP. Unfortu-

nately, in general, compact formulations have weaker continuous

Linear Programming (LP) relaxations with respect to formulations

with an exponential number of constraints. 

Let us introduce a non-negative variable u i for each supplier

i ∈ M representing the total number of suppliers already visited

when leaving supplier i . Then, the MTZ formulation ( Miller, Tucker,

& Zemlin, 1960 ) for the TPP can be obtained by substituting in-

equalities (5) with the following inequalities 

u i − u j + | M | x i j ≤ | M | − 1 i, j ∈ M, i � = j (9)

that prevent the creation of subtours by controlling the order of

visit of the suppliers. 

Another option is to define a non-negative flow variable f ij for

each arc ( i , j ) ∈ A representing the quantity of a commodity on

the vehicle when it leaves supplier i and arrives in j . Then, the

single -CF formulation for the TPP can be obtained by substituting

inequalities (4) and (5) with: ∑ 

j∈ M 

f 0 j = 

∑ 

k ∈ K 
d k (10)

∑ 

(i, j) ∈ δ+ ({ h } ) 
f i j −

∑ 

(i, j) ∈ δ−({ h } ) 
f i j = −

∑ 

k ∈ K 
z hk h ∈ M (11)

f i j ≤ x i j 

∑ 

k ∈ K 
d k (i, j) ∈ A. (12)

The connectivity requirement is imposed by creating, through flow

variables, a path stemming from the depot. More precisely, for

constraint (10) , a single commodity is sent from the depot in an

amount equal to the total demand 

∑ 

k ∈ K d k and, for constraints

(11) , each visited supplier i absorbs an amount equal to the quan-

tity purchased 

∑ 

k ∈ K z ik . Inequalities (12) states that a positive flow

f ij can be sent along arc ( i , j ) only if it is traversed ( x i j = 1 ). Other

similar compact formulations with a stronger LP relaxation and

based on two or even multi-commodity flow exist (see Gutin & Pun-

nen, 2002 ) but, for sake of space, we skip their description. Any-

way, their application is quite straightforward. 
e
.1.2. Valid inequalities 

The LP relaxation of (1) –(8) can be strengthened by using

alid inequalities derived from some of its subproblems. First, con-

traints (4) –(7) are the ones of the Cycle Problem (a TSP general-

zation in which only a subset of vertices must be visited) thus,

.g., the lifted cycle D 

+ 
k 

and D 

−
k 

inequalities ( Balas & Oosten, 20 0 0 )

re valid for the ATPP. Second, constraints (2), (3), (7) , and (8) de-

ne an UFLP with upper bounds on the customer facility variables.

hen q ik = d k , k ∈ K, i ∈ M k , TPP valid inequalities can be obtained

rom the Set Covering polytope ( Balas & Ng, 1989 ). 

Some TPP specific valid inequalities also exist. For example, the

SEC inequalities (13) , introduced in Riera-Ledesma (2002) , state

hat at least one arc must enter into the subset M 

′ ⊆ M whenever

ome amount of any product k is purchased in a market belonging

o M 

′ , i.e.: 

∑ 

(i, j) ∈ δ−(M 

′ ) 
x i j ≥

1 

d k 

∑ 

i ∈ M 

′ ∩ M k 

z ik M 

′ ⊆ M, k ∈ K. (13)

nequalities (13) can be easily strengthened by replacing d k with

in { d k , ∑ 

i ∈ M 

′ ∩ M k 
q ik } . 

.2. Symmetric TPP 

The STPP is defined over a complete undirected graph G U =
(V, E) , where E := { e = [ i, j] : i, j ∈ V, i < j} is the edge set and a

raveling cost c e is associated with each edge e ∈ E . Let x e , e ∈ E ,

e a binary variable taking value 1 if edge e is crossed, and 0 oth-

rwise. Let also δ( V 

′ ) := {[ i , j ] ∈ E : i ∈ V 

′ , j ∈ V �V 

′ } for any subset

 

′ of nodes. Then, the STPP can be defined as follows: 

(ST P P ) min 

∑ 

e ∈ E 
c e x e + 

∑ 

k ∈ K 

∑ 

i ∈ M k 

p ik z ik (14)

ubject to constraints (2), (3), (7), (8) , and ∑ 

 ∈ δ({ h } ) 
x e = 2 y h h ∈ M (15)

∑ 

 ∈ δ(M 

′ ) 
x e ≥ 2 y h M 

′ ⊆ M, h ∈ M 

′ (16)

 e ∈ { 0 , 1 } e ∈ E. (17)

ue to the use of an undirected graph, now in the degree con-

traints (15) two edges must be incident to each visited vertex, and

n the connectivity constraints (16) at least two edges must be in-

ident to each subset of suppliers containing a visited one. Note

hat this STPP formulation does not allow solutions with less than

hree vertices, one being the depot. Two-vertex cycles containing

he depot and one market can be easily generated and compared

o the optimal solution given by the model. 

STPP compact formulations can be derived similarly to what

e have already seen for the ATPP. Note, however, that MTZ for-

ulations need the orientation of arcs to work correctly. A com-

on workaround when using an undirected graph is to replace

ach edge e = [ i, j] ∈ E with two directed arcs ( i , j ) and ( j , i ) with

 i j = c ji = c e , making sure that only one arc linking each couple of

ertexes can be used. 

Concerning valid inequalities for the STPP, arguments similar to

he ones dealt with in Section 3.1.2 can be done ( Laporte, Riera-

edesma, & Salazar-González, 2003 ), e.g., the symmetric version of

he zSEC cuts is as follows: ∑ 

x e ≥ 2 

d 

∑ 

z ik M 

′ ⊆ M, k ∈ K. (18)
 ∈ δ(M ) i ∈ M ∩ M k 
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. Polyhedral aspects 

This section gathers the main polyhedral findings on the TPP

proved, unless otherwise indicated, in Riera-Ledesma, 2002 or

aporte et al., 2003 ). We focus on the dimension and facets for the

TPP polytope P, i.e. the convex hull of all the vectors ( x , y , z ) that

atisfy (2) –(8) , and for the STPP polytope S, i.e. the convex hull of

ll the vectors ( x , y , z ) that satisfy (2), (3), (7), (8) , and (15) –(17) . 

.1. Dimension of ATPP and STPP polytopes 

Let P̄ := { (x, y, z) ∈ P : y i = 1 , ∀ i ∈ V } be the ATPP polytope in

hich all suppliers have to be visited, P̄ x and P̄ z be the pro-

ection of P̄ onto the affine space of x and z variables, respec-

ively. P̄ x is the asymmetric TSP polytope and dim ( ̄P x ) = | A | −
 | V | + 1 ( Grötschel & Padberg, 1985 ), whereas P̄ z is the poly-

ope of an Assignment Problem generalization and dim ( ̄P z ) =
 

k ∈ K \ K ∗ (| M k | − 1) . Since P̄ := P̄ x × { y : y i = 1 , ∀ i ∈ V } × P̄ z it holds

hat dim ( ̄P ) = | A | − 2 | V | + 1 + 

∑ 

k ∈ K \ K ∗ (| M k | − 1) . To extend this

esult onto P, an intermediate polytope P̄ (V ′ ) := { (x, y, z) ∈ P :

 i = 1 , ∀ i ∈ V \ V ′ } is introduced for all V 

′ ⊆ V . It can be shown that
¯
 (∅ ) = P̄ , P̄ (V ) = P, and, for any given V 

′ ⊆ V , dim ( ̄P (V ′ )) = | A | −
 | V | + 1 + 

∑ 

k ∈ K \ K ∗ (| M k | − 1) + | V ′ | . The dimension of P follows: 

heorem 4.1. dim (P) = | A | − | V | + 1 + 

∑ 

k ∈ K \ K ∗ (| M k | − 1) . 

The dimension of S only slightly differs from P . The difference

omes from the underlying circuit problem that contains a differ-

nt number of linear independent vectors: 

heorem 4.2. dim (S) = | E| + 

∑ 

k ∈ K \ K ∗ (| M k | − 1) . 

Finally, recalling the meaning of M 

∗ (i.e., the set of necessary

uppliers in any feasible TPP solution), one can take it into account

n the definition of ATPP and STPP polytopes. In such a case, the

imensions in Theorems 4.1 and 4.2 have to be reduced by | M 

∗|. 

.2. Facet-defining valid inequalities for ATPP and STPP polytopes 

Some facets of P and S can be obtained from facets of particu-

ar projected polytopes through a procedure called sequential lifting

hat allows to derive and prove the following results. 

Let us start from some trivial inequalities: inequality x ij ≥ 0 ( x e 
0) defines a facet of P (of S) for every ( i , j ) ∈ A (for every e ∈ E );

nequality y i ≤ 1 defines a facet if and only if i ∈ V �M 

∗; inequality

 ik ≥ 0 defines a facet for each k ∈ K �K 

∗ and i ∈ M k with | M k | ≥ 3

nd d k < 

∑ 

j∈ M k \{ i } q jk . 
Other facets can be obtained for P . For example, by lifting the

ubtour elimination constraints it derives that, for each M 

′ ⊂ M , 

•
∑ 

(i, j ) ∈ A : i, j ∈ M 

′ x i j ≤
∑ 

h ∈ M 

′ \{ l} y h defines a facet ∀ l ∈ M 

′ if M 

′ ∩
M 

∗ = ∅ , and 

•
∑ 

x ≤ ∑ 

y − 1 defines a facet if M 

′ ∩ M 

∗ � = ∅ . 
(i, j ) ∈ A : i, j ∈ M 

′ i j h ∈ M 

′ h 

Table 1 

Exact solution approaches. 

Reference Problem 

Buzacott and Dutta (1971) U-ATPP 

Ramesh (1981) U-STPP 

Singh and van Oudheusden (1997) U-ATPP 

U-STPP 

Laporte et al. (2003) R-STPP 

Riera-Ledesma and Salazar-González (2006) R-ATPP 

Gouveia et al. (2011) U-ATPP a , b

Cambazard and Penz (2012) U-STPP a 

a The number of suppliers to visit is bounded. 
b The number of products to be purchased in each suppl
c Upper bounds obtained by heuristic algorithm. 
In the same spirit, it is possible to derive facet-defining inequal-

ties for S . For example, for any M 

′ ⊂ M with 2 ≤ | M 

′ | ≤ | M| − 1 , 

•
∑ 

e ∈ δ(M 

′ ) x e ≥ 2 defines a facet if M 

′ ∩ M 

∗ � = ∅ or | M 

′ | = | M| − 1 ,

and 

•
∑ 

e ∈ δ(M 

′ ) x e ≥ 2 y i defines a facet for any i ∈ M 

′ , otherwise. 

Interesting enough, for the particular case with | M 

′ | = | M| − 1 ,

onstraints x [0, i ] ≤ y i also defines a facet of S for all i ∈ V . For

 M 

′ | = 2 it holds that, for any e = [ i, j] ∈ E: 

• x e ≤ 1 defines a facet if i , j ∈ M 

∗, 
• x e ≤ y i + y j − 1 defines a facet if i, j �∈ M 

∗ and ∃ k ∈ K such that∑ 

s ∈ M k \{ i, j} q sk < d k , 

• otherwise, x e ≤ y i and x e ≤ y j define facets when i �∈ M 

∗ and

j �∈ M 

∗, respectively. 

Other facets can be obtained from the Assignment Problem poly-

ope, e.g., z ik ≤ q ik y i defines a facet ∀ k ∈ K �K 

∗ and ∀ i ∈ M k if i �∈ M 

∗,
therwise z ik ≤ q ik defines a facet when q ik < d k . 

. Exact solution approaches 

In this section, we review algorithms to obtain TPP exact so-

utions. Because of its long history, the TPP has experimented the

ame evolution than other classical combinatorial problems, start-

ng with Dynamic Programming (DP) in the early 70’s, passing

hrough the use of Mathematical Programming (MP) techniques in

he late 90’s, and concluding (at least up to now) with Constraint

rogramming. For each existing exact approach, Table 1 indicates

he problem variant tackled, the solution method adopted, and the

ize (| M |, | K |) of the biggest instances solved to optimality. 

.1. Early approaches 

The first exact algorithm for the U-ATPP was proposed by

uzacott and Dutta (1971) and focused on the problem described

y Burstall (1966) in the context of machine scheduling for the

anufacture of steel tubes. The size of the instances considered

as pretty small. In a first attempt, the authors tried to solve an

LP formulation, concluding that the approach was not very use-

ul because “a large number of subtour constraints were necessary

ven for a reasonably small sized problem ”. It should be noted that

his statement was written long before the spreading of the dy-

amic separation of constraints started with Padberg and Rinaldi

1991) . Hence, following the main principles of that time (see, e.g.,

he survey on the TSP by Bellmore and Nemhauser, 1968 already

uggesting the use of DP for problems with less than 13 cities),

uzacott and Dutta (1971) finally proposed a DP algorithm to solve

he problem. In their DP method, at each stage, a configuration-

ob pair is added to the optimal scheduling sequence. At the end

he algorithm provides the minimum cost sequence which pro-

esses all required jobs. The algorithm was written in FORTRAN
Solution method (| M |, | K |) 

Dynamic Programming (−, 15) 

Lexicographic search (12, 10), (8, 22) 

Branch-and-bound (20, 100), (25, 50) 

Branch-and-bound (20, 30) 

Branch-and-cut (20 0, 20 0) 

Branch-and-cut (20 0, 20 0) 
 Dynamic Programming (30 0, 10 0) c 

Constraint Programming (250, 200) 

ier is bounded. 
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IV and executed on a IBM Model 360/65 . The authors claimed to

have achieved, for small and medium sized instances (12–15 jobs

and any practical number of configurations) exact solutions or so-

lutions within the 10% of optimality gap. 

After a decade, Ramesh (1981) introduced a lexicographic

search algorithm for the U-STPP where each solution is repre-

sented as a sequence of symbols, and searching for an optimal

solution is analogous to search for a specific word’s location in a

dictionary. Solutions are generated starting from a partial word in

some hierarchy which reflects an analogous order in their values.

Each partial word defines a block of solutions, and for each block

of solutions a lower bound is computed. If this lower bound ex-

ceeds the value of the best known solution, the entered block of

words is rejected because it does not lead to promising solutions,

and the next block is explored. The computational experience, per-

formed on a non specified machine, solves to optimality instances

with up to 12 suppliers and 10 products, and 8 suppliers and 22

products. However, the computed lower bound only depends on

the traveling costs from different suppliers to the depot and it is

independent from the purchasing costs. This aspect clearly influ-

ences the quality of the bound, causing poor computational results.

5.2. Branch-and-bound based approaches 

The first branch-and-bound algorithm was presented by Singh

and van Oudheusden (1997) . Their main idea is to break up the

set of all possible tours into smaller subsets, and to calculate, for

each of them, a lower bound on the sum of the traveling and pur-

chasing costs. This lower bound is computed by solving a UFLP ob-

tained by removing the routing optimization constraints from TPP.

The bounds guide the partition of the subsets and allow to iden-

tify an optimal solution when a subset that contains a single tour

is found (the relative bound has to be, in fact, less than or equal to

that of all other subsets). They solved to optimality (on a IBM 3031 )

ATPP instances with up to | M| = 20 and | K| = 100 or | M| = 25 and

| K| = 50 , and STPP instances with up to | M| = 20 and | K| = 30 . 

A significant advance in the size of the problems solved to op-

timality occurred with the idea of exploiting the dynamic sep-

aration of constraints (i.e., along the branch-and-bound tree) by

the branch-and-cut technique. More precisely, the TPP model is

initially relaxed and solved without the subtour elimination con-

straints, then only those inequalities that cut off the linear relax-

ation optimal solution of the current branch-and-bound node are

added to the model through separation algorithms. Laporte et al.

(2003) approached the R-STPP and U-STPP solution by this tech-

nique also using some other valid inequalities. This paper proposes

a polyhedral study of the problem combining the cycle and set-

covering polytopes (that leads to the characterization of the valid

inequalities already presented in Sections 3.2 and 4.2 ), and exact

and heuristic separation procedures for the most effective valid

inequalities found. Along with the separation of subtour elimina-

tion constraints, the authors also introduce the separation of the

zSEC inequalities, the 2-matching inequalities ( Edmonds, 1965 ), and

other mechanisms such as the dynamic generation and deletion

of variables through a simple pricing. With these components the

branch-and-cut algorithm (coded in C++ and using ABACUS linked

to Cplex 6.0 as a framework) solved to optimality, on a Pentium 500

MHz, families of instances taken from the literature as well as new

random instances up to 200 suppliers and 200 products. 

Since the just presented approach has become a consolidated

starting point in developing exact methods for TPP-like problems

that deals with an exponential number of subtour elimination

constraints (see, e.g., Batista-Galván, Riera-Ledesma, and Salazar-

González, 2013 ; Beraldi, Bruni, Manerba, and Mansini, 2016 ; or

Manerba & Mansini, 2015 ), we briefly present how inequalities

(16) and zSEC inequalities (18) can be separated efficiently. Both
he procedures are exact and are based on the solution of max-

ow/min-cut problems for which different efficient polynomial-

ime algorithms can be found in the literature (see, e.g., Goldberg

nd Tarjan, 1988 ; Goldberg & Rao, 1998 ). In the following, we

ndicate as x ∗, y ∗, and z ∗ the value of the x , y , and z variables

n the optimal solution of the continuous relaxation problem,

espectively. 

Separation procedure for (16) : Consider a graph Ḡ U = (V, E)

where a capacity x ∗e , corresponding to the current linear re-

laxation optimal solution, is associated with each edge e ∈ E .

Then, given a supplier h , such that y ∗
h 

� = 0 , the most violated

inequality (16) corresponds to the partition ( M 

′ , V �M 

′ ) asso-

ciated with a minimum-capacity cut in Ḡ U separating node

0 from h , with h ∈ M 

′ . This cut can be found in O (| M | 3 ) by

computing a maximum flow in Ḡ U from node 0 to node h ,

hence the entire procedure takes O (| M | 4 ) time. The introduc-

tion of an inequality (16) is effective (i.e., it excludes some

fractional solutions) only if the resulting maximum flow is

less than 2. 

Separation procedure for (18) : An exact separation of zSEC in-

equalities can be obtained in a similar way by solving ad-

hoc max-flow problems. The procedure is a little bit trickier,

but preserves a polynomial-time complexity. More precisely,

given a product k , construct a graph G k 
U 

:= (V k , E k ) . where

the vertex set V 

k contains the depot 0, the set of suppliers

M k , and an additional dummy vertex v̄ , and the edge set

E k contains all the edges e = [ i, j] : i, j ∈ V k , i < j, with ca-

pacity x ∗e , plus all the edges e = [ i, ̄v ] , i ∈ M k , with capacity

2 z ∗
ik 

/d k . Then find the partition ( M 

′ , V 

k �M 

′ ) associated with a

minimum-capacity cut in G k 
U 

and separating the depot 0 and

the dummy vertex v̄ , with v̄ ∈ M 

′ . If the capacity of this cut

is at least 2, then the LP solution satisfies all the inequal-

ities (18) , for a given k . Otherwise, the set M 

′ \ { ̄v } yields

the most violated inequality (18) . Since a max-flow problem

has to be solved for each product, the entire procedure takes

O (| K || M | 3 ) time. 

Few years later, Riera-Ledesma and Salazar-González (2006) ex-

end the described branch-and-cut algorithm to solve asymmetric

nstances. To this aim they proposed, along with the exact sepa-

ation procedures for (5) and (13) , that are actually analogous to

he explained procedures for the symmetric variant, the heuristic

eparation of specific ATPP valid inequalities. The resulting branch-

nd-cut approach achieved similar performance with respect to its

ymmetric counterpart. In fact, it was able to solve to optimality,

n a AMD 1333 MHz, the asymmetric instances proposed by Singh

nd van Oudheusden (1997) , and new random instances up to 200

uppliers and 200 products. In the same paper, the authors also

etail a procedure to transform an ATPP instance into a STPP one. 

.3. Recent approaches 

The DP paradigm has reappeared as solution method in

ouveia, Paias, and Voß (2011) for a U-ATPP variant in which both

he number of suppliers to be visited and the number of products

o purchase at each supplier are limited. The authors first test, on a

entium IV 3.2 GHz, the performance of Cplex 11.0 tackling a com-

act ILP formulation of the problem and discover that exact solu-

ions could be achieved in reasonable time only for instances with

p to 100 suppliers. Hence, they decide to approach the larger size

nstances through a complex DP algorithm applied to a Lagrangian

elaxation that uses a subgradient optimization procedure to com-

ute the bounds. Due to the expected exponentially sized state

pace of the proposed DP, a state space relaxation method is used to

rovide a lower bound on the cost of the optimal solution. More-
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o  
ver, a Lagrangian greedy heuristic that attempts to transform re-

axed solutions into feasible ones is also proposed. Computational

esults for instances with up to 300 suppliers show reasonably

mall gaps between best upper and lower bound values on the

ptimal solutions (except for few cases). Other tests show, how-

ver, that the method does not lead to the same performance for

egular TPP benchmark instances. It seems in fact that considering

ide-constraints strongly increase the efficiency of the DP process. 

Cambazard and Penz (2012) study an U-STPP, similar to the

ne just described, where only the number of suppliers to visit is

ounded. They propose a new Constraint Programming approach

hat takes advantage of three key problems related to the TPP,

amely, the TSP, the p-median , and the hitting problem. The hit-

ing problem finds the minimum subset per product containing

he suppliers in which it is available, the p -median problem cor-

esponds to the cheapest way of buying all the products in a sub-

et of markets, and, finally, the TSP finds the best tour visiting

he selected suppliers. Global constraints are introduced to simul-

aneously handle these core structures and the propagation algo-

ithms are based again on Dynamic Programming and Lagrangian

elaxation. Eventually, they test, on a Dual Quad Core Xeon CPU

.66 GHz, two versions of the resulting approach solving ad hoc

odified instances of similar size than the ones proposed in

aporte et al. (2003) . Although this approach was initially designed

or solving instances with a small maximum number of supplier

isits, it proves to be surprisingly competitive (differently from

hat happened with the work by Gouveia et al., 2011 ) when ap-

lied to the unbounded case. In fact, optimal solutions including

p to 25 markets have been found and, among some instances not

reviously solved, 10 solutions have been improved. In particular,

he successful idea seems to exclude the routing optimization part

rom the propagation search space (encapsulating the TSP inside a

onstraint) and to perform an exponential-time propagation only

epending on the bound of the visits. 

. Heuristic algorithms 

This section is devoted to present and categorize all the heuris-

ic approaches proposed for the TPP. Section 6.1 concerns construc-

ive and simple local search methods, Section 6.2 discusses meta-

euristic frameworks, and Section 6.3 presents the only existing

pproximation algorithm. 

.1. Basic heuristics 

Basic heuristics for the TPP include constructive procedures,

imple local search methods without a defined higher-level strat-

gy to recover from local optima, and a last class concerning

euristics based on decomposition that exploits the presence of

ifferent subproblems. In the presentation of the main results, we

ollow the refining process these methods have experienced in the

iterature. 

.1.1. Constructive methods and variants 

All constructive heuristics for the TPP are based on the concept

f saving to measure the convenience in terms of total decrease of

urchasing costs net of the possible traveling costs increase, when

nserting a new supplier in a solution. The first saving algorithm

or the U-TPP was proposed by Golden et al. (1981) . The algorithm,

alled Generalized Savings Heuristic ( GSH ), is a greedy procedure

hat adds to the current visiting cycle the most convenient supplier

t each iteration. The very first added supplier is the one that sells

ore products at the cheapest prices (ties are solved by choosing

he supplier that yields the minimal total price), and a cycle start-

ng and ending at the depot and visiting only this supplier is cre-

ted. Then, at each iteration, an unselected supplier h is added to

he existing cycle between the two adjacent suppliers i and j that
llow its cheapest insertion provided that this choice maximizes

he saving, and if such a saving is strictly positive. More precisely,

iven the current cycle τ , the saving �− for each tuple ( i , j , h ) such

hat i, j ∈ τ, h �∈ τ is calculated as: 

−(i, j, h ) = c i j − c ih − c h j + 

∑ 

k ∈ K 
max { 0 , p min (k, τ ) − p hk } 

here p min (k, τ ) = min i ∈ τ { p ik } . After the insertion, the purchasing

lan for each visited supplier is updated according to the saving.

he algorithm terminates when no supplier satisfies the positiv-

ty condition on savings (the procedure works correctly only if we

onsider, for each product k not available in a supplier i , a fictitious

urchasing cost p ik � max {max i ∈ M , k ∈ K { p ik }, max ( i , j ) ∈ A { c ij }}.).

ote that the method does not stop when a feasible solution is

eached, but when the insertion fails to improve the solution.

ence, the saving (and insertion) principle is more powerful than

 simple constructive heuristic and more similar to a local search

perator, as highlighted in the following section. 

GSH is easy to implement, and requires O (max {| K |, | V |} · | V | 2 )

perations in the worst case. However, it works badly if the prob-

em contains a supplier which sells most of the products and is

ocated far apart from the others. To prevent this drawback, Ong

1982) proposes the Tour Reduction Heuristic ( TRH ): the algorithm

tarts from a tour involving a subset of suppliers satisfying the

roducts demand, and iteratively drops the supplier yielding the

aximum reduction of total costs (measured as the reduction of

raveling costs net of the possible increase in purchasing costs)

ntil a reduction is possible. Effectiveness and complexity of TRH
oth depend upon which procedure is used to select the initial

et of suppliers and to create the relative tour (that actually corre-

ponds to solve a TSP). Ong (1982) , for example, suggests to incor-

orate TRH into GSH , applying the former as soon as a tour con-

aining all products is generated by the latter. 

Another constructive heuristic that considers the products one

y one, called Commodity Adding Heuristic ( CAH ), is proposed for

he U-TPP by Pearn (1991) . CAH starts with an initial solution con-

aining only the depot and the supplier that minimizes the total

ost for purchasing the first product. At each iteration, a new prod-

ct is considered and the convenience to purchase the product in

ne of the suppliers already included in the current solution or to

dd another supplier is evaluated. The algorithm terminates when

ll the products have been considered. 

During the years, many improvements have been proposed for

he basic version of GSH , TRH , and CAH ( Boctor, Laporte, & Re-

aud, 2003; Ong, 1982; Pearn & Chien, 1998; Teeninga & Vol-

enant, 2004 ). A common practice, which seems to be quite ef-

ective, is to frequently re-sequence the order of the visited sup-

liers by using a TSP heuristic. Classical cheapest-insertion and the

in–Kern heuristics ( Lin & Kernighan, 1973 ) have been preferred to

his aim. Other variants take into account a different starting solu-

ion, resolve the ties by considering other factors besides the costs,

alculate the savings using some parametric weights for the two

omponents of the objective function, or, again, use several differ-

nt sequential or random orders of the products to generate sev-

ral complete solutions and then select the best one. Boctor et al.

2003) also extend CAH for solving the more general R-TPP includ-

ng all the variants just described. 

Finally, Laporte et al. (2003) describe a market adding heuristic

 MAH ) for the R-TPP that gradually extends a cycle by inserting at

ach step a new supplier selling a product the demand of which is

ot fully satisfied. MAH determines in which supplier each product

s available at the lowest price, and among these minima, adds to

he tour (according to a standard maximum-saving rule) the sup-

lier corresponding to the highest product price. Once a feasible

ycle has been obtained, it is post-optimized by iteratively acting

n the set of suppliers in the solution, the assignment of products,
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and the routing cost to visit them. The authors also apply MAH to

fractional LP solutions ( LP-MAH ), choosing as initial cycle the one

containing the edges whose associated variables have the largest

values. A similar heuristic is proposed by Infante et al. (2009) . In

their MAH constructive phase, the farthest supplier from the ones

in the current tour is added, whereas in a following improvement

phase, markets are eliminated in a TRH fashion according to saving

in purchasing or traveling costs. 

6.1.2. Local search operators 

Some of the above constructive methods, if applied to a known

feasible solution, can be seen as local search moves potentially

embeddable in a metaheuristic framework. In particular, GSH and

TRH are formalized in Voß (1986) as local search operators based

on the addition ( ADD ) and the deletion ( DROP ) of a supplier in a

solution, respectively. The same author also proposes a combined

use of adding and dropping moves. In DROP-ADD , an iteration is

defined by a drop step followed by a number of consecutive add

steps that operates on a possible unfeasible solution until no more

improvement of the objective function is possible. The drop step is

characterized by the exclusion of the supplier that gives the best

improvement of the objective function value, if any is possible, or

its smallest increase, otherwise. The procedure terminates when

any supplier previously removed is added again to the solution.

In ADD-DROP , each iteration consists of an add step followed by

a sequence of drop steps. 

ADD and DROP methods follow the maximum saving criterion

presented in Section 6.1.1 . However, similar neighborhoods but us-

ing different evaluation criteria have been proposed by Ochi, Silva,

and Drummond (2001) . AddGeni and DropGeni select the node

to add or remove by using GENIUS heuristic ( Gendreau, Hertz, &

Laporte, 1992 ), whereas AddRandom and DropRandom randomly

select the supplier from a candidate list. 

Boctor et al. (2003) propose to explore classical TSP as well as

TPP tailored neighborhoods. Concerning the latter, some new oper-

ators are introduced: double market drop considers each pair

of visited suppliers and remove the one yielding the largest cost

reduction, market exchange substitutes a visited supplier with

a non-visited one, and double market exchange drops two

consecutive suppliers in solution and substitute them with a single

non-visited one. The authors combine the above procedures in dif-

ferent ways creating three perturbation heuristics ( PH ): UPH1 and

UPH2 apply to the U-TPP, RPH to the R-TPP. More precisely, the

methods are post-optimization schemes in which an improvement

procedure is applied to a perturbed solution. The interest of work-

ing with a perturbed solution, although not formalized in a meta-

heuristic, aims at helping the search process to escape from local

minima. Computational results on symmetric instances by Laporte

et al. (2003) show that both UPH1 and UPH2 produce solution val-

ues within 0.75% of the optimum for | M | ≤ 200 and close to 1% of

the best-known solution value for 250 ≤ | M | ≤ 350. Moreover, all

PH also produce smaller optimality gaps than any other heuristic

used in the comparison ( CAH , MAH ). This is a clear indication of

the quality of these algorithms although the perturbation phase is

highly time consuming. 

Few years later, Riera-Ledesma and Salazar-González

(2005a) generalize the supplier-exchanging neighborhood through

the l -ConsecutiveExchange procedure. The method aims

first at reducing the length of a feasible visiting cycle by removing

l consecutive suppliers, and at restoring the feasibility, if lost,

by adding suppliers not belonging to the solution that result

convenient according to the classical saving criterion and by

re-optimizing the purchase. An ad hoc data structure, presorted

according to the products price, is used to speed up the inser-

tion of a new supplier in a partial solution. The authors show

the effectiveness of dynamically resizing the neighborhood by
educing l as soon as a new local optimum is achieved. The main

dea is readapted by Mansini and Tocchella (2009a) for a R-TPP

ounded version in the local search scheme called EJEct and MOve

 EJEMO ). Actually, EJEMO is an enhanced local search where the

eighborhood is varied during the search by dynamically changing

he value of parameter l and a simple tabu structure is used to

void cycling. 

Other operators based on dropping suppliers can be found.

eeninga and Volgenant (2004) propose a DropOpt( l ) heuristic

hat removes from the solution a path consisting of l consecutive

uppliers and refits it into the tour if the total cost decreases. In-

tead, Bontoux and Feillet (2008) introduce a multi-supplier dele-

ion procedure called dropstar that determines, by keeping the

rdering of the current tour, the optimal subsequence of suppli-

rs (consecutive or not) to drop. Since finding this subsequence

orresponds to an N P -hard set covering problem, the authors (in-

pired by the algorithm proposed for the elementary shortest path

roblem with resource constraint in Feillet, Dejax, Gendreau, &

ueguen, 2004 ) search the neighborhood through a DP recursion

pplied to a graph obtained from the original tour. 

Finally, the only local search method explicitly based on

roducts’ operations, instead of on suppliers’ ones, is pro-

osed by Mansini, Pelizzari, and Saccomandi (2005) and called

roductNeighborhood . Given a current feasible solution, this

eighborhood consists of O (| K |) solutions, each one obtained by

etting to zero the quantities purchased of a given product k in

he currently selected suppliers and by satisfying the product’s de-

and through the introduction of non-selected ones. If the total

emand for a product cannot be satisfied by the new suppliers,

he ones belonging to the current solution can be used too. 

In Table 2 , we summarize the local search operators described

n this review, indicating their basic principle and the work in

hich they have been presented. 

.1.3. Heuristics based on problem decomposition 

Some procedures base their effectiveness on decomposing the

PP by exploiting its multi-problem nature (see Fig. 1 ). Once a sub-

et of suppliers has been chosen, the TPP can be split into a prod-

cts assignment problem on the selected suppliers (to minimize

he purchasing costs), and a problem of finding a visiting order for

hem (to minimize the traveling costs). The products assignment is

ctually an easy problem that can be optimally solved by simple

nspection or by means of an LP solver. The tour definition corre-

ponds instead to a TSP, that is N P -hard itself, but a plethora of

xact and heuristic methods (with well-studied efficiency and ef-

ectiveness) is available in the literature for its solution. Hence, the

upplier selection phase appears the most challenging, given the

ntractability of exhaustively exploring all the possible subsets of

uppliers. In the following, we present decomposition algorithms

roposed in the literature differing for (a) the method used to gen-

rate promising subsets of suppliers, and (b) the specialized proce-

ures adopted to efficiently solve the two subproblems. 

Very early, Burstall (1966) introduced a reduction procedure

 RED ) for the U-TPP that, combined to a branching tree, is able

o generate all the smallest subsets of suppliers satisfying prod-

cts demand. The final solution is obtained by solving the two

elative subproblems for all the generated subsets, and comparing

he costs. This method performs well under the strong assumption

hat the price differences for a given product in various suppliers

re small compared to the traveling costs between them. Lomnicki

1966) commented this work showing that a simpler method based

n Boolean algebra can be used to the same purpose. 

Recently, Beraldi et al. (2016) propose a Beam Search ( BS ) strat-

gy to explore a tree where each node represents a particular sub-

et of selected suppliers. More precisely, the root node represents

he selection of all the suppliers, and each child node has a se-
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Table 2 

Local search operators. 

Principle Name Introduced by 

Single-supplier insertion ADD Voß (1986,1996) 

ADDGeni Ochi et al. (2001) 

ADDRandom Ochi et al. (2001) 

Single-supplier deletion DROP Voß (1986,1996) 

DROPGeni Ochi et al. (2001) 

DROPRandom Ochi et al. (2001) 

Double-supplier deletion double market drop Boctor et al. (2003) 

Multi-supplier deletion dropstar Bontoux and Feillet (2008) 

Suppliers exchange (1-dropped, 1-added) market exchange Boctor et al. (2003) 

Suppliers exchange (2-consecutive dropped, 1-added) double market exchange Boctor et al. (2003) 

Suppliers exchange ( l -consecutive dropped) l -ConsecutiveExchange Riera-Ledesma and Salazar-González (2005a) 

EJEMO Mansini and Tocchella (2009a) 

Changing position of l -consecutive suppliers DropOpt( l ) Teeninga and Volgenant (2004) 

Product purchasing exchange ProductNeighborhood Mansini et al. (2005) 

Table 3 

Metaheuristic approaches. 

Metaheuristic Reference Problem 

Tabu Search (TS) Voß (1996) U-TPP a 

El-Dean (2008) U-TPP 

Mansini et al. (2005) R-TPP 

Simulated Annealing (SA) Voß (1996) U-TPP a 

General Random Adaptive Search 

Procedure (GRASP) 

Ochi et al. (2001) U-TPP 

Variable Neighborhood Search (VNS) Ochi et al. (2001) U-TPP 

Mansini and Tocchella 

(20 09a,20 09b) 

TPP-B b 

Ant Colony Optimization (ACO) Bontoux and Feillet 

(2008) 

U-ATPP 

Late Acceptance Hill-Climbing (LAHC) Goerler et al. (2013) U-STPP 

Genetic Algorithms (GA) Ochi et al. (1997) U-ATPP 

Goldbarg et al. (2009) U-STPP 

Almeida et al. (2012) 2TPP c 

a Considers a fixed cost for each visited supplier. 
b Stands for TPP with budget constraint (see Section 7.1.2 ). 
c Stands for bi-objective TPP (see Section 7.1.1 ). 
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(  
ected supplier less than its father. In order to reduce the explo-

ation, at each level of the tree, only a promising subset of nodes

s taken into account for generating children. Promising nodes have

o satisfy products demand and are chosen according to the joint

ost evaluation of the TSP on the selected suppliers solved with a

ecent implementation of the Lin–Kern heuristic ( Helsgaun, 20 0 0 )

nd the product assignment problem. Actually, the method is used

or solving the deterministic counterpart of a stochastic R-TPP (see

ection 7.2.1 ). 

Finally, Cattrysse et al. (2006) decompose the TPP in two sub-

roblems, one corresponding to an UFLP and the other to a TSP on

he subset of suppliers previously selected. In the UFLP, the open-

ng costs for the different plants are computed by averaging the

outing costs. Then, a TSP on the open plants and using the real

raveling costs is solved heuristically by means of a guided local

earch . The heuristic, in order to escape from local optima, penal-

zes those arcs in a current solution which are unlikely to be in-

orporated into a good tour. However, this decomposition method

ooks appropriate only when routing costs are small with respect

o the purchasing ones or when their variance is limited. 

.2. Metaheuristics 

A metaheuristic is a master strategy guiding one or more heuris-

ics to find solutions beyond local optimality. In the following,

e present the metaheuristics used to solve the TPP and the ob-

ained computational results. Table 3 summarizes all these meth-

ds, reporting the corresponding reference and the problem variant

ackled. 
.2.1. Tabu Search (TS) 

Voß (1996) proposes a TS for a U-TPP generalization taking

nto account a fixed cost for visiting each supplier. ADD-DROP and

ROP-ADD procedures (see Section 6.1.2 ) are used as local search.

he author identifies a solution as a vector of binary values par-

itioned into three sets representing, respectively, forbidden sup-

liers, uncertain suppliers for which a decision has not been taken

et, and surely visited ones. When changing solution, the attributes

ay be the set of all possible changes in the assignment of val-

es to the binary variables. Thus the approach is multi-attribute,

nd since the number of suppliers added and removed in a move

uring the search is not static, the multi-attribute move is dy-

amic. During the short-term memory, the tabu list management

xploits dynamic interdependencies among memory attributes ac-

ording to a cancellation sequence method ( CSM ) and a reverse elim-

nation method ( REM ). These interdependencies are aspects usually

eglected in the tabu literature. While CSM allows to diversify by

mposing a tabu status to more attributes than needed, REM allows

ntensification by better searching solutions possibly overlooked by

SM . The author also makes recourse to a simplified strategic os-

illation allowing for intermediate infeasibilities when dropping a

upplier. The experimental analysis, run over 198 instances, show

hat the TS based on a DROP-ADD neighborhood and a CSM dy-

amic strategy provides slightly better results. 

A TS for the R-STPP is also described in the unpublished work

y Mansini et al. (2005) . Neighborhood exploration is based on

rocedure ProductNeighborhood . Suppliers added to a solu-

ion become tabu and cannot be dropped for a given number of it-

rations. The authors introduce two variants for the TS, one where

ong term memory features are taken into account and tabu tenure

s managed dynamically, and a basic one implementing only short

erm memory search and the tabu list is constant. Frequency-based

emory information is used to drive the search in possibly unex-

lored regions of the solution space, endowing the suppliers with a

ounter which represents the number of times each one has been

art of a feasible solution. Feasible solutions are post-optimized in

erms of traveling costs by applying GENIUS algorithm. Proposed

S provides, on average, higher quality solutions with respect to

 -ConsecutiveExchange heuristic on the instances by Laporte

t al. (2003) . 

Finally, also El-Dean (2008) proposes a general TS approach. Un-

ortunately, no details on the move applied and on the local search

eighborhood used are provided. Results consists of a few exam-

les with up to 9 suppliers and 5 products. 

.2.2. Simulated Annealing (SA) 

A straightforward application of SA to the TPP is due to Voß

1996) . DROP-ADD and ADD-DROP are used again as local search.
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The method is outperformed by the TS proposed in the same

paper. 

6.2.3. General Random Adaptive Search Procedure (GRASP) 

Ochi et al. (2001) develop a GRASP-based distributed parallel

algorithm for the U-TPP. The parallel implementation for GRASP is

straightforward being each iteration independent from the other.

The authors implement 48 variants of GRASP by combining six

greedy construction methods and eight local search procedures.

Some of them are new adaptations of adding and dropping proce-

dures exposed in Section 6.1.2 . The algorithms have been compared

with 48 VNS variants and with two implementations of the TS pro-

posed by Voß (1996) (considering procedure REM and CSM , respec-

tively) on 36 medium-size instances (see Appendix A ). Sequential

GRASP already obtains better solutions than TS. The authors test

a static load balance implementation of a parallel GRASP where

the number of iterations of the sequential algorithm are equally di-

vided among the existing processors, and a dynamic load balance

where the charge of each processor changes during the search so

that faster processes receive a higher number of iterations. Each

processor executes either the same GRASP or a different one giv-

ing rise to two variants. Each parallel algorithm is run for 3 trials

with 20 0 0 iterations on 8 and 4 processors using five additional in-

stances of larger size. Results show that static load balance model

works better especially when the number of processors increases.

Quality of the solutions improves with the number of processors,

while efficiency is higher in variants implementing a different al-

gorithm for each processor. 

6.2.4. Variable Neighborhood Search (VNS) 

Ochi et al. (2001) also implement a distributed parallel VNS ex-

ploring a quite new area of research. Each sequential VNS is a com-

bination of six construction methods and eight local searches used

for the GRASP, duly adapted to work in a standard VNS framework.

The distributed parallel model applied to the VNS and to a hybrid

variant combining GRASP with the VNS as local search, is akin to

the one described for the GRASP. Computational results show that

the combined GRASP+VNS , also in parallel implementation, pro-

vides the best performance in terms of efficiency and gets the best

solution values in most of the cases. 

Other VNS approaches can be found for the TPP with budget

constraint (see Section 7.1.2 ). 

6.2.5. Ant Colony Optimization (ACO) 

Bontoux and Feillet (2008) address the U-ATPP solution with

an ACO approach. A set of traveling ants leave the depot in parallel.

When an ant returns to the depot, a new one leaves it. An ant con-

structs its tour by using information provided by past experience

of other ants. The amount of pheromone deposited on the arcs of

the tours depends on the quality of the solution. Arcs with higher

level of pheromone will be preferred thus increasing the proba-

bility to visit their suppliers. Since the length of the generated

tours is different, ants are not synchronized and this allows a bet-

ter pheromone update (30 different levels of pheromone are con-

sidered). Four parameters measure the attraction of the ant to the

pheromone, its independence in following its own path, its avid-

ity in minimizing purchasing costs with respect to traveling costs

and the reverse. These parameters define the probability to select

the supplier to visit next from the one the ant is currently located.

The ant population evolves by killing ants that provide (also par-

tial) tours with a cost larger than the value of the best solution

found multiplied by a given coefficient depending on the instance

number of the suppliers and products. Initially each ant receives a

dote that is reduced when the ant is cut and it has to restart its

tour from the depot. When the dote is totally consumed, the ant is

definitely cut down, and a new ant, defined as a clone of the ant
aving found the best-known solution, leaves the depot. Best ants

re promoted by increasing their dote points, while ants visiting

ninteresting parts of the solution space are eliminated. A similar

eserve of points is assigned to each level of pheromone. When a

heromone level reserve has been exhausted, the level is deleted.

his allows to concentrate on the more promising levels and to

reserve diversity. Deletion is stopped when the number of levels

oes down to a predefined value. The method sequentially applies

ifferent local search procedures to the tour obtained when an ant

oes back to the depot. In particular, dropstar local search (see

ection 6.1.2 ) has been developed to this aim. Unfortunately, the

xperimental results do not allow its complete performance evalu-

tion. The proposed ACO is tested on the Euclidean the U-TPP in-

tances by Laporte et al. (2003) , running with a time limit of 1

our and for 5 trials. It improves the best-known values for 48 out

f 51 non closed instances. 

.2.6. Late Acceptance Hill-Climbing (LAHC) 

LAHC is a recent metaheuristic based on the idea to delay the

omparison between neighborhood solutions (late acceptance), to

scape from local optima. Goerler, Schulte, and Voß (2013) apply

AHC to the U-STPP. The initial solution is constructed with a near-

st neighborhood algorithm where suppliers are inserted ignoring

urchasing costs, then once a tour is obtained the method de-

ides which suppliers to drop maintaining feasibility and reducing

raveling and purchasing costs. Then, an hill climbing procedure

s applied, storing visited solutions in a list of predefined length,

alled fitness array . Contrary to a pure hill climbing, LAHC com-

ares a candidate not to its direct previous current solution but

o the last element of the fitness array. If accepted the candidate

s inserted in the list and the last element removed. Before ap-

lying comparison the method uses two local search methods, the

 -ConsecutiveExchange and the random addition of suppli-

rs if the solution is not feasible. Then a TSP heuristic is applied

o improve traveling costs. Algorithm is tested on Class 1 instances

see Appendix A ). Results are interesting: 25 instances with 50–

50 products have been solved to optimality, whereas in 25 in-

tances with a number of products from 300 up to 500, the algo-

ithm was able to produce new best known upper bounds on the

ptimal value. 

.2.7. Genetic Algorithms(GA) 

Ochi, Drummond, and Figueiredo (1997) propose for the U-ATPP

 parallel GA called GENPAR , based on the island model . The pop-

lation is partitioned into several subpopulations which evolve in

arallel and periodically get in touch by migration of individuals

mong islands. A basic component of the method is the permu-

ation consisting in a purchasing order represented by a vector

here the i -component indicates the supplier where product i is

urchased. The first permutation is generated using GSH and then

istributed among all the processors. To guarantee a better search

n the solution space each processor modifies the initial permuta-

ion by generating additional ones through the change of a seg-

ent ( window ) of the initial purchasing order. Each processor can

nly change the elements associated with its window and retains

he remaining part of the permutation. The number of new per-

utations generated by a processor depends on the size of the

ssigned window. Each processor can also update permutations

y applying the windows switching. The central part of the algo-

ithm consists in 3 operators, namely, the selection, the crossover

nd the mutation ( Ochi, Santos, Montenegro, & Maculan, 1995 ).

n particular p parents generate p 
2 children. The worst parent is

ubstituted with the child that that better fits. In case the child

s worse it can be accepted and the switch implemented with a

iven probability depending on the number of implemented sub-

titutions parent/child. A 2-opt heuristic is then applied to the best
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Table 4 

Deterministic variants. 

Problem name Objective Side-constraints Reference 

2TPP ( f 1 ( σ ), f 2 ( σ )) Ravi and Salman (1999) 

2TPP ( f 1 ( σ ), f 2 ( σ )) Riera-Ledesma and Salazar-González (2005b) 

TPP-B f 1 (σ ) + f 2 (σ ) f 2 ( σ ) ≤ b 2 Mansini and Tocchella (20 09a,20 09b) 

– f 1 (σ ) + f 2 (σ ) f 3 ( σ ) ≤ b 3 , f 4 ( σ ) ≤ b 4 Gouveia et al. (2011) 

– f 1 (σ ) + f 2 (σ ) f 4 ( σ ) ≤ b 4 Cambazard and Penz (2012) 

TPP-TQD f 1 (σ ) + f 2 (σ ) TQD( σ ) ∗ Manerba and Mansini (2012a) 

TPP-MSD ∗∗ f 1 (σ P ) + f 1 (σ D ) + f 2 (σ D ) MS-LIFO( σ P , σ D ) ∗∗∗ Batista-Galván et al. (2013) 

∗ Stands for Total Quantity Discount policy ( Section 7.1.4 ). 
∗∗ σ P represent the pick-up route and σ D the delivery one. 
∗∗∗ Stands for Multiple-Stack Last In-First Out policy ( Section 7.1.3 ). 
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enerated individual to improve solution value. The migration pro-

ess for each processor consists in sending/receiving the best so-

ution to/from all the other subpopulations. Tests have been run

n a 8-processor SP/2 using instances with up to | M| = 500 and

 K| = 500 . Results show that, the parallel method is only slightly

etter than its sequential variant, but the CPU time improvement

s quite impressive. 

Finally, Goldbarg, Bagi, and Goldbarg (2009) propose a trans-

enetic algorithm (TA) inspired by two major evolutionary forces,

amely, the horizontal gene transfer (the acquisition of foreign

enes by organisms) and the endosymbiosis (the mutually benefi-

ial relationship between organisms which live one, the symbiont,

ithin another, the host). TA searches the solution space re-

embling the information sharing process between a host and

 population of endosymbionts, in which each one represents a

equence of visited suppliers. Implicitly, products are purchased

n the visited suppliers that offer them at the lowest price. The

opulation of candidate solutions evolves by means of mutation

perators that smartly use already presented local search methods

suppliers add and drop, saving criteria, TSP re-optimization). The

lgorithm outperforms, on instances with up to 300 suppliers

nd 200 products, the heuristics presented in Riera-Ledesma and

alazar-González (2005a) and Bontoux and Feillet (2008) , and is

ble to find 26 new best known values. 

.3. Approximation algorithms 

Ravi and Salman (1999) propose the only existing approxima-

ion algorithm with a performance guarantee for the metric TPP

pecial case, i.e. for a STPP in which all edge costs fulfill the

riangle inequality. Their poly-logarithmic worst-case ratio algo-

ithm finds, in polynomial time, a solution whose cost is max { (1 +
) , (1 + ε) O ( log 

3 | V | log log | V |} times the optimal TPP cost, for any

> 0. The algorithm is based on rounding procedures for the LP

elaxation solution of a bi-criteria version of the TPP, and uses

nown results on the Group Steiner Tree problem. The authors also

roduced a constant-factor approximation algorithm for the TPP

pecial case with metric and proportional costs (that models the

ing–star network problem presented in Section 2.3 ). 

. Main TPP variants 

As for other problems, the basic setting of the TPP can be com-

licated creating interesting variants or including additional con-

traints. In Section 7.1 , we present all the TPP deterministic vari-

nts, whereas in Section 7.2 , works concerning the introduction of

ncertainty in the problem data are analyzed. Finally, contributions

bout the multi-vehicle TPP are presented in Section 7.3 . 

.1. Deterministic variants 

We survey the TPP as a bi-objective problem, some variants

nvolving the introduction of side-constraints, and some others
here the changes in the TPP structure are more significant. To

ake the definitions of these variants more clear we denote by

= ( V (σ ) , A (σ ) ) a feasible TPP solution visiting the vertices V ( σ ) 

V and traversing the arcs in A ( σ ) ⊆ A , and by � the set of all

easible solutions for a given TPP instance. We also define, for a

iven solution σ̄ , the following functions: 

f 1 ( ̄σ ) = 

∑ 

(i, j) ∈ A ( ̄σ ) 

c i j , f 2 ( ̄σ ) = 

∑ 

k ∈ K 
p ∗k , 

f 3 ( ̄σ ) = max { | K i ( ̄σ ) | : i ∈ V ( ̄σ ) } , f 4 ( ̄σ ) = | V ( ̄σ ) \ { 0 }| 
here K i ( ̄σ ) is the set of products purchased in supplier i and

here, for each product k ∈ K , 

p ∗k = min 

∑ 

i ∈ M k ∩ V ( ̄σ ) 

p ik z ik : 
∑ 

i ∈ M k ∩ V ( ̄σ ) 

z ik = d k , z ik ≤ q ik , i ∈ M k ∩ V ( ̄σ )

unctions f 1 and f 2 represent the routing and the purchasing cost

ssociated with a feasible solution σ̄ , respectively. Hence, TPP =
in { f 1 (σ ) + f 2 (σ ) : σ ∈ �} . Functions f 3 and f 4 represent instead

he maximum number of products purchased in a supplier and the

umber of supplier visited in σ̄ , respectively. Using this notation,

n Table 4 we summarize the described deterministic variants in

erms of objective function and additional side-constraints. 

.1.1. The bi-objective TPP (2TPP) 

In the basic TPP it is assumed that f 1 and f 2 are summed

p in a single objective function. However, this sum may not

ake a sense in certain applications when the two cost func-

ions represent incomparable entities (e.g., f 1 may represent dis-

ance or time and f 2 money), or when the priorities of minimiz-

ng the functions are different. For this reason, some works been

ave focused explicitly on the bi-objective TPP, that is 2TPP :=
in {( f 1 ( σ ), f 2 ( σ )): σ ∈ �}. The approximation algorithm by Ravi

nd Salman (1999) already described (see Section 6.3 ) applies to

he 2TPP. Riera-Ledesma and Salazar-González (2005b) approach

he same problem proposing an exact algorithm that explores

y a binary search the objective space determining Pareto op-

imal solutions. Each step of the algorithm solves, by a vari-

tion of the branch-and-cut proposed in Laporte et al. (2003) ,

he problem min { ω f 1 (σ ) + (1 − ω) f 2 (σ ) : σ ∈ �, f 1 (σ ) ≤ f 1 (σ
′ ) ,

f 2 (σ ) ≤ f 2 (σ
′ ) } in which σ ′ is a currently Pareto-optimal solu-

ion and ω a dynamically generated weighting parameter. During

ach resolution the set of dynamic constraints generated is stored

n a cut pool to be used in further stages, speeding up the global

rocedure. The algorithm is able to solve instances up to | M| =
00 and | K| = 200 using a 500 MHz Pentium computer. Finally,

lmeida, Gonçalves, Goldbarg, Goldbarg, and Delgado (2012) study

he application of trans-genetic algorithms (TAs), already shown

o be effective for the single-objective case (see Section 6.2.7 ),

o the 2TPP. Two novel trans-genetic multi-objective algorithms,

alled NSTA and MOTA/D , are proposed hybridizing state-of-the-

rt multi-objective evolutionary frameworks (based only on Pareto
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dominance) with decomposition-based TAs. The methods are vali-

dated on 365 U-TPP instances by applying Pareto compliant indi-

cators and statistical tests. The results show the overall MOTA/D
superiority, which better integrates the diversification mechanisms

based on problem decomposition and the intensification of TA op-

erators. 

7.1.2. TPP with upper bound restrictions 

The most studied variant of this type, the TPP with bud-

get constraint (TPP-B), restricts the total purchasing cost by

a constant threshold b 2 , i.e., TPP-B := min { f 1 (σ ) + f 2 (σ ) :

σ ∈ �, f 2 (σ ) ≤ b 2 } . The TPP-B is inspired by real applications

in telecommunications network design. Both the works described

in Section 7.1.1 use this problem as an intermediate step to

solve the 2TPP. In particular, Riera-Ledesma and Salazar-González

(2005b) show that the weak LP-relaxation induced by the budget

constraint produces, in their branch-and-cut algorithm, branching

trees with a conspicuous number of nodes. Mansini and Tocchella

(20 09a) , 20 09b ) propose then a Multi-start VNS ( MVNS ) using a

modification of EJEMO algorithm as local search scheme for both

the U-TPP-B and the R-TPP-B in which only the traveling costs are

minimized. 

Other TPP variants with similar restrictions exist. Gouveia

et al. (2011) study the ATPP where the number of visited sup-

pliers and the number of products bought per supplier are lim-

ited by two constants b 3 and b 4 . This problem corresponds

to min { f 1 (σ ) + f 2 (σ ) : σ ∈ �, f 3 (σ ) ≤ b 3 , f 4 (σ ) ≤ b 4 } . These con-

straints are motivated from a production planning case study in-

volving a furnace (the multi-purpose machine) in which jobs have

to be treated at different temperatures (configurations). In the

work by Cambazard and Penz (2012) a bound is only established

on the number of visited suppliers (see Section 5.3 ). 

7.1.3. TPP with multiple stacks and deliveries (TPP-MSD) 

The double TSP with multiple stacks (DTSPMS) is a routing prob-

lem in which a capacitated vehicle has to pickup products before

the deliveries ( Petersen & Madsen, 2009 ). The TPP-MSD studied

by Batista-Galván et al. (2013) generalizes the DTSPMS consider-

ing that each product is offered in several pickup locations (mar-

kets) at different prices, hence not all of them need to be vis-

ited, whereas all the delivery locations (customers), each requiring

a product, must be visited. The problem has to: (a) select a sub-

set of pickup locations; (b) determine a tour visiting them taking

into account the order in which products are loaded; (c) design

a Hamiltonian tour which visits the delivery locations. A branch-

and-cut exploiting some new and known cuts is proposed. The al-

gorithm, tested on 240 instances adapted from the literature using

a Intel(R) Core(TM)2 6700 @ 2.66 GHz computer with 2 GB RAM,

has been able to optimally solve instances with up to | K| = 24 and

| M| = 32 . 

7.1.4. TPP with Total Quantity Discount (TPP-TQD) 

Manerba and Mansini (2012a) introduce Total Quantity Discount

(TQD) policies for the purchases in the TPP with restricted avail-

abilities (R-TPP). According to TQD, the interval in which the to-

tal quantity purchased lies determines the discount applied by

the supplier to the total purchase cost. More precisely, each sup-

plier i ∈ M defines a set R i = { 1 , . . . , r i } of r i consecutive and non-

overlapping discount intervals [ l r 
i 
, u r 

i 
] , where l r 

i 
and u r 

i 
are the min-

imum and maximum number of product units to be purchased

from i to be in interval r . A discount rate δr 
i 

is also associated

with each interval r ∈ R i such that δr+1 
i 

≥ δr 
i 
, r = 1 , . . . , r i − 1 . The

authors generalize the classical R-TPP formulation to include the

TQD policy modeling and propose a branch-and-cut approach ex-

ploiting known TPP valid inequalities as well as ad-hoc cuts and

matheuristic strategies for the TQD subproblem (see Manerba &
ansini, 2012b; 2014 ). They solve instances with up to 100 sup-

liers, 500 products, and 5 discounts intervals per supplier using a

ntel Core Duo 2 GHz computer, with 2 GB RAM. 

.2. Variants incorporating data uncertainty 

In real problems, purchasing prices and product quantities

ight not be exactly known when the purchaser has to select sup-

liers and design the corresponding optimal tour. The presence of

ncertain data forces to define when information becomes avail-

ble and for which amount. This section describes the alternative

pproaches proposed to tackle this issue in the TPP literature. 

.2.1. Stochastic TPP 

Kang and Ouyang (2011) analyze a stochastic variant of the U-

PP, where product prices are random variables following known

ndependent (but not necessarily identical) probability distribu-

ions. In their setting, the purchaser will know the offered price

a realization from the distribution) after arriving at a supplier,

nd can decide whether to buy the product at the offered price,

r reject it and visit another supplier (but it is not allowed to go

ack to any already visited supplier). The purchaser needs to de-

ermine the optimal routing and purchasing strategies that mini-

ize the expected total costs. They propose an exact solution al-

orithm based on Dynamic Programming with a time and space

omplexity equivalent to the ones for the traditional TSP from

hich the method is derived. They also propose an approximate

roblem of lower complexity whose solution yields bounds for the

inimum total expected cost, and a greedy heuristic for fast so-

utions to large-scale problems, quite similar to a nearest neigh-

or algorithm using expected prices. Instances are constructed con-

idering origin, destination and 348 supplier locations randomly

elected from nodes in the Chicago metropolitan transportation

etwork. The numerical results show that the heuristic algorithm

ields near-optimal strategies and the approximate problem pro-

ides very good estimates of the minimum total cost. 

Beraldi et al. (2016) study a R-TPP in which both product quan-

ities and prices are uncertain and propose a two-stage Stochastic

rogramming formulation where the first stage deals with the se-

ection of suppliers and the minimal cost route to visit them (tac-

ical decisions), whereas recourse decisions in the second stage are

elated to the products and the quantities to purchase at each sup-

lier. To solve the deterministic equivalent problem, the authors

evelop a branch-and-cut method, incorporating the separation of

ome cuts, and three variants of the Beam Search described in

ection 6.1.3 . Extensive computational results show that the exact

ethod is efficient finding the optimal solution for instances with

p to 75 suppliers, 50 products and 200 scenarios in less than 2

ours. 

.2.2. Dynamic TPP 

Angelelli, Mansini, and Vindigni (2009) introduce the first at-

empt to deal with a dynamic variant of the R-TPP, where relevant

nformation is not completely known in advance, but revealed as

ime goes on. In real procurement problems, quantities available

t the suppliers are time-dependent usually decreasing over time

stocks are folded each morning and reduce over the day). The au-

hors assume to operate in a scenario where the decision maker

xactly knows the current state of the product stocks. As soon as

he quantity available for a given product reduces, the purchaser is

nformed on the amount of reduction and at which supplier it has

ccurred. However, he does not have any knowledge about future

vents. This gives rise to the need of algorithms able to take deci-

ions rapidly on the basis of the dynamically changing information.

he study aims at analyzing effectiveness of heuristics constructing

olutions step by step through greedy criteria that determine the
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ext supplier to visit and the quantities to buy there. The result-

ng heuristics are divided into 4 incremental levels. In any given

evel, the decisions take into account additional information from

he previous levels, thus the last level is supposed to tackle the

roblem in a less myopic way. First level heuristics associate with

ach product a priority value and select, as next supplier to visit,

he one with the highest priority ( product-driven criteria ). Second

evel heuristics choose the next supplier by looking more widely

t all the products offered ( market-driven criteria ). In third level ,

ome products are purchased in advance in sight of possible future

carcity ( consumption-driven criteria ). Finally, fourth level heuristics

elect the next supplier considering the trade-off between travel-

ng and purchasing costs ( trade-off-driven criteria) . Globally the au-

hors propose 18 heuristics, 9 in the first, 5 in the second, 3 in the

hird, and 1 in the last level. Methods are tested on a set of prob-

ems generated by modifying a | M| = 50 , | K| = 50 deterministic in-

tance of Class 4 (see Appendix A ) and in which quantities reduce

n all the suppliers according to a Poisson distribution (different

alues of consumption rate are considered). Since heuristics may

ail in finding a feasible solution, they are also compared in terms

f total product units not purchased at the end of the tour. Results

how that myopic approaches are reasonable only under limited

ynamism, while in more dynamic contexts the use of some fu-

ure prediction may avoid to incur in highly infeasible solutions

nd also improve costs performance. 

Afterwards, in Angelelli, Mansini, and Vindigni (2011) , the same

uthors propose new methods considering some evaluation of fu-

ure events ( look-ahead heuristics ) and compare them with the 4

est algorithms described in their previous work. The new heuris-

ics build, execute, and eventually revise a long-term plan estab-

ishing where to go and what to buy in visited suppliers. More-

ver, once obtained a feasible solution, a VNS-based improvement

rocedure is applied. Also look-ahead heuristics are divided into 3

ncremental levels, differing for the way the solution is updated:

1) in BasePlan , the plan is built on the initial state of the world,

nd no information updates are taken into account; (2) in Revise-

rders , the suppliers to visit are decided once, but the list of prod-

cts to buy is revised whenever necessary, in order to deal with

carceness; (3) in DynamicPlan , the whole plan is rebuilt when any

hange in the offer occurs. The authors use an experimental setting

imilar to Angelelli et al. (2009) , generating several different se-

uences of consumption events. They show that look-ahead heuris-

ics exhibit a more proactive behavior better contrasting product

carceness, although they are not always able to get feasibility. 

Recently, Angelelli, Gendreau, Mansini, and Vindigni introduce a

ime-dependent R-TPP variant, where product quantities decrease

ver time at a constant rate, the replenishment of the product

tocks for each supplier occurs early in the morning (before the

urchasing tour starts), and product prices do not vary during the

ay. The problem is analyzed on a single-day horizon. The authors

ropose a natural MILP formulation for the problem and provide

ome simple valid inequalities to strengthen it. A new branching

trategy, embedded in a branch-and-cut framework, is introduced

o solve the problem at optimality. The authors test their method

n 11 TSPLIB symmetric instances with up to 42 nodes and 10

roducts. Quantities decrease according to different consumption

ates. Results show how the proposed approach outperforms plain

PLEX when directly used to solve the models. As expected, com-

lexity is strongly correlated to dynamism, and for instances where

easible solutions exist, quick products depletion implies higher

omputational time to find optimal solutions. 

.2.3. Dynamic and stochastic TPP 

Angelelli, Mansini, and Vindigni (2016) study a R-TPP includ-

ng both dynamic and stochastic features. Due to the presence of

ther purchasers, product availabilities decrease over time accord-
ng to Markov processes, independent with respect to products and

uppliers. Purchasing can only be done on-site and the purchaser

rganizes his visit to a set of suppliers in order to maximize the

robability to satisfy products demand and minimize expected to-

al cost. Information about consumption events is made available

t runtime, allowing for plan reorganization. The authors assume

he presence of an executor (the driver) collecting information at

isited suppliers and of a planner having the computing power

o reformulate plans. Different operating scenarios occur depend-

ng on communication technology at hand that, in turn, influences

he level of information available to the planner. In scenario S1

o communication equipment is available, thus an a-priori plan is

roduced. On the contrary, if communication is active, in scenario

2 a complete local information on supplier inventory is revealed

t visit time, whereas scenario S3 considers a complete global in-

ormation, where the planner is continuously informed on stock

evels in all markets. The problem models different application do-

ains, from daily procurement of perishable foods to the hand out

f vaccines in the spread of viral diseases. 

The multi-objective nature of the problem is faced through a

ierarchical evaluation of the objectives concerning unsatisfied de-

ands and costs. Policies should first guarantee that the probabil-

ty to miss some items cannot be larger than a fixed threshold,

hen the expected number of missing items and in sequence the

xpected overall costs should be minimized. The authors introduce

 heuristic variants exploiting new information when it becomes

vailable: the stochastic planner takes consumption processes into

ccount, the deterministic planner cuts down the computation bur-

en of the stochastic one by approximating the consumption pro-

esses with deterministic functions of time, and the hybrid planner

ombine the two previous ones by proposing a compromise be-

ween CPU time and quality of the results. In order to have a com-

arison, an off-line planner and a multi-scenario approach are also

mplemented (under scenario S3 ) and tested on randomly gener-

ted instances with up to 100 suppliers and 10 products (available

t http://or-brescia.unibs.it ) with different realizations

f consumption processes. Results show that the hybrid planner

oes not work well when the decisions have to be taken in a long

un and no re-optimization is available as in S1 , where the stochas-

ic planner is the winning approach. In richer information scenar-

os the approximation of hybrid planner becomes less critical and

t highly improves its performance. In particular, in S3 the hybrid

lanner comes out to be the best approach from all points of view

feasibility, cost errors, and missing items). 

.3. Multi-vehicle TPP variants 

Different types of constraints (bounds on load capacity or on

istance traveled, incompatibilities among products) may force, in

eal applications, the use of a fleet of vehicles instead of a sin-

le one. In the multi-vehicle TPP (MVTPP) a set F of homogeneous

ehicles (with a limited capacity Q ) is available at the depot for

 set of purchasers collaborating to satisfy the products demand.

he MVTPP aims at minimizing the overall purchasing and travel-

ng costs deciding, for each vehicle, the purchasing plan and the

orresponding visiting cycle. 

Notwithstanding its relevance, the first MVTPP is proposed only

uite recently by Choi and Lee (2010b) , who test MTZ-based for-

ulations for both the restricted and the unrestricted case. Later

n, in Choi and Lee (2011) , the same authors apply those formu-

ations to solve the purchase of a complex system’s components

ith the objective of maximizing the overall reliability (expressed

s a non-linear function). No ad hoc solving procedure is proposed

nd a MIP solver is simply used to tackle a problem formulation in

hich the objective function is duly linearized. Due to the huge

roblem complexity, the largest instance solved in a reasonable
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Table 5 

MVTPP features in the surveyed works. 

Reference d k Multi-visit | F | Intra-route constraints Side-constraints 

Riera-Ledesma and Salazar-González (2012) 1 Denied ∞ 

Riera-Ledesma and Salazar-González (2013) 1 Denied ∞ UB on route length, 

UB on route duration, 

UB on visited suppliers, 

LB on vehicle load 

Bianchessi et al. (2014) Z 
+ Denied Z 

+ UB on route length 

Manerba and Mansini (2015) Z 
+ Allowed Z 

+ Product incompatibilities 

Shameli-Sendi et al. (2015) Z 
+ Allowed Z 

+ Product purchase order, 

independent purchasers 

Gendreau et al. (2016) 1 Allowed Z 
+ Product incompatibilities 

Manerba and Mansini (2016) Z 
+ Allowed Z 

+ UB on route duration Product incompatibilities 
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amount of time involves only 40 suppliers, 40 components and 4

vehicles. However, this paper has the merit to have gathered the

attention of researchers on the MVTPP, creating a vivid stream of

research. Table 5 summarizes all the papers on MVTPP surveyed

in the following and published later than that initial work. The

problems are classified depending on the type of product demand

(unitary or not), on the possibility or not to visit each supplier

more than once by different vehicles (multi-visit allowed or de-

nied), and on the number of vehicles available in the fleet (limited

or not). Moreover, intra-route constraints (besides the common up-

per bound on vehicle capacity) and other restrictions considered, if

any, are shown. 

7.3.1. School bus routing 

Riera-Ledesma and Salazar-González (2012) use the MVTPP to

model a school bus service where suppliers correspond to bus

stops and products to students to pick-up. It is not allowed to

visit the same stop with more than one bus and, since each stu-

dent represents a singleton, the unrestricted MVTPP with unitary-

demand is considered. The objective is to minimize the travel-

ing costs represented by the distances traveled by buses to com-

plete their tours and by students to reach the stops from their

own homes. Note that, while constructing the best routes for the

buses to carry the students to school, the problem simultane-

ously chooses the best stops for the students to reach. The authors

present a branch-and-cut approach based on a two-index single-CF

formulation (see Section 3.1.1 ) and the exact or heuristic separation

of several families of cuts, e.g., the Generalized Multistar , the Frac-

tional Capacity , the zSEC inequalities, the lifted cycle D 

+ 
k 

and D 

−
k 

in-

equalities. An initial solution is generated by greedily finding a fea-

sible assignment of the students to the stops and solving a VRP by

using the classical Clarke and Wright (1964) method. A two-phase

primal heuristic is also called after each branch-and-cut iteration

in order to possibly obtain a feasible integer solution from a frac-

tional one. The algorithm has been able to solve, in a reasonable

amount of time, symmetric and asymmetric instances with up to

125 stops, 125 students, and 6 buses. 

Riera-Ledesma and Salazar-González (2013) extend the school

bus routing problem by including different restrictions significant

for their application: (a) upper bounds on the length of each route;

(b) upper bounds on the duration of each route; (c) upper bounds

on the number of possible stops for each bus; (d) lower bounds

on the number of students served by each bus (i.e., on the ve-

hicle load). The resulting variants are suitable to be modeled by

a set-partitioning formulation and to be efficiently solved by col-

umn generation (CG). In general, in fact, intra-route constraints al-

low the pricing problem to discard a large number of infeasible

columns, speeding up its solution. The authors solve the pricing by

a q-route ( Christofides, Mingozzi, & Toth, 1981 ) pseudo-polynomial

algorithm. Finally, they embed CG into a branch-and-bound frame-

work to ensure integrality, and add some cuts to strengthen the
P relaxation at each node, yielding a branch-and-price-and-cut ap-

roach. A wide computational experience is conducted testing sev-

ral combinations of the considered constraints on instances with

p to 125 users and stops. 

Although consolidated CG procedures exist in VRP literature,

heir adaptation to the MVTPP is not straightforward and deserves

 brief explanation. Let R be the set of all feasible routes, θ r a vari-

ble equal to 1 if route r belongs to the solution, and δr 
ik 

a coef-

cient equal to 1 if product k is purchased from supplier i in the

oute r . Here, differently from common VRPs, a feasible route in

 is not only a set of arcs representing a visiting tour but includes

lso the set of decisions guaranteeing the accomplishment of a fea-

ible purchasing plan, i.e. ensuring that a product cannot be pur-

hased where it is not available and that the vehicle capacity is not

xceeded. Hence, a feasible MVTPP solution can be viewed as a col-

ection of O (| F |) routes in R such that the demand for each product

s satisfied. A basic set partitioning formulation for the (unitary-

emand) MVTPP is: 

in 

∑ 

r∈ R 

( ∑ 

(i, j) ∈ r 
c i j + 

∑ 

k ∈ K 

∑ 

i ∈ M k 

p ik δ
r 
ik 

) 

θ r (19)

ubject to 

∑ 

r∈ R 

∑ 

i ∈ M k 

δr 
ik θ

r = 1 k ∈ K (20)

r ∈ { 0 , 1 } r ∈ R. (21)

This decomposition moves the complexity to the pricing prob-

em, that results in a single-vehicle TPP for which the product

emand is not defined. However, to take advantage of the well-

nown labeling-based solution algorithms existing in the literature,

he pricing problem can be redefined as an Elementary Shortest

ath Problem with Resource Constraints ( Feillet et al., 2004 ) consid-

ring a graph in which nodes ( k , i ) correspond to all the poten-

ial assignments of a product k ∈ K to a supplier i ∈ M k and the

reduced) cost of each arc depends on both the traveling and pur-

hasing costs. 

.3.2. Distance-constrained MVTPP 

Bianchessi, Mansini, and Speranza (2014) also propose a

ranch-and-price for a restricted MVTPP in which the length of

ach route is bounded. The authors decompose the problem in a

ore traditional way, by considering a route as a simple resource

onstrained tour through the suppliers and by dealing with the

urchasing part in the master problem. Here, in fact, the product

emand is non-unitary and the vehicles capacity is unlimited and

his would have impacted dramatically on the size of a set R de-

ned as in (19) –(21) . Through the use of accelerating techniques

nd a restricted master heuristic, the authors are able to optimally

olve instances with up to | M| = 100 , | K| = 200 , and | F | = 8 . More-

ver, for the first time, an empirical performance comparison of
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3 Only a bunch of papers have been excluded due to their scarce availability, as 

the technical report by Voß (1989) , or because they are published on national jour- 

nals not in English language ( Choi & Lee, 2009; 2010a; 2010c ). 
ifferent (but equivalent) MVTPP compact formulations by using a

IP solver is presented. 

.3.3. MVTPP with pairwise incompatibility constraints (PICs) 

. Manerba and Mansini (2015) introduce a MVTPP variant,

amed MVTPP-PIC, involving the presence of incompatibilities

mong product types to model real procurements where, e.g.,

oods should not be mixed with chemicals, or some dangerous

ubstances may react if mixed together. This is the first MVTPP

ariant allowing multiple visit to the same supplier by different

ehicles. 

Note that, differently from common VRPs where split delivery

llows savings in the traveling costs, here the multiple visit may

e forced by the incompatibilities and thus may cause a traveling

ost increase. The authors propose a branch-and-cut framework,

ased on the dynamic separation of several families of valid in-

qualities,and incorporating symmetry breaking constraints and a

our-step heuristic able to find good integer solutions. The heuris-

ic is similar to the Beam Search presented in Section 6.1.3 , plus

 fourth layer that represents the subproblem of assigning vehi-

les to products and suppliers. For the latter, the authors propose

hree greedy procedure (in which the assignment is done supplier

y supplier, with or without privileging incompatible products, and

roduct by product, respectively) and a MIP-based recovery proce-

ure. The method is able to efficiently solve instances with up to

00 products, 20% of cross-incompatibilities among them, 50 sup-

liers, and 16 vehicles. 

Gendreau, Manerba, and Mansini (2016) study the unitary-

emand MVTPP-PIC applied to the daily scheduling of a set K of

urgeries that can be accomplished by a set M of medical teams

n a set F of multi-purpose operating rooms. Here, p ik represents

he time needed by team i to complete surgery k , whereas c ij 
s the set-up time to prepare specific tools/equipment for team j

f operating in the same room after team i . The objective is to

inimize the overall time to accomplish the required surgeries.

ncompatibilities among different surgeries arise when there ex-

sts a too high risk of reciprocal contamination for the patients or

he time for correctly sterilizing the room would be prohibitive.

he authors propose a branch-and-price method based on a prob-

em decomposition similar to that proposed in Riera-Ledesma and

alazar-González (2013) . The pricing problem is solved by a hy-

rid strategy combining two different exact methods, i.e. a label-

ng algorithm and a tailored branch-and-cut, that present comple-

entary features and result effectively combinable in several ways.

he algorithm strictly improve solutions for 8 open instances from

he literature and optimally solve all the others within an aver-

ge CPU time that is an order of magnitude lower with respect

o the benchmark. The method remains effective over a new set

f hard-to-solve instances with up to 70 products, 70% of cross-

ncompatibilities among them, and 50 suppliers. 

Finally, Manerba and Mansini (2016) present a branch-and-price

pproach for a Nurse Routing Problem (NRP) modeled as a MVTPP.

ere, a set F of nurses has to visit a set of patients M in order to

erform a set K of services with different priority and importance,

aximizing the overall profit associated with the care service. This

outing/scheduling problem is further complicated by considering

 daily working time limit for each nurse and the impossibility to

erform two incompatible services to a certain patient in the same

ay. Note that, even if these incompatibilities can be modeled as

ICs, the restriction is no longer an intra-route constraint. 

.3.4. Independent MVTPP with order 

In the context of network security, where virtual appliances

re chained in ordered sequences to perform different filters on

he traffic, Shameli-Sendi et al. (2015) extend the basic MVTPP by

onsidering: (a) many independent purchasers, each one having a
ource and a destination node, and a particular list of products

o purchase (instead of multiple purchasers cooperating to sat-

sfy a common products list); (b) a specific order for the product

urchase. The resulting problem aims at minimizing the process-

ng time needed by security functions, which is composed by the

ime required by the traffic to traverse the links and the time re-

uired by the traffic to be analyzed by the security appliances in

he nodes. The experimental setup basically consists in integrating

 MIP model solution in a cloud computing platform to show its

uitability. 

. Conclusions and future research 

The TPP is a procurement/routing problem that aims at select-

ng the purchasing plan of a set of products from a subset of sup-

liers, and the corresponding visiting tour, in order to satisfy a pre-

efined products demand. The objective is to minimize the overall

urchasing and traveling costs. Interesting for its wide applicability,

he TPP is one of the most studied generalization of the TSP. Many

apers have been written on this problem since its introduction in

he optimization literature about 50 years ago, and it still attracts

he attention of researchers and practitioners (more than 20 pa-

ers have appeared since the 2010). A main goal of this survey is

o gather for the first time all the TPP works together 3 and to cre-

te a comprehensive starting point for anyone who will approach

he problem, or some of its variants, in the future. However, we do

ot propose just a references sink. All the contributions have been

ritically reviewed, taxonomies and classifications have been stan-

ardized, and transversal comparisons have been conducted when-

ver possible. 

It is clear that the basic TPP, in its symmetric/asymmetric or

estricted/unrestricted versions, has been exhaustively analyzed by

ifferent authors and under different perspectives. A wide variety

f solution methods, some of which very efficient, has been pro-

osed to achieve optimal or near-optimal solutions. Although the

omputational classification of the problem predicts poor results

hen the purpose is to guarantee the optimality, a certain number

f authors has proposed efficient exact algorithms (Dynamic Pro-

ramming, branch-and-bound, branch-and-cut) to solve it. How-

ver, given the hardness of the problem and its complicate combi-

atorial structure, heuristic approaches represent not surprisingly

he major part of existing solution methods. Several constructive

nd local search procedures have been presented, whereas contri-

utions on metaheuristic are quite limited in number but, actu-

lly, explore the most part of the main known frameworks. The

mportance of having even a simple heuristic algorithm in place is

onfirmed by the fact that the quasi-totality of the existing exact

ethods for the TPP also include some heuristic components. In

urn, mathematical/structural properties extracted to obtain exact

ethods have led, very often, to the basic ideas on which heuris-

ic algorithms have been developed in later works. We believe that

oth exact and heuristic approaches have their own relevance, and

omplement one each other in the process of enriching the knowl-

dge on the problem and its tractability. 

It is clear as well that the attention of the researchers has

oved, in the last years, to study interesting TPP variants able to

odel more realistic problems. In particular, the most recent pa-

ers focus on stochastic and multi-vehicle TPP, and on other vari-

nts involving more or less complicating side-constraints (budget

estrictions, discount policies for the purchasing plan, pick-up and

elivery requests, intra-route constraints, and so on). We strongly

elieve that future works will keep going in this direction. As a
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suggestion, we remark that no existing TPP contributions consider

uncertainty on the traveling costs, in contrast to the literature on

other stochastic routing problems. Again, by interpreting the sup-

plier selection part of the TPP as a tactical decision-making issue,

an explicit multi-period variant of the problem may be of interest

in organizing medium-term procurement logistics operations or in

considering periodic visit to the suppliers. 

Despite of the natural growing interest on more and more inno-

vative and useful TPP variants, we believe that some work can still

be done regarding the basic problem. Surely, the current literature

lacks in some aspects: 

• benchmarking : no systematic works exist on defining the gener-

ation process, the representing format, the dimension and the

complexity of benchmark TPP instances. A contribution in this

sense, following recent guidelines on the subject ( Kendall et al.,

2016 ), would be of great utility; 
• web-page : in order to simplify the performance evaluation of

upcoming solution methods, a maintained web-page should be

of reference for the research community working on the prob-

lem, gathering and making available up-to-date best results for

closed and non-closed instances; 
• libraries : as for other well-known routing problems, open-

source code libraries implementing the most used constructive

heuristics as well as separation procedures for the most effi-

cient cuts would be highly appreciated and foster the creation

of more efficient TPP solution methods. 

Appendix A. Benchmark instances 

This appendix surveys the main classes of instances proposed in

the literature for the basic TPP. We analyze the main characteristics

of each class by putting the attention on maximum size of solved

instances and indicating which ones (if any) have not been solved

to optimality yet. 

The first interesting benchmark set has been proposed in Singh

and van Oudheusden (1997) for both U-ATPP and U-STPP. In the

asymmetric instances, travel costs are integers randomly gener-

ated from a uniform distribution in [15, 30]. Product prices are

also integer values fixed to a big-M constant in about the 50% of

the cases, whereas the remaining ones range in [ a, a + 10] ( a is

a non-specified integer value). A total of 65 instances (5 of each

size) with | M| = { 10 , 15 , 20 , 25 } and | K | ranging from 10 to 100 are

generated and solved. In symmetric instances, traveling costs come

from the 33-city TSP example described in Karg and Thompson

(1964) . Product prices are integers randomly generated in [0, 500].

A total of 40 instances with 10–20 suppliers, and 15–50 products

are created. All instances have been solved to optimality, however

symmetric ones require higher computing effort. 

Almost in the same years, other authors propose benchmarks

to test their methods. Ochi et al. (1997) generate a set of 80 in-

stances divided in four classes with the following characteristics:

(a) both | M | and | K | range in [20, 50]; (b) | M | ranges in [20, 50],

| K | in [10 0, 50 0]; (c) | M | ranges in [10 0, 50 0], | K | in [20, 50]; (d)

both | M | and | K | range in [10 0, 20 0]. Unfortunately, these instances

are unusable since there are no indications on how distances and

products prices have been generated and also no details on the so-

lutions obtained on single instances. Pearn and Chien (1998) gen-

erate 30 random instances where | M | ranges in [10, 50], | K | in [5,

60], the traveling costs in [1, x ] with 15 ≤ x ≤ 140, and the pur-

chasing costs in [0, y ] 4 with 5 ≤ y ≤ 75. Some graphs are dense,
4 Note that allowing null product prices can generate some nonsensical solutions. 

We believe that, in these instances, a null price for a product should be interpreted 

as its non-availability in that market. However, this is not clearly explicated in the 

paper. 

i  

m  

f  

g  

8  

a  
thers are sparse. Their implementation of the exact method by

amesh (1981) finds the optimal solution in all the cases. Ochi

t al. (2001) generate 36 U-TPP instances to test their sequential

lgorithms. Both | M | and | K | range in [50, 150], whereas the num-

er of products per supplier is between 1 and 5. Traveling and pur-

hasing costs are generated randomly in [10, 300]. Five additional

nstances with | M | and | K | randomly ranging in [10 0, 50 0], travel-

ng and purchasing costs in [10, 500], and up to 100 products for

upplier are also provided. No optimal solutions are reported for

he instances. 

Laporte et al. (2003) introduce 4 classes of test instances for the

TPP, which have become the most used benchmarks (instances

re available at http://webpages.ull.es/users/jriera/TPP.htm ): 

Class 1 contains the 33-supplier U-STPP instances defined in

Singh and van Oudheusden (1997) . For each instance 5 sam-

ples are generated for each | K| = { 50 , 100 , 150 , 200 , 250 } .
Distances do not satisfy the triangle inequality. Product

prices are generated in [1, 500] according to a discrete uni-

form distribution; 

Class 2 contains 140 instances for the U-TPP randomly gen-

erated by using the process described in Pearn and

Chien (1998) , apart from the routing costs that are

symmetric instead of asymmetric. For each combina-

tion of | V | = { 50 , 100 , 150 , 200 , 250 , 300 , 350 } and | K| =
{ 50 , 100 , 150 , 200 } , five samples are generated; 

Class 3 contains U-TPP instances defined as for Class 1 . Here,

| V | integer coordinate vertices are generated in the [0, 10 0 0]

× [0, 10 0 0] square according to a uniform distribution and

routing costs as truncated Euclidean distances. Moreover,

each product k is associated with | M k | randomly selected

suppliers, where | M k | is uniformly generated in [1 , | V | − 1] ; 

Class 4 contains R-TPP instances generated as in Class 3 , adding

a limit q ik on offered quantities that is randomly taken in [1,

15] and an additional parameter λ to control the number of

suppliers in a feasible solution through the product demand

d k := � λ max i ∈ M k 
q ik + (1 − λ) 

∑ 

i ∈ M k 
q ik � , with 0 < λ < 1. Ba-

sically, the lower the λ, the higher the number of suppliers

in a solution. The authors consider values of λ equal to 0.5,

0.7, 0.9, and 0.99. 

All Class 1 instances have been solved to optimality with the

ranch-and-cut approach proposed by Laporte et al. (2003) . Sim-

larly for Class 2 but for two instances with (| V |, | K |) = (300,

0) and (300, 150), respectively. In Class 3 , only 89 out of 140

nstances have been solved to optimality. Euclidean travel costs

eem to produce much harder instances to solve. The open in-

tances are 51, the 40 largest ones with | V | = { 300 , 350 } plus

ther 11 instances, one instance with (| V | , | K| ) = (150 , 200) , one

ith (20 0, 20 0), three with (250, 10 0), two with (250, 150)

nd four with (250, 200), respectively. The best-known solution

alue has been provided for 3 instances ( EEuclideo.30 0.20 0.1 , EEu-

lideo.30 0.20 0.5 , and EEuclideo.350.20 0.4 ) by the local search al-

orithm l -ConsecutiveExchange ( Riera-Ledesma & Salazar-

onzález, 2005a ) and for all the remaining ones by the ACO ap-

roach ( Bontoux & Feillet, 2008 ) or by the TA approach ( Goldbarg

t al., 2009 ). All Class 4 open instances up to (| V | , | K| ) = (20 0 , 10 0)

re summarized in Table A.6 . Larger instances have not been solved

et. 

Finally, if we do not consider the fixed costs, the 192 instances

ntroduced by Voß (1996) are U-TPP instances not solved to opti-

ality yet. They are based on 3 graphs known from the literature

or various routing problems with 10, 31, and 52 nodes. For each

raph, | K | is varied 8 times depending on | M |, with no more than

3 products for largest instances. The availability of each product

t each supplier is decided according to a probability value (0.25,

http://webpages.ull.es/users/jriera/TPP.htm
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Table A.6 

Class 4 instances not solved to optimality yet. 

(| V |, | K |) λ = 0 . 5 λ = 0 . 7 λ = 0 . 8 λ = 0 . 9 λ = 0 . 95 λ = 0 . 99 

(100, 150) 4 

(10 0, 20 0) 1 

(150, 50) 1 1 

(150, 100) 1 4 1 

(150, 150) 1 5 1 

(150, 200) 5 1 

(200, 50) 1 1 4 1 

(20 0, 10 0) 1 3 4 3 

Total: 1 1 1 5 28 8 
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.4, 0.6, and 0.75, respectively). The price of a non-available prod-

ct is set to a prohibitively high value, otherwise is uniformly cho-

en in [0, 10 0 0] in a first cost structure, or in [0, 100] in a second
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