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Integer Linear Programming

Integer Linear Programming Example

TBA Airlines is a small air company, specialized in regional flights. The
management is considering an expansion and it has the possibility to buy
small or medium size airplanes. Find the best strategy, knowing that at
the moment no more than two small airplanes can be bought and that
$100 millions are available to invest. Consider also the values in the
following table:

Small airplane Medium size airplane

Annual profit per airplane $1 million $5 millions
Cost per airplane $5 millions $50 millions
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Integer Linear Programming

Model of the example

Consider the variables
x1 - number of small airplanes to buy
x2 - number of medium size airplanes to buy

The ILP model is

max z = x1 + 5x2

s.t. 5x1 + 50x2 ≤ 100

x1 ≤ 2

x1, x2 ≥ 0 and integer

Master DAB (ISEG) Decision Making and Optimization 2024-2025 4 / 108



Integer Linear Programming

Graphical solution
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5x1 + 50x2 ≤ 100

x1 ≤ 2

z = x1 + 5x2

Optimal solution (0,2)

with value 10

Feasible set = {(0, 0), (0, 1), (0, 2), (1, 0), (2, 0), (1, 1), (2, 1)}
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Integer Linear Programming

Integer Linear Programming (ILP)

(ILP) arises when in the context of Linear Programming the decision
variables only make sense if they have integer values, that is if the
assumption of divisibility of LP doesn’t fit to the problem in hands.

Integer Linear Programming problems where variables only take

– integer values xj ∈ N, j = 1, . . . , n
or
– binary values xj ∈ {0, 1}, j = 1, . . . , n
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Integer Linear Programming

Integer Linear Programming (ILP)

Integer Linear Programming (ILP) model

max z =
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi , i = 1, . . . ,m

xj ≥ 0 and integer, j = 1, . . . , n

or

xj∈ {0, 1}, j = 1, . . . , n
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Integer Linear Programming

Integer Linear Programming

(ILP) arises when to decide on:

• indivisible number decisions (for, example decisions on the number of
machines to purchase, the number of people to select for a job)

• “yes-or-no”decisions (for example, the type of projects in which to
invest or not to invest)

A ILP is a pure ILP if all the decision variables are required to have integer
values;

A mixed ILP is a ILP where only some variables are required to have
integer values.
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Integer Linear Programming Lower and Upper Bounds

Lower and Upper Bounds
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Integer Linear Programming Lower and Upper Bounds

Lower and Upper Bounds

Given an integer linear program (IP)

max z =
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi , i = 1, . . . ,m

xj ≥ 0 and integer, j = 1, . . . , n

we can obtain
lower bounds zℓ and upper bounds zu for its optimal value z∗:

zℓ ≤ z∗ ≤ zu.

How to obtain lower and upper bounds?
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Integer Linear Programming Lower and Upper Bounds

Feasible solutions

the value of any feasible solution za is a

lower bound for a maximization integer linear problem

za ≤ z∗

upper bound for a minimization integer linear problem

z∗ ≤ za
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Integer Linear Programming Lower and Upper Bounds

Example

x1

x2

0 1 2 3

0

1

2

3

5x1 + 50x2 ≤ 100

x1 ≤ 2

z = x1 + 5x2

Optimal solution (0,2)
with value z∗ = 10

Feasible set = {(0, 0), (0, 1), (0, 2), (1, 0), (2, 0), (1, 1), (2, 1)}
Lower bounds: z(0,0) = 0, z(0,1) = 5, z(0,2) = 10, z(1,0) =

1, z(2,0) = 2, z(1,1) = 6, z(2,1) = 7
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Integer Linear Programming Lower and Upper Bounds

Relaxation

We obtain a relaxation when we replace the ILP problem with another one
for which it is easier to obtain a solution so that we can obtain an
approximation to the optimal value of the ILP problem.

Given an ILP we obtain a relaxation when:

(i) the set of feasible solutions is enlarged (obtaining a larger set) and/or

(ii) the objective function is replaced by another one

There are several relaxations that can be obtained, we will use a linear
relaxation.
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Integer Linear Programming Lower and Upper Bounds

Properties of the Relaxation

If the relaxed problem has no feasible solutions (is impossible), then the
ILP has no feasible solutions (is impossible).

If the optimal solution of the relaxed problem is feasible for the ILP
problem, then the solution is optimal to the ILP problem.
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Integer Linear Programming Lower and Upper Bounds

Relaxation

the optimal value zr of a relaxation is

upper bound for a maximization integer linear problem

z∗ ≤ zr

lower bound for a minimization integer linear problem

zr ≤ z∗
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Integer Linear Programming Lower and Upper Bounds

Linear Relaxation

The linear relaxation of an ILP is the LP obtained by dropping the
constraints on the integer values for the variables (the integrality
constraints).

we obtain the linear relaxation as follows

max z =
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi , i = 1, . . . ,m

xj ≥ 0 and integer//////////////, j = 1, . . . , n
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Integer Linear Programming Lower and Upper Bounds

Example

The linear relaxation of the ILP model is

max z = x1 + 5x2

s.t. 5x1 + 50x2 ≤ 100

x1 ≤ 2

x1, x2 ≥ 0 and integer//////////////

The optimal solution is x∗
LR = (2, 9

5) with value z∗
LR = 11

Thus z∗
LR = 11 is an upper bound
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Integer Linear Programming Lower and Upper Bounds

Duality

the value of a dual feasible solution zd of the linear relaxation is

upper bound for a maximization integer linear problem

z∗ ≤ zd

lower bound for a minimization integer linear problem

zd ≤ z∗
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Integer Linear Programming Lower and Upper Bounds

Example

The dual of the linear relaxation of the ILP model is

minw = 100y1 + 2y2

s.t. 5y1 + y2 ≥ 1

50y1 ≥ 5

y1, y2 ≥ 0

A feasible solution is y = (1, 1) with value w = 102

Thus w = 102 is an upper bound

another dual feasible solution is y = (0.1, 1) with value w = 12
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Integer Linear Programming Solving ILP

Solving ILP
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Integer Linear Programming Solving ILP

Solve ILP problems

Methods to (exactly) solve ILP problems

• Branch & Bound

• Cutting Planes

• Branch & Cut

• Branch & Price

• etc.

Approximation methods (give lower and/or upper bounds)

• any exact method that is stopped before completing its search

• Relaxations

• Heuristics

• etc.
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Integer Linear Programming Solving ILP

Branch & Bound

• divides the feasible set and builds an enumeration tree (branch)

• removes branchs of the tree that corresponds to infeasible situations
(bound)

• starts by solving the linear relaxation of the initial program

• only solves linear relaxations of the linear problems that are generated
by adding constraints to the initial problem
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Integer Linear Programming Solving ILP

Branch & Bound algorithm - max problem

Step 1: Initialisation

• solve the linear relaxation (PL) of P.L.I.
If (PL) is impossible, STOP! (P) is also impossible.
If its solution is integer, STOP! The optimal solution of
(P) has been found.
Otherwise
• let z̄ be the corresponding optimal value
• let z = −∞ or else equal to the value of the o.f.
associated with a feasible solution
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Integer Linear Programming Solving ILP

Step 2: Branching

• partition the problem from a variable that violates the
integrality constraint
• let xk be the chosen variable with fractional value x̄k
• in one of the problems include the constraints xk ≤ ⌊x̄k⌋
• in the other problem include the constraint
xk ≥ ⌊x̄k⌋+ 1
• place these problems on the list of problems to be

analysed
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Integer Linear Programming Solving ILP

Step 3: Subproblem selection

• if there are no more subproblems to analyse, go to
Step 5
• otherwise, select a new problem from the list and go to
Step 4
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Integer Linear Programming Solving ILP

Step 4: Solve the selected subproblem/Bounding

• solve the linear relaxation of the selected problem
• if the linear relation is impossible, abandon the
subproblem, cancel the node in the search tree and go
to Step 3
• otherwise, let z be the value of the o.f. corresponding to
the optimal solution of the linear relaxation
• if z < z , abandon this problem, cancel this node, and go

to Step 3
• if z ≥ z and if in the optimal solution there is at least

one integer variable with a fractional value, then go to
Step 2

• if z ≥ z and if the optimal solution satisfies all the
integrality constraints, then cancel the tree node,
replace z for z and move on to Step 3
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Integer Linear Programming Solving ILP

Step 5: Optimality test

• if z = −∞ then the problem is impossible and the
process ends
• otherwise the optimal solution has been obtained and
the process ends with z∗ = z
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Integer Linear Programming Solving ILP

Branch & Bound for the Example

(P0)
z∗
LR = 11

x∗
LR = (2, 9

5
)

z = 11
z = −∞

(P1)
z = 7
x = (2, 1)
z = 11
z = 7

(P2)
z = 10
x = (0, 2)
z = 11
z = 10

x2 ≤ 1 x2 ≥ 2
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Integer Linear Programming Solving ILP

Another Example

max z = 3x1 + 4x2
s. a: −3x1 + 2x2 ≤ 2

x1 + 3x2 ≤ 11
x1 + x2 ≤ 6
x1, x2 ≥ 0 and integer
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Integer Linear Programming Solving ILP

(P0)
z = 41

2
= 20, 5

x = ( 7
2
, 5
2
)

z = 20, 5
z = −∞

(P1)
z = 59

3
= 19, (6)

x = (3, 8
3
)

(P2)
z = 20
x = (4, 2)
z = 20, 5
z = 20

(P3)
z = 17
x = (3, 2)
z = 20, 5
z = 17

(P4)
z = 18
x = (2, 3)
z = 20, 5
z = 18

x1 ≤ 3
x1 ≥ 4

x2 ≤ 2 x2 ≥ 3

Master DAB (ISEG) Decision Making and Optimization 2024-2025 30 / 108



Integer Linear Programming Solving ILP

Example of a Branch & Bound Tree (Xpress)
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Integer Linear Programming Solving ILP

Example of a Branch & Bound Tree (Xpress)
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Integer Linear Programming Solving ILP

Cutting Planes

Adds valid inequalities, such as x1 + 2x2 ≤ 4 for our example

x1

x2

0 1 2 3

0

1

2

3

5x1 + 50x2 ≤ 100

x1 ≤ 2

x1 + 2x2 ≤ 4

z = x1 + 5x2

Optimal solution (0,2)

with value 10
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Integer Linear Programming Solving ILP

Software

Small size

Solver of the Excel
PuLP with Python

Large size

XPress https://www.fico.com/en/products/fico-xpress-optimization
Gurobi https://www.gurobi.com/
CPLEX https://www.ibm.com/analytics/cplex-optimizer

among others
and you may use them with Python, C, C++
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Integer Linear Programming Solving ILP

Solving using the Solver of the Excel
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Integer Linear Programming Solving ILP

Heuristics

A heuristic, or a heuristic technique, is any approach to problem-solving
that uses a practical method or various shortcuts in order to produce
solutions that may not be optimal but are good enough, sufficient, given a
limited timeframe or deadline.

Heuristics usually produce feasible solutions.

Later we’ll learn some heuristics and metaheuristics.
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Integer Linear Programming Modelling with binary variables

Modelling with binary variables
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Integer Linear Programming Modelling with binary variables

Integer/Binary Linear Program

– decision variables xj ≥ 0, j = 1, . . . , n
– binary variables yj ∈ {0, 1}, j = 1, . . . , nn
Mixed Integer Linear Programming (ILP) model

max z =
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi , i = 1, . . . ,m

additional constraints using xj and yj

xj ≥ 0, j = 1, . . . , n

yj∈ {0, 1}, j = 1, . . . , nn

Binary decision variables:

yj =

{
1, if j is selected,
0, otherwise,

j = 1, . . . , n,
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Integer Linear Programming Modelling with binary variables

Modelling Fixed Costs

fj is the fixed cost for considering (selecting/using/producing) activity xj

max z =
n∑

j=1

cjxj −
n∑

j=1

fjyj

s.t.
n∑

j=1

aijxj ≤ bi , i = 1, . . . ,m

xj ≤ M yj , j = 1, . . . , n (linking constraints)

xj ≥ 0, j = 1, . . . , n

yj∈ {0, 1}, j = 1, . . . , n

M should be defined so that the value of the variable xj is bounded only
by the functional constraints and not by the linking constraints
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Integer Linear Programming Modelling with binary variables

Limitations on activities

yj =

{
1, if j is selected,
0, otherwise,

j = 1, . . . , n,

• on the maximum number of activities: at most K∑n
j=1 yj ≤ K ,

xj ≤ M yj , j = 1, . . . , n,

• incompatible activities: r and s are incompatible

yr + ys ≤ 1,
xr ≤ M yr ,
xs ≤ M ys ,

• complementary activities: s is selected only if r is selected

ys ≤ yr
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Integer Linear Programming Modelling with binary variables

Disjunction of constraints

n∑
j=1

a1jxj ≤ b1 +M (1− y1),

n∑
j=1

a2jxj ≤ b2 +M (1− y2),

y1 + y2 = 1

y1, y2∈ {0, 1}
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Integer Linear Programming Modelling with binary variables

Example 1

A company wishes to expand its business by acquiring 3 new properties and is
considering 5 possible locations for this purchase, L1, L2, L3, L4 and L5. Each
site should be no less than 50 ha and no more than 300 ha. Due to the
proximity of locations L1, L2, L3, no more than 2 of these 3 locations should be
selected, and locations L4 and L5 are incompatible.
The company has the following information about the locations.

L1 L2 L3 L4 L5
annual expected profit / ha 25 30 20 20 25
annual fixed costs 100 120 110 110 120
initial investment / ha 30 45 20 25 30

The company has a budget of 18 500 u.m. for an initial investment, and aims to
maximise its expected (annual) profit. Model this problem.
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Integer Linear Programming Modelling with binary variables

Example 1 (more constraints)

Now consider that if the company chooses locations L4 or L5, it will have an
additional 500 u.m. or 300 u.m. respectively to the initial amount.
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Integer Linear Programming Modelling with binary variables

Example 2

An oil company intends to select 5 out of 10 wells: P1,P2, . . . ,P10, to
which are associated the cost c1, c2, . . . , c10, respectively. According to
commitments with the local government, the company must comply with
the following restrictions for regional development:

r1) the selection of both P1 and P7 block selection of P8;

r2) the selection of P3 or P4 block selection of P5;

r3) from P5, P6, P7 and P8 at most two can be selected;

r4) the selection of P1 forces selection of P10.

Formulate the problem and solve it assigning costs at your choice.
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Integer Linear Programming Application Examples

Application Examples
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Integer Linear Programming Application Examples

• Knapsack Problem

• Set Covering Problem

• Sequencing Problem

• Facility Location Problem

• Travelling Salesperson Problem
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Integer Linear Programming Knapasack Problem

Knapasack Problem
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Integer Linear Programming Knapasack Problem

Example of a Knapasack Problem

utility =(4,2,2,1,10)
weight=(12,2,1,1,4)
W=15

max 4x1 + 2x2+
2x3 + x4 + 10x5

s. to: 12x1 + 2x2 + x3+
x4 + 4x5 ≤ 15
xj ∈ {0, 1}, j = 1, . . . , n

x = (1, 1, 1, 0, 0), z = 8, v = 15
x = (0, 1, 1, 1, 1), z = 15, v = 8
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Integer Linear Programming Knapasack Problem

Knapasack Problem

in Knapsack type problems, given n objects, each with an associated cost
or utility uj , j = 1, . . . , n, and weight or volume vj , j = 1, . . . , n, the
decision to be made is whether or not to select the object j in order to
optimize the total utility and not to violate the the imposed volume
constraint of V .

one must decide if xj = 1, which means that the object j is selected, or if
xj = 0, which means that the object j is not selected

the ILP model of the Binary Knapsack is

max
n∑

j=1

ujxj

s. to:
n∑

j=1

vjxj ≤ V

xj ∈ {0, 1}, j = 1, . . . , n
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Integer Linear Programming Set Covering Problem

Set Covering Problem
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Integer Linear Programming Set Covering Problem

Example of a Set Covering Problem

To promote safety on campus, the Security Department is in the process of
installing emergency equipment in selected locations. The department
would like to install a minimum number of these devices to serve each of
the main campus streets. The figure below shows the main campus roads.
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Integer Linear Programming Set Covering Problem

Set Covering Problem

one must decide if xj =

{
1, if j is selected,
0, j is not selected,

j = 1, . . . , n,

the ILP model of the Set Covering Problem is

min
n∑

j=1

cjxj

s. to:
n∑

j=1

aijxj ≥ 1, i = 1, . . . ,m

xj ∈ {0, 1}, j = 1, . . . , n

with aij =

{
1, if j serves i ,
0, otherwise,

i = 1, . . . ,m, j = 1, . . . , n,

Master DAB (ISEG) Decision Making and Optimization 2024-2025 52 / 108



Integer Linear Programming Sequencing Problem

Sequencing Problem
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Integer Linear Programming Sequencing Problem

Example of a Job Sequencing Problem

Jobco uses a single machine to process three jobs. For each job, both the
processing time and the due date (in days) are given in the following table.
The due dates are measured from zero, the assumed start time of the first
job.

Job Processing time (day) Due date (day) Late penalty ($/day)

1 5 25 19
2 20 22 12
3 15 35 34

The objective of the problem is to determine the job sequence that
minimizes the late penalty for processing all three jobs.
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Integer Linear Programming Sequencing Problem

Sequencing Problem

if xij =

{
1, if i precedes j ,
0, otherwise,

i , j = 1, . . . , n,

if tj = start time of job j , j = 1, . . . , n (measured from time 0)

let δj be the processing time of job j , j = 1, . . . , n

the ILP model of the Sequencing Problem has the following constraints

tj ≥ ti + δi −M (1− xij),
ti ≥ tj + δj −M xij

that model the sequence disjunction:

tj ≥ ti + δi or ti ≥ tj + δj

either job j is after job i or job i is after job j
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Integer Linear Programming Sequencing Problem

Sequencing Problem

let dj be the due date of job j , j = 1, . . . , n

the job j is late if tj + δj > dj

thus the following constraints

tj + δj − (s+j − s−
j ) = dj ,

s+j , s−
j ≥ 0

define that
job j is ahead of schedule if s−

j > 0

job j is behind schedule if s+j > 0
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Integer Linear Programming Facility Location Problem

Facility Location Problem
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Integer Linear Programming Facility Location Problem

Example of a Facility Location Problem

Jobco wants to build a new warehouse to serve its factories located in three cities:
City A, City B and City C.
Transportation costs between the potential warehouse location (in one of the
three cities) and each city are shown in the following table

City A B C

A - 25 19
B 25 - 12
C 19 12 -

The goal is to minimize the total transportation cost from the warehouse to these
cities.
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Integer Linear Programming Facility Location Problem

Facility Location Problem

This problem involves determining the best location for a facility (like a
warehouse, factory, or service center) to serve all the demand and minimize costs

yj =

{
1, if j is selected,
0, otherwise,

j = 1, . . . , n,

xij =

{
1, if j is served by facility in i ,
0, otherwise,

i , j = 1, . . . , n,

the ILP model of the Facility Location Problem is

min

n∑
i,j=1

cijxij

s. to:

n∑
i=1

xij + yj = 1, j = 1, . . . , n

xij ≤ yj , i , j = 1, . . . , n
xij ≥ 0, i , j = 1, . . . , n
yj ∈ {0, 1}, j = 1, . . . , n
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Traveling Salesperson Problem (TSP)
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Example of a Travelling Salesperson Problem

A courier service needs to deliver packages to several locations in a city.
The goal is to find the shortest possible route that allows the courier to
visit each location exactly once and return to the starting point.

Location A B C

A 5 25 19
B 20 22 12
C 15 35 34
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Travelling Salesperson Problem (TSP)

TSP deals with finding the shortest (closed) tour in an n-city situation,
where each city is visited exactly once before returning back to the starting
point.

The associated TSP model is defined by two pieces of data:

1 the number n of cities,

2 the distances dij between cities i and j (dij =∞ if cities i and j are
not linked).

The maximum number of tours in an n-city situation is (n − 1)! if the
network is directed (dij ̸= dji ) and half that much if it is not.
Note that 10! = 3 638 800

Master DAB (ISEG) Decision Making and Optimization 2024-2025 62 / 108



Integer Linear Programming Traveling Salesperson Problem (TSP)

Example of a TSP

The daily production schedule at the Rainbow Company includes batches
of white (W), yellow (Y), red (R), and black (B) paints. The production
facility must be cleaned between successive batches.

Inter-batch Cleanup Times (in minutes)

Paint White Yellow Black Red

White ∞ 10 17 15
Yellow 20 ∞ 19 18
Black 50 44 ∞ 22
Red 45 40 20 ∞

The objective is to determine the sequencing of colors that minimizes the
total cleanup time.
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Example of a TSP

Solution of the Paint Sequencing Problem by Exhaustive Enumeration

No. of feasible solutions (production loops): (n − 1)! = 3! = 6

Production loop Total cleanup time (min)

W → Y → B → R → W 10 + 19 + 22 + 45 = 96

W → Y → R → B → W 10 + 18 + 20 + 50 = 98

W → B → Y → R → W 17 + 44 + 18 + 45 = 124

W → B → R → Y → W 17 + 22 + 40 + 20 = 99

W → R → B → Y → W 15 + 20 + 44 + 20 = 99

W → R→ Y→ B→ W 15 + 40 + 19 + 50 = 124
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Integer Linear Programming Traveling Salesperson Problem (TSP)

ILP formulation for the TSP

xij =

{
1 if paint j follows paint i

0 otherwise
i , j = W ,Y ,B,R; i ̸= j

min
∑

i,j=W ,Y ,B,R;i ̸=j

cijxij∑
i=W ,Y ,B,R

xij = 1, j = W ,Y ,B,R,

∑
i=W ,Y ,B,R

xji = 1, j = W ,Y ,B,R,

xij ∈ {0, 1}, i , j = W ,Y ,B,R, i ̸= j

????
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Example of a TSP

The solution
xWY = xYW = xBR = xRB = 1

satisfies all the previous constraints

xWY + xWB + xWR = 1

xYW + xYB + xYR = 1

xBY + xBR + xRW = 1

xRW + xRY + xRB = 1

xYW + xBW + xRW = 1

xWY + xBY + xRY = 1

xWB + xYB + xRB = 1

xWR + xYR + xBR = 1

xij ∈ {0, 1} ∀i , j i ̸= j

W Y

B R

and min 10xWY + 17xWB + 15xWR + 20xYW + 19xYB + 18xYR + 50xBW + 44xBY + 22xBR +

45xRW + 40xRY + 20xRB
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Integer Linear Programming Traveling Salesperson Problem (TSP)

ILP formulation for the TSP

Subtour elimination constraints are missing

for example

xWB + xWR + xYB + xYR + xBW + xBY + xRW + xRY ≥ 1

how to establish such constraints?
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Dantzig, Fulkerson, Johnson, 1954:

For every set S of cities, add a constraint saying that the tour leaves S at
least once. For every S ⊆ {1, 2, . . . , n} with 1 ≤ |S | ≤ n − 1 :∑

i∈S

∑
j ̸∈S

xij ≥ 1

This will happen for any tour: eventually, we must go from a city in S to a
city not in S . In a solution to the local constraints with subtours, this is
violated if we take S to be the set of cities in a subtour

• The formulation with the subtour elimination constraints describe
TSP.

• Number of constraints increase exponentially: for n cities, there are
2n − 2 subtour elimination constraints! 2n−1 − 1 if we assume 1 ∈ S .
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Dantzig, Fulkerson, Johnson, 1954:

The complete model is:

min
∑

i,j∈{1,2,...,n};i ̸=j

cijxij∑
i∈{1,2,...,n}

xij = 1, j ∈ {1, 2, . . . , n},

∑
i∈{1,2,...,n}

xji = 1, j ∈ {1, 2, . . . , n},

∑
i∈S

∑
j ̸∈S

xij ≥ 1 S ⊆ {1, 2, . . . , n}, 1 ≤ |S| ≤ n − 1

xij ∈ {0, 1}, i , j ∈ {1, 2, . . . , n}, i ̸= j
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Miller, Tucker, Zemlin, 1960:

Add variables representing the time at which a city is visited.
For i = 1, . . . , n,, let ti denote the time at which we visit city i , with
1 ≤ ti ≤ n − 1. We leave t1 undefined.
We want an inequality to encode the logical implication

if xij = 1, then tj ≥ ti + 1 for every pair of cities i , j ̸= 1.

How do we know that the timing constraints get rid of subtours?

1 For any tour, we can satisfy the timing constraints. If we visit cities
i1, i2, . . . , i(n−1), in that order from city 1, set
i1 = 1, i2 = 2, . . . , i(n−1) = n − 1.

2 If there is a subtour, then we can’t satisfy the timing constraints.

3 Suppose xab = xbc = xca = 1 and none of a, b, c are 1. Then we can’t
satisfy the three constraints tb ≥ ta + 1, tc ≥ tb + 1 ta ≥ tc + 1
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Miller, Tucker, Zemlin, 1960:

If xij = 1, then tj ≥ ti + 1.
Using the big number M:

tj ≥ ti + 1−M(1− xij) for some large M.

When xij = 1, this simplifies to tj ≥ ti + 1.
When xij = 0, we get tj ≥ ti + 1−M, which has no effect on the value of
ti , tj .

We can check: if we take M = n, then any actual tour can satisfy these
constraints. The times t2, . . . , tn can be chosen between 1 and n − 1, so
tj ≥ ti + 1− n always holds.

The inequality is

tj ≥ ti + 1− n(1− xij)
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Miller, Tucker, Zemlin, 1960:

The complete model is:

min
∑

i,j∈{1,2,...,n};i ̸=j

cijxij∑
i∈{1,2,...,n}

xij = 1, j ∈ {1, 2, . . . , n},

∑
i∈{1,2,...,n}

xji = 1, j ∈ {1, 2, . . . , n},

tj ≥ ti + 1 − n(1 − xij ) i , j ∈ {1, 2, . . . , n}, i ̸= j

xij ∈ {0, 1}, i , j ∈ {1, 2, . . . , n}, i ̸= j
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Integer Linear Programming Traveling Salesperson Problem (TSP)

DFJ versus MTZ

On the one hand:

• DFJ’s formulation has 2(n−1) − 1 extra constraints, plus the 2n local
constraints.

• MTZ’s formulation has only n2 extra constraints. There are n − 1
extra variables, which can be integer variables, but don’t need to be.

On the other hand:

• DFJ’s formulation has an efficient branch-and-cut approach.

• MTZ’s formulation is weaker: the feasible region has the same integer
points, but includes more fractional points.
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Relaxations for the TSP

The Assigment relaxation:

min
∑

i,j∈{1,2,...,n};i ̸=j

cijxij∑
i∈{1,2,...,n}

xij = 1, j ∈ {1, 2, . . . , n},

∑
i∈{1,2,...,n}

xji = 1, j ∈ {1, 2, . . . , n},

xij ∈ {0, 1}, i , j ∈ {1, 2, . . . , n}, i ̸= j
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Relaxations for the TSP: the paints example

Solving the Assigment Relaxation using the Solver of the Excel
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Constructive heuristics for the TSP: nearest
neighbor

Input: G = (V ,A),V = {1, 2, . . . , n}, |V | = n, costcij → (i , j) ∈ A

Initialization

Arbitrarily choose a cityi ∈ V

L = {1, 2, . . . , n} − {i} (L set of cities not yet visited)

Iteration

REPEAT

Select in L city j closest to i

Insert the city j immediately after i in the route

Update i = j

L := L − {i}
UNTIL L = ∅ OR no city can be selected

If possible complete the cycle by going back to the beginning

and calculate the total distance

STOP
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Improvement Heuristics for the TSP

• Starting from a feasible circuit, try edge swapping that can lead to
new lower-cost circuits.

• The algorithm consists of starting with a feasible circuit and swapping
r edges until it is no longer possible to improve the solution.

Swapping 2 edges: delete, reverse, connect
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Improvement Heuristics for the TSP: 2-optimal

Consider the case of heuristics that perform 2 edge swaps to improve the
solution already obtained.

• If you have a circuit and you swap 2 edges that are not consecutive,
how many different circuits can you get?

n[(n − 1)− 2]

2

• Let N2(T ) be the neighborhood of the circuit T , i.e. N2(T ) is the set
of circuits that differ from circuit T on a maximum of 2
(non-consecutive) edges.

• |N2(T )| = n(n−3)
2 + 1
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Paints example of swapping 2 edges
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Integer Linear Programming Traveling Salesperson Problem (TSP)

2-opt neighborhood - remove
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Integer Linear Programming Traveling Salesperson Problem (TSP)

2-opt neighborhood - reverse
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Improvement Heuristics for the TSP

1st version

1 Determine a circuit T .

2 Determine Nr (T ) (the set of all possible swaps of r edges) and the
cost of all its circuits.

3 Determine a circuit Q ̸= T such that Q is the circuit with the
minimum cost in Nr (T )\{T}.

4 If the cost Q is less than the cost T , then do T := Q and return to
step 2, otherwise STOP, it is not possible to improve the current
circuit.
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Improvement Heuristics for the TSP

2nd version

1 Determine a circuit T .

2 Sequentially examine the elements Q ̸= T of Nr (T ) and determine its
cost.

3 If cost Q is less than cost T , then do T := Q. Return to step 2. If
there is no more element to search in Nr (T ) then STOP (it is not
possible to improve the current circuit in the considered
neighborhood).
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Integer Linear Programming Traveling Salesperson Problem (TSP)

TSP: Exercise

[cij ] =


− 10 22 12 10
− 12 8 13
− 15 15
− 9
−
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Integer Linear Programming Knapsack Problem

Knapsack Problem
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Integer Linear Programming Knapsack Problem

Knapsack Problem

References:

P. Toth, S. Martello. Knapsack problems: algorithms and computer
implementations. Wiley, 1990.
H. Kellerer, U. Pferschy, D. Pisinger. Knapsack Problems. Springer, 2004

Given
C – capacity of the knapsack,
n – number of different objects,

for j = 1, . . . , n
uj – utility or cost of object j ,
vj – volume or weight of object j
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Integer Linear Programming Knapsack Problem

ILP models:

Binary decision variables:

xj =

{
1, if object j is selected,
0, otherwise,

j = 1, . . . , n,

Binary Knapsack

max
n∑

j=1

ujxj

s.t.
n∑

j=1

vjxj ≤ C

xj ∈ {0, 1}, j = 1, . . . , n

Subset-sum

max
n∑

j=1

vjxj

s.t.
n∑

j=1

vjxj ≤ C

xj ∈ {0, 1}, j = 1, . . . , n
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Integer Linear Programming Knapsack Problem

ILP models:

Integer decision variables:

xj ∈ N0 number of objects type j selected, j = 1, . . . , n,

Limited Knapsack

max
n∑

j=1

ujxj

s.t.
n∑

j=1

vjxj ≤ C ,

xj ∈ {0, 1, . . . , ℓj},
j = 1, . . . , n

Change Machine

max
n∑

j=1

xj

s.t.
n∑

j=1

vjxj = C ,

xj ∈ {0, 1, . . . , ℓj},
j = 1, . . . , n

ℓj ∈ N0
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Integer Linear Programming Knapsack Problem

Multiple Knapsack

m – number of different knapsacks,
Ci – capacity of knapsack i , i = 1, . . . ,m
Binary decision variables:

xij =

{
1, if object j is selected for knapsack i ,
0, otherwise,

max

m∑
i=1

n∑
j=1

ujxij

s.t.

n∑
j=1

vjxij ≤ Ci , i = 1, . . . ,m

m∑
i=1

xij ≤ 1, j = 1, . . . , n

xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n
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Integer Linear Programming Knapsack Problem

Generalized Assignment

uij – utility obtained from assigning task j to machine i ,
vij – consumption of resource (machine) i by task j ,

max
m∑
i=1

n∑
j=1

uijxij

s.t.
n∑

j=1

vijxij ≤ Ci , i = 1, . . . ,m

m∑
i=1

xij ≤ 1, j = 1, . . . , n

xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n

different utility and weights depending on the knapsack selected
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Integer Linear Programming Knapsack Problem

Binary Knapsack

Binary decision variables:

xj =

{
1, if object j is selected,
0, otherwise,

j = 1, . . . , n,

Binary Knapsack

max
n∑

j=1

ujxj

s.t.
n∑

j=1

vjxj ≤ C

xj ∈ {0, 1}, j = 1, . . . , n

Example:
n = 6,C = 12,
u = (2, 5, 3, 4, 5, 4),
v = (6, 8, 4, 6, 7, 2).

max z = 2x1 + 5x2 + 3x3 + 4x4 + 5x5 + 4x6

s.t. 6x1 + 8x2 + 4x3 + 6x4 + 7x5 + 2x6 ≤ 12

xj ∈ {0, 1}, j = 1, . . . , 6
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Integer Linear Programming Knapsack Problem

Binary Knapsack: the Critical index

Assumptions:

uj > 0, j = 1, . . . , n,
0 < vj ≤ C , j = 1, . . . , n,
n∑

j=1

vj > C > 0

u1

v1
≥

u2

v2
≥ · · · ≥

uk

vk
≥ · · · ≥

un

vn

Critical index:

k such that:

k−1∑
j=1

vj ≤ C

&

k∑
j=1

vj > C

Example: n = 6, C = 12, ū = (2, 5, 3, 4, 5, 4), v̄ = (6, 8, 4, 6, 7, 2).

1 2 3 4 5 6

2
6

5
8

3
4

4
6

5
7

4
2

0.(3) 0.625 0.75 0.(6) 0.7 2

1 2 3 4 5 6

2 0.75 0.7 0.(6) 0.625 0.(3)
6 3 5 4 2 1

reorder: u = (4, 3, 5, 4, 5, 2), v = (2, 4, 7, 6, 8, 6) → k = 3

initial items position (6, 3, 5, 4, 2, 1)
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Integer Linear Programming Knapsack Problem

Upper bound with the Linear Relaxation:

Linear Relaxation:

max
n∑

j=1

ujxj

s.t.
n∑

j=1

vjxj ≤ C

0 ≤ xj ≤ 1, j = 1, . . . , n

Algorithm:
• Obtain the critical index k
• The optimal LR solution is

x∗
j =


1, 1 ≤ j ≤ k − 1;
C−

∑k−1

j=1
vj

vk
, j = k;

0, k + 1 ≤ j ≤ n.

Example (reordered): u = (4, 3, 5, 4, 5, 2), v = (2, 4, 7, 6, 8, 6)→ k = 3
the LR optimal solution is x∗

LR = (1, 1, 12−6
7 , 0, 0, 0) = (1, 1, 0.85, 0, 0, 0)

with value z∗
LR = 4 + 3 + 5× 0.85 = 11.28
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Integer Linear Programming Knapsack Problem

Lower Bounds by feasible solutions:

Greedy Algorithm:
• Obtain the critical index k
• Let

xj = 1, j = 1, . . . , k − 1;
xj = 0, j = k, . . . , n;

Z ′ =
k−1∑
j=1

uj .

• Consider Z = max{Z ′, uk}

Example (reordered):

u = (4, 3, 5, 5, 4, 2),

v = (2, 4, 7, 8, 6, 6)→ k = 3

the greedy feasible solution is
xG = (1, 1, 0, 0, 0, 0)
with value Z ′ = 4 + 3 = 7
The lower bound is
Z = max{Z ′, uk} = max{7, 7} = 7
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Integer Linear Programming Knapsack Problem

Lower Bounds by feasible solutions:

Greedy utility Algorithm:
• Order objects by non
increasing order of utility
• For j = 1, . . . , n take object j
→ if

∑j
i=1 vi ≤ C

then xj = 1,
otherwise xj = 0,

→ Z ′ =
n∑

j=1

ujxj .

• Obtain Z = Z ′

Example: u = (4, 3, 5, 4, 5, 2),

v = (2, 4, 7, 6, 8, 6)

the greedy feasible solution is
xG = (1, 0, 0, 1, 0, 0)
with value Z ′ = 5 + 4 = 9
and capacity 9
The lower bound is Z = 9
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Integer Linear Programming Set Covering Problem

Set Covering Problem
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Integer Linear Programming Set Covering Problem

Set Covering Problem

Given a matrix of zeros and ones and a cost associated with each column,
determine the subset of columns that covers all the rows, i.e. such that for
each row there is at least one in one of the selected columns. The set
covering problem is NP-hard.

Sets:

• N = {1, . . . , n}− set of columns

• M = {1, . . . ,m}− set of rows

• Ni = {j ∈ N : aij = 1}, i ∈ M.

• Mj = {i ∈ M : aij = 1}, j ∈ N.

Parameters:

1 cj cost of the column j , j ∈ N.

2 aij = 1 if column j covers row i and aij = 0 otherwise, for all i ∈ M,
j ∈ N.
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Integer Linear Programming Set Covering Problem

ILP formulation for the Set Covering Problem

Variables:

xj =

{
1, if column j is selected
0, otherwise;

j ∈ J

min
∑
j∈N

cjxj

s.a :
∑
j∈N

aijxj ≥ 1,∀i ∈ M

xj ∈ {0, 1}, j ∈ N

If constraints
∑

j∈N aijxj ≥ 1,∀i ∈ M are replaced by constraints∑
j∈N

aijxj = 1,∀i ∈ M

we get the partition problem
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Integer Linear Programming Set Covering Problem

Set Covering Problem: Variants

Multiple Set Covering problem

min
∑
j∈N

cjxj

s.a :
∑
j∈N

aijxj ≥ bi ,∀i ∈ M

xj ∈ {0, 1}, j ∈ N

Generalized Set Covering problem

min
∑
j∈N

cjxj

s.a :
∑
j∈N

aijxj ≥ bi ,∀i ∈ M

xj ≥ 0 e inteiro,j ∈ N

bi is an integer greater than or equal to 1. For example, it could represent the minimum number

of workers on the shift i .
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Integer Linear Programming Set Covering Problem

Set Covering Problem: Preprocessing

Reductions:

1 If there exists i ∈ M such that Ni = ∅ then the problem is impossible.

2 If i ∈ M is such that Ni = {j(i)} (i is covered by only one column)
then j(i) is in the solution.

3 (Dominance between rows) If i , ℓ ∈ M are such that Ni ⊆ Nℓ then the
row ℓ can be eliminated.

4 (Dominance between single columns) If k, j ∈ N are such that
Mk ⊆ Mj and ck ≥ cj then column k can be removed.

5 (Dominance between columns) If k, j1, . . . , js ∈ N are such that

Mk ⊆
s⋃

t=1

Mt and ck ≥
s∑

t=1

ct then column k can be removed.

6 (Weak dominance between columns) Let di = minj∈Ni
cj and k ∈ N

such that ck ≥
∑
i∈Mk

di then column k can be removed.
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Integer Linear Programming Set Covering Problem

Set Covering Problem: Greedy Algorithm

Greedy Algorithm
Initialise R ← M, S ← ∅, t ← 1
While R ̸= ∅ do

Let i∗ ∈ R be such that | Ni∗ |= mini∈R | Ni |
Choose j(t) such that f (cj(t), kj(t)) = min{f (cj , kj) : j ∈ Ni∗ ∧ kj > 0}
where kj =| Mj ∩ R |, ∀j ∈ Ni∗

Make R ← R \Mj(t), S ← S ∪ {j(t)}, t ← t + 1.
Sort the S cover in non-increasing order of costs: S = {j1, . . . , jt}.
For i = 1 to t do:

If S \ {ji} is cover then S ← S \ {ji}

There are several alternatives to f (cj , kj). For example f (cj , kj) = cj/kj .
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Integer Linear Programming Set Covering Problem

Set Covering Problem: example

m = 5, n = 6, [cj ] = [2 2 3 3 5 7]

[aij ] =


1 0 1 0 1 1
1 1 0 1 0 1
0 1 1 1 1 0
0 0 1 0 0 1
0 0 0 1 1 1


Exercise

Formulate the dual of the linear relaxation of the Set Covering problem.
What is the relationship between the optimal value of the Set Covering
problem and the value of a feasible solution to the dual?
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Integer Linear Programming Location Problem

Location Problem
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Integer Linear Programming Location Problem

ILP Formulation

Sets:

1 I = {1, . . . ,m}− customers

2 J = {1, . . . , n}− services

Parameters:

1 fj = cost of installing a service in j , j ∈ J

2 cij = cost of customer i being served by the service installed in j , j ∈ J

Variables:

yj =

{
1, if a service is installed on j ;
0, otherwise;

j ∈ J

xij =

{
1, if customer i is served by service j ,
0, otherwise

, i ∈ I , j ∈ J

Master DAB (ISEG) Decision Making and Optimization 2024-2025 104 / 108



Integer Linear Programming Location Problem

ILP Formulation

min
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

cijxij

s.t. :
∑
j∈J

xij = 1,∀i ∈ I

linking constraints

xij ∈ {0, 1}, i ∈ I , j ∈ J

yj ∈ {0, 1}, j ∈ J
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Integer Linear Programming Location Problem

ILP Formulation

Linking constraints - to ensure that a center j can only serve a customer i
if a center is installed in j :

xij = 1⇒ yj = 1

Alternative 1

xij ≤ yj ,∀i ∈ I , j ∈ J

Alternative 2 ∑
i∈I

xij ≤ myj , ∀j ∈ J
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Integer Linear Programming Location Problem

Greedy Heuristic

Step 0: Initialisation

• calculate zj = fj +
∑m

i=1 cij , for all j = 1, . . . , n
• determine j∗ such that zj∗ = minj=1,...,n zj
• S := {j∗} (solution)
• C (S) := zj∗ (solution cost)
• ui = cij∗ for all i = 1, . . . ,m

Step 1: Selecting a new center

• for each j ̸∈ S calculate ρj = fj +
∑m

i=1 min(0, cij − ui )
• determine j∗ such that ρj∗ = minj ̸∈S ρj

• if ρj∗ ≥ 0, STOP S contains the obtained solution of cost
C (S)

• else (Update)
• S := S ∪ {j∗}
• C (S) := C (S) + ρj∗

• ui := min(ui , cij∗) for all i = 1, . . . ,m
• if |S | < n, repeat this step
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Integer Linear Programming Location Problem

Example

m = 4, n = 6, [fj ] = [3 2 2 2 3 3]

[cij ] =


6 6 8 6 0 6
6 8 6 0 6 6
5 0 3 6 3 0
2 3 0 2 4 4
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