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Overview

e Epstein and Zin (1989 JPE, 1991 Ecta) introduced a class of
preferences which allow to break the link between risk aversion and
intertemporal substitution.

@ These preferences have proved very useful in applied work in asset
pricing, portfolio choice, and macroeconomics

@ There other alternatives to explain the puzzles in asset pricing like:

o Habits (Campbell and Cochrane, 1999), Long run risks (Bansal and
Yaron, 2004; Bansal, Kiku, and Yaron, 2012), Idiosyncratic risk
(Constantinides and Duffie, 1996), Heterogeneous preferences
(Garleanu and Panageas, 2015), etc...
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Elasticity of intertemporal substitution

@ For instance
v

Z ,3 (Ct+s>17

s=0 -
The EIS measures the responsiveness of the growth rate of
consumption to the real interest rate:

d(cer1/ct)
dlog(ce+1/ct) _ c:ll/ctt
dlogR @
The Euler equation
-
1= R’B t+1

t

0=logR+logp — ’ylog( t+1>,

son ()

dlogR o’
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Elasticity of intertemporal substitution

dlog (%) 1
T dlogR 7y

@ Implies an inverse relationship between risk aversion and willingness
to substitute consumption over time

@ This is an "artificial" restriction because the 2 concepts are distinct

@ If v is high, the consumer has a low IES and is reluctant to shift
consumption across time

@ If 7y is low, the consumer is more flexible and willing to adjust
consumption in response to changes in interest rates
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Relative risk-aversion

@ The RRA measures how the willingness to bear risk changes with
wealth

@ Measures the percentage change in marginal utility due to a
percentage change in consumption:

d(u'(c))
u'(c)
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Economic Implications of RRA

@ Portfolio Choice:

o Higher RRA, more investment in risk-free assets, less in stocks
o Lower RRA, more investment in risky assets

@ Insurance Demand:

e High RRA, more likely to buy insurance
e Low RRA, less likely to pay for insurance

o Consumption & Savings Behavior:

e High RRA, more precautionary savings to buffer against uncertainty
e Low RRA, more willing to consume and take risks
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Value function

@ The standard expected utility time-separable preferences are defined
as

V: = ;0 ’BSEtU (Ct—i-s)

Alternatively can write it as

Vv, = (1—ﬁ)5§0ﬁ5Etu(ct+s)
= (1-pBu(ct) + BE: (Viy1)

@ V; is known as value function or lifetime utility
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EZ Preferences

o EZ preferences generalize this: they are defined recursively over
current (known) consumption and a certainty equivalent H; (Vt+l) of
tomorrow’s utility Vii1:

Vi = F(Ct, H; (Vt+1))

where
He (Vey1) = G (EeG (Ver1))

with F and G increasing and concave, and F homogeneous of degree
one
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EZ Preferences

@ Observation: F is homogeneous of degree one if
F(tX, tY) =tF(X,Y), fort >0
and
F=X-Fx+Y-Fy

Also known as Euler's theorem

@ Note that
Hi (Vit1) = G (E:G (Viga))
H:(Viy1) = Vi
if there is no uncertainty on V41

@ The more concave G is, and the more uncertain V;1 is, the lower is
H¢(Vi41). Hint: Use a graph for the intuition.
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Functional forms

@ Most of the literature considers simple functional forms for F and G

e Power function

1—a
G(x) = 1—a'“>0
e CES .
F(c z)= ((1 —'B)le’hhgzlfv)ﬁ 7 >0
the ES is 1/7.

@ For this case get

Vi = F (ct, He (Vier1)), with Hy (V1) = G (E:G (Vig1))

1

Ve = <(1 ~B)c T+ B (E (vtlﬂa))iZ) ﬁ
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Functional forms

Proposition: If ¢; is deterministic we have the standard time-separable
expected discounted utility with discount factor B, and IES = 1/ and risk

aversion = y. Also, when &« = 0 we have the standard utility function.
Proof: Given

1

vi= (-pet T +p (e (i) )
If ¢; is deterministic then
(V) = (@ =pet T+ B (Vo) T = (1= ) L e,

when a = 0 iterate forward to get

(V0" = (1= B)et ™"+ BE: (Vo) " = (1= ) & p*Evw(cues).

Bernardino Adao, ISEG (Institute) Financial Economics — Lecture 6 March 14, 2025 11 / 44



1
1—

Flez)=((1—B)c " +pz" )77, 7 >0

Implies
G(x)=logx, ifa=1

Cobb-Douglas
F(c,z)=cFzP ify=1
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As -
G(x) = T a>0
G(x) =logx, ifa=1
and
He (Vep1) = G (E:G (Veyr))
Thus:
oun>0 )
He(Vit1) = [Et (Vt+1)17“} v
oun=1

H;(Viy1) = exp (Et log(Vis1))
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F is Cobb-Douglas if gamma=1

Define

=
Fle,z) = (1= p)c ™7+ gz 77) "7
divide and multiply by ¢

Flc.2) = c((1—B)+px7)™7

= cf(x)
where .
x=z/cand f(x) = (1— B+ Bx'"")T7
so
) 1 (1= )T (A px
flx) — 1—v (1— B+ pxi-7)T3
px
T (BT
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F is Cobb-Douglas if gamma=1

e And

lim f(x) = lim px"
-1 f(x) =1 (1 =B+ Bx1=7)
B B

= l|im =

=1 (1= B)x7 + Bx! x

@ Since f is continuous then

lim f(x) = xP
r—1

or Cobb-Douglas function

F(c,z) = cf(x) = c(z/c)P = PP

Bernardino Adao, ISEG (Institute) Financial Economics — Lecture 6 March 14, 2025 15 / 44



Risk Aversion vs IES

In general « is the relative risk aversion coefficient for static gambles
and 7 is the inverse of the intertemporal elasticity of substitution for
deterministic variations

Suppose consumption is ¢ today and consumption tomorrow is
uncertain: {c;,c,c,....} or {cy, ¢, c, ...} , each has prob. 0.5
Lifetime utility today

Vi = F (¢, G2 (0.5G (VL) +0.56G (Vi)

where
VvV = F(CL,E) V= F(CH,E)
Curvature of G determines how adverse you are to the uncertainty.

e If G is linear you only care about the expected value
e If not, it is the certainty equivalent:

G (V) =056 (i) +056 (Vi)
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Special Case: Deterministic consumption

o If consumption is deterministic: we have the usual standard
time-separable expected discounted utility with discount factor 8 and
IES= 1/7, risk aversion = .

@ Proof: Without uncertainty, then
Ht(Vt+1) = G_l (EtG (Vt+1)) = Vt+1 and

Vt = F(Ct, Hf (Vt+l))
With a CES functional form for F, we recover CRRA preferences:

1
1—y

Ve = [(1 — Bt T+ B (Vt+1)1_q

U= (1— ,B)ctk7 +BUrr1 = (1 - B) Eo ﬁscrlJ:!

where
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Special Case: RRA=1/IES

e if &« (=RRA) = v (=1/IES) , then the formula

1

7) T—y
14

»—\»—A

Vi = ((1—/s> T+ BB (V)

simplifies to
-y _
(Vo) "= (- T+ (B Vi)
@ Define
Ut — th—'y
then

Ur = (1= B)e; "+ BE:(Ursa),

is the expected utility
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Simple example with two lotteries

Lotteries:
@ lottery A pays in each period t = 1,2, ... either ¢ or ¢;, with
probability 0.5 and the outcome is iid across periods;

o lottery B pays starting at t = 1 either ¢, at all future dates for sure,
or ¢ at all future dates for sure; there is a single draw at time t = 1

o With expected utility, you are indifferent between these lotteries, but
with EZ lottery B is preferred iff & > .

@ In general, early resolution of uncertainty is preferred if and only if
a > 7y i.e. risk aversion > %

@ This is another way to motivate these preferences, since early
resolution seems intuitively preferable.
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Resolution of uncertainty

Ve = <(1 — Bt "+ B (E: (Vt1+1a))w) a

@ For lottery B, the utility once you know your consumption is either
¢, or ¢ forever,

Vi =F(en Vi) = (1= B)ey " +pv; ")

1
i—

or
Vi=F(a, V)= ((1 BT 5\//177)@

@ The certainty equivalent before playing the lottery is

1
G 1(0.5G (cy) +0.5G (¢/)) = (0.5¢} 4+ 0.5¢; %) ==
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Resolution of uncertainty

o Given .

W, = ((1 — Bt "+ B (E (Wt1+_10‘))u)17

@ For lottery A, the values satisfy

<

1—

|

o

W, 7 =(1-B)c; " +B(05W T +05W} )

-

-

W' ™" =(1-B)e "+ B(0.5W* + 05w} %)
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Resolution of uncertainty

@ We want to compare
G1(0.5G () +0.5G (¢))
with
G 1(0.5G (W) +0.5G (W)

@ notice that function .

<

Jn

X

is concave if 1 —y < 1—ua, i.e. v > &, and convex otherwise. As a
result, if ¥ >«

-

-

<

> 05 (W) 105 (WE) T
= 05W, " +05W 7

|

(0.5W,*+0.5W/ )
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Resolution of uncertainty

Since -
Wy " = (1—B)c; "+ B (0.5WL ™ 405w} )
and -
W' = (1-B)g "+ B(0.5WL T+ 05w ) T
Then
Wy "> (1= B)ey "+ B (05W, T +05w! )
and

W > (1= )T+ p (050, T 050 T)
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Resolution of uncertainty

o Multiplying both equations by 0.5 and summing them up
(1—p) (0.5, " +05W ") > (1-p) (0.5, 7 +05¢] ")
@ These results imply that if v > « then
0.5W, 7 +05W," > 05¢; " +05¢ "

@ In this case the certainty equivalent of lottery A is higher than the
certainty equivalent of lottery B and agents prefer late to early
resolution of uncertainty.
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Stochastic Discount Factor

@ The stochastic discount factor with these preferences turns out to be
slightly different:

—y Toa
I ’BCH»I Vit
e+l C_ry E Vlflx ﬁ
t ( t t+1)

@ The first term is familiar. The second term is next period's value
(lifetime utility) relative to its certainty equivalent.
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Stochastic Discount Factor

This equation consists of two key components:

o Consumption Growth Component:

captures intertemporal substitution.

o Risk Adjustment Component:

Vit
1
(Et thJ:la) e

adjusts for risk preferences.

Bernardino Adao, ISEG (Institute) Financial Economics — Lecture 6 March 14, 2025 26 / 44



Stochastic Discount Factor

@ Let U; be the expected lifetime utility

U= Etiﬁsu (c (s)

Discount factor general formula:

U
o plels) 1 @
T V) T A
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Stochastic Discount Factor

@ The stochastic discount factor of

Vo= (L= Bt + B (He (Ver)) 7)™

IS
Vi oV, Vi
m o d0Ct1 1 Vi1 0cii1
t+1 — (st Ist) Ve  m(stTi[st) IV,
Bct act

@ One of the terms of the ratio is

oV, _
TC::(l_,B)VtWCtV
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Stochastic Discount Factor

@ Preferences

Ve = (1= Bl 4 B (e (Vi) )

where the certainty equivalent

1
1—ua

Hi(Viq1) = [Et (Vt+1)1ia}

B [ 7 (s1) (Ve (50))' "+ 72 (s1) (Ve (s2)) ] §

oot 7 (sw) (Vg (sw))' ™"

Bernardino Adao, ISEG (Institute) Financial Economics — Lecture 6 March 14, 2025 29 /



Stochastic Discount Factor

Another term of the ratio above

v, 1
Vi1 (s1) 1—o
1 1

L (Ve () (1= ) (Ve (1))

(V)" (1 =) B(He (Ves1)) ™"

V4 -
Vir oy = (VO BIH: (Vern)]

[He (Ver1)]* 7w (s1) (Ve (si)) ™"

oV;

Vi1 (si) = (Vo))" BH: (Ves1))" " (si) (Ve (1))
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Stochastic Discount Factor

@ Thus
BVt aVH—l _ _ _
m B 1 Vet daen BV (He(Vern)" "vis | [-B) V] et
tHL = R(sTHsT) % o (1-p)Vic.”
Ct
a—=y
C*'Y (H V. ) a—y C*’Y (E Vl—zx)ﬁ
ﬁ t+1 t( t+1 ) _ t+1 tVi41
- a7 —r
Ct Vi Ct Vit
Y—a
-
mesy = Bl Vit
o 1—u ﬁ
t (EeVerd')
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Stochastic Discount Factor

@ It is usual to write the stochastic discount factor
—y a
me = pt (e )
e 7 \He (Vi)

Ct+1 -0
_ p0 [ Ct+ 0—1
mep1 =P () Rm,t+l

as

Ct

where Ry 141, (known as the market return), is:

4 1—y
R _ % Vi1
m,t+1 — H
t

B! (Vit1)
and 1
—
0= 1=
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Stochastic Discount Factor

@ Now take logs

Ct+1 -0
_ a0 [ Ct+ 0—1
Mmep1 = P < e > R i1

to obtain

log my11 = Blog B — y0log (C?l) + (0 —1) log Rm,t+1
t

o In lecture 2 (where a = ¢y <=6 = 1)

Crat

t

mey1 = ﬁ —
Ct

log me1 = log p — 7 log (Ct“)

Ct
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@ Assume that both log (C”l) is normal distributed and log (R, ¢+1) is
normal distributed and they are independent distributed.

e Remember: If z is normal distributed then exp(z) is lognormal. Also
E exp(z) = exp(Ez + 0.50? (2)).

o Let Aciy1 = log (Cm) and log (Rm,t41) = Fm t+1-

@ Then exp(Act+1) and exp(rm,¢t+1) are lognormal distributed.

(Rt+1)71 =E (mt+1)

(R[Jrl)il = Erexp (Iog <,39 (C:l> Rm t+1>>

(Rtf+1) -1 _ elog ‘39 Eteff)/f)(ACtJrl)Etef(lfe)rmvt+1

using the fact that for independent variables Exy = ExEy.
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-1
(RfH) — olog B’ a=10E (A1) +5(19)° 02 (Acts1) o= (1=0) Exrm,es1+5 (1-0)202 (m,e41)

o taking logarithms

1
”tf+1 = —Olog B+ Y0E (Acri1) — > (')’9)2 0? (Acey)
1
+ (]. — 9) Etrmyt+1 — E (1 — 9)2 (72 (rm,t+1)

@ if r;¢+1 and Aceyy are jointly lognormal distributed (not
independent) then there is an additional term

rtfH =...—70(1—0)covi(Acti1, rm,t+1)
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Equity premium

@ Assume that consumption growth and asset returns are jointly
log-normally distributed like in lecture 2.

[ Acri1 ] Y ([ Et+1 ] [ var (Ace+1) cov (Actﬂ, 1)
i T " | cov (Acesr,riiq) var (ri,1)

@ We established (in lecture 2) that,

. 1 . .
—i f _ i i
Fep1—rep1 = _Evar(rt—&-l) +ycove(Acri1, riy1)
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Equity premium

o If log (R{H) and log m;41 are normal distributed
@ The Euler equations are

1
1 =exp (Et log myi1 + ri 4 + Evar(log mt+1)>

, 1 .
1=-exp (Et log mey1 +7ipq + Evar(log mey1 + rt’+1)>

Bernardino Adao, ISEG (Institute) Financial Economics — Lecture 6 March 14, 2025 37 / 44



Equity premium

o Take logs and equate these equations:

1 »
Eilog miy1 + rtf+1 + §var(log mer1) = Eilogmeit + ey

1 i
+§var(|og mey1+ i)

f 1 i 1 i
ree1+ Evar(log Mep1) = Ty + Evar(log M1+ i)

L ' 1 I i
ftf+1 + Evar(log mep1) =Fhoq + = var(log mey1) + var(rt+1)

2 +2cov(log mey1, 1, 1)
i 1 ; i
Fop1 — rtf+1 = —Evar(rt’ﬂ) — cov(log mes1, riyq)
_: 1 . .
Frp1+ Evar(rt’ﬂ) — rtfﬂ = —cov(log m;+1, log (Réﬂ))
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Equity premium

log E;R.,; — log Rf,; = —cov(log m;1, log (Réﬂ))

Since

Ct+1
Ct

log my1 = Blog B — yflog ( > + (60— 1) log Rm,t+1

Then:
E:R! , ,
log (;ﬁ) = ybcov(Acri1, riyy) + (1= 0) cov(rm,et1. riy1)
t4+1

Conclusion: Epstein-Zin is a linear combination of the CAPM and the
CCAPM model
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Market return

For the market return, rp +4+1, we have

E:R
log (tf???m) = y0cov(Acti1, fms1) + (1= 0) 0% (rm,e11)
t+1

or

1
Etrmt1 + 5(72 (rm,e1) — rtf+1 = bcov(Acti1, mit1)
+(1-6) (Tz(fm,t+1)

Now we compute (1 — ) E;rpy r41 to use later (i.e. we multiply by

(1-9))

1-0
-0 Ermen = (-0~ Do ()

(1 - 9) ’YQCOVt(ACtHv fm,t+1) + (1 - 9)2 U%(fm,t+1)
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From a previous "slide" we got the riskless rate

o
i = —0logB+v0E: (Acei1) + (1 —0) Errmiy1 — % (v8)? o2 (Ac
2 (1= 0)0% (rmesn) — 76 (1) cove(Acrs, Fmein)
o replacing (1 —0) E¢rm,e11
rl, = —0logB+0E: (Act1) +

(1—6)r{p1 — (1;6)‘72 (rm,e41) +
(1 —6) yOcovi(Acti1, me+1) + (1 — 9)2 0 (Fm.t41)
—3 (10 (Beus)
—% (1—0)%02 (rmer1) — 70 (1 —0) cove(Ace i1, Fmei1)
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Rearranging

1-0)
2
1 1

3 (76)% 0® (Acerr) + 5 (1= 0)? 0 (m,+1)

9[’;_1 = —0 |Ogﬁ + ')/GEt (ACt+1) — ( 0'2 (rm,t+1) +

1—6
r[_H = —lOgﬁ+’)’Et (ACt+1) — (29)0'2 (rm,t+1)+
1 1
— 292002 (Acrs1) + — (1= 0)% 02 (Fmer1)
2 20
1 1-90
r[+1 = — |Ong + ’)’Et <ACt+1) — 5’)’290’2 (ACt+1> — (2)(72 (rm't+1)

Again if ¥ = « then 8 = 1 we have the standard risk-free rate equation.
If &« > 7 then 8 < 1 and the volatility from the market return reduces the
real interest rate. Helps in the risk free puzzle.
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EZ preference and riskless rate

US Historical data

Et (ACt+1) = 002,
o? (Acr1) = (0.036)> = 0.0013
0 (fmes1) = (0.167)° = 0.0279

with B =0.98, « =2 and v = 0.5 (which are reasonable) get 1% riskless
interest rate
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EZ preference and equity premium

Equity premium
E:R,,
IOg %,1’4’1 = ’)/QCOVt(ACt+1, rm,t+1) =+ (1 — 9) U%(rm't+1)
Rt+1
US Historical data
Et (Actia
(ACt+1

<rm t+1

= 0.02,0, = 0.167
= (0.036)° = 0.0013
= (0.167)° = 0.0279
0.4

)
)
)
corr(Acty1,r)

with B =10.98, « = 2 and v = 0.5 (which are reasonable) get 7.4% equity
premium
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