Production and Operations Management Spring Semester 2023/2024

FORMULAS SHEET

Inventory Ma	nagement
EOQ	
$Q = \sqrt{\frac{2DS}{H}}$; N = D/Q ; ROP = d × L	$TC = \frac{Q}{2} \times H + \frac{D}{Q} \times S + P \times D$
POQ	
$Q = \sqrt{\frac{2DS}{H(1-\frac{d}{p})}}$	$TC = \frac{Q}{2} (1 - \frac{d}{p}) \times H + \frac{D}{Q} \times S + P \times D$
$t_p = t_1 = \frac{Q}{p} \qquad \qquad T = \frac{Q}{D} \qquad \qquad N = D/Q$	$I_{max} = M = Q(1 - \frac{d}{p})$
Probabilistic Models	
$SS=Z_{\alpha}\sigma_{dLT}$	
$ROP = \mu_{LT} \times \mu_d + SS$	$\sigma_{dLT} = \sqrt{\mu_d^2 \times \sigma_{LT}^2 + \mu_{LT} \times \sigma_d^2}$
$ROP = LT \times \mu_d + SS$	$\sigma_{dLT} = \sqrt{LT} \times \sigma_d$
$ROP = \mu_{LT} \times d + SS$	$\sigma = \sqrt{d^2 \times \sigma^2}$
$\alpha = P(X > ROP) = Probability of stokout$	$O_{dLT} = \sqrt{u^2 \times O_{LT}}$
$TC = \left(\frac{Q}{2} + SS\right) \times H + \frac{D}{Q} \times S + P \times D$	
Project Management	
EF = ES + Activity time Expected activity time = t = $\frac{a + 4m + b}{6}$	

LS = LF - Activity time

Slack = LS - ES = LF - EF

Expected activity time = t = $\frac{a + 4m + b}{6}$ Variance of activity completion time = $\left[\binom{b-a}{6}\right]^2$

Crash cost per period = $\frac{CC - NC}{NT - CT}$

Waiting Line Models

$L_q = \lambda \times W_q$; $L_s = \lambda \times W_s$; $L_s = L_q + \lambda / \mu$; $W_s = W_q + 1 / \mu$		
M/M/1		
$L_{q} = \frac{\lambda^{2}}{\mu(\mu - \lambda)}; \ L_{s} = \frac{\lambda}{\mu - \lambda}$	$W_{q} = \frac{\lambda}{\mu(\mu - \lambda)};$ $W_{q} = \frac{1}{\mu(\mu - \lambda)};$	
$\rho = -\frac{1}{\mu}; P_0 = 1 - \rho P_n = P_0 \times (-\frac{1}{\mu})$	$w_s = \frac{1}{\mu - \lambda}$	
	$P(n > k) = \rho^{k+1}$	
M/M/S		
$P_{0} = \frac{1}{\left[\sum_{n=0}^{S-1} \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^{n}\right] + \frac{(\lambda/\mu)^{S}}{S!} \times \frac{S\mu}{S\mu - \lambda}} (S\mu > \lambda) \text{ Lq} = \frac{\lambda \times \mu \times \left(\frac{\lambda}{\mu}\right)^{S}}{(S-1)!(S\mu - \lambda)}$	$\rho = \frac{\lambda}{S\mu}$	
$P_{n} = \frac{\left(\frac{\lambda}{\mu}\right)^{n}}{n!} P_{0} (n \le S) \qquad \qquad P_{n} = \frac{\left(\frac{\lambda}{\mu}\right)^{n}}{S! S^{n-S}} P_{0} (n > S)$		
<u>M/D/1</u>		
$L_q = \frac{\lambda^2}{2\mu(\mu - \lambda)}$; $W_q = \frac{\lambda}{2\mu(\mu - \lambda)}$; $\rho = \frac{\lambda}{\mu}$	$\mathbf{P}_0 = 1 - \boldsymbol{\rho}$	
Scheduling		
$CR = \frac{Due \ Date - Today's \ date}{Work(lead) \ time \ remaining}$	Average completion time = <u>Total Flow Time</u> <u>Number of jobs</u>	
$\text{Utilization} = \frac{\text{Total job work time}}{\text{Total flow time}}$	Average job lateness = $\frac{Total \ late \ days}{Number \ of \ jobs}$	
Average number of jobs in the system = $\frac{Total \ flow \ time}{Total \ iob \ work \ time}$		

Capacity and Constraint Management

Utilização da capacidade = $\frac{\text{Atual Output}}{\text{Design capacity}}$ Efficiency = $\frac{\text{Atual Output}}{\text{Efective capacity}}$ Capacity = $\frac{1}{\text{Cycle time}}$

$UCL_{\bar{X}} = \bar{X} + A_2 \times \bar{R}$ $LCL_{\bar{X}} = \bar{X} - A_2 \times \bar{R}$ $CL_{\bar{X}} = \bar{X}$	$UCL_{c} = \bar{c} + 3 \times \sqrt{\bar{c}}$ $LCL_{c} = \min(0; \bar{c} - 3 \times \sqrt{\bar{c}})$ $CL_{c} = \bar{c}$
$LSC_{R} = D_{4} \times \bar{R}$ $LIC_{R} = D_{3} \times \bar{R}$ $LC_{R} = \bar{R}$	
$C_{pk} = \min(C_{pki}; C_{pks})$ $C_p = \frac{USL - LSL}{6 \times \sigma}$ $C_{pki} = \frac{\mu - LSL}{3 \times \sigma} e C_{pks} = \frac{USL - \mu}{3 \times \sigma}$	$UCL_{p} = \bar{p} + 3 \times \sqrt{\frac{\bar{p}(1-\bar{p})}{n}}$ $LCL_{p} = min(0; \ \bar{p} - 3 \times \sqrt{\frac{\bar{p}(1-\bar{p})}{n}})$ $CL_{p} = \bar{p}$