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Overview

Epstein and Zin (1989 JPE, 1991 Ecta) introduced a class of
preferences which allow to break the link between risk aversion and
intertemporal substitution.

These preferences have proved very useful in applied work in asset
pricing, portfolio choice, and macroeconomics

There other alternatives to explain the puzzles in asset pricing like:

Habits (Campbell and Cochrane, 1999), Long run risks (Bansal and
Yaron, 2004; Bansal, Kiku, and Yaron, 2012), Idiosyncratic risk
(Constantinides and Duffi e, 1996), Heterogeneous preferences
(Gârleanu and Panageas, 2015), etc...
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Elasticity of intertemporal substitution

For instance

Ut =
∞
∑
s=0

βs
(ct+s )

1−γ

1− γ

The EIS measures the responsiveness of the growth rate of
consumption to the real interest rate:

d log(ct+1/ct )
d logR

=

d (ct+1/ct )
ct+1/ct
dR
R

,

The Euler equation

1 = Rβ
c−γ
t+1

c−γ
t

,

0 = logR + log β− γ log
(
ct+1
ct

)
,

d log
(
ct+1
ct

)
d logR

=
1
γ
,
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Elasticity of intertemporal substitution

d log
(
ct+1
ct

)
d logR

=
1
γ

Implies an inverse relationship between risk aversion and willingness
to substitute consumption over time

This is an "artificial" restriction because the 2 concepts are distinct

If γ is high, the consumer has a low IES and is reluctant to shift
consumption across time

If γ is low, the consumer is more flexible and willing to adjust
consumption in response to changes in interest rates
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Relative risk-aversion

The RRA measures how the willingness to bear risk changes with
wealth

Measures the percentage change in marginal utility due to a
percentage change in consumption:

−
d (u ′(c ))
u ′(c )
dc
c

,

d
(
u′ (c)

)
= u′′ (c) dc

−
d (u ′(c ))
u ′(c )
dc
c

= −
u ′′(c )dc
u ′(c )
dc
c

= −c u
′′ (c)
u′ (c)

−c u
′′ (c)
u′ (c)

= γc
c−γ−1

c−γ
= γ
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Economic Implications of RRA

Portfolio Choice:

Higher RRA, more investment in risk-free assets, less in stocks
Lower RRA, more investment in risky assets

Insurance Demand:

High RRA, more likely to buy insurance
Low RRA, less likely to pay for insurance

Consumption & Savings Behavior:

High RRA, more precautionary savings to buffer against uncertainty
Low RRA, more willing to consume and take risks
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Value function

The standard expected utility time-separable preferences are defined
as

Vt =
∞
∑
s=0

βsEtu (ct+s )

Alternatively can write it as

Vt = (1− β)
∞
∑
s=0

βsEtu (ct+s )

= (1− β)u (ct ) + βEt (Vt+1)

Vt is known as value function or lifetime utility
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EZ Preferences

EZ preferences generalize this: they are defined recursively over
current (known) consumption and a certainty equivalent Ht (Vt+1) of
tomorrow’s utility Vt+1:

Vt = F (ct ,Ht (Vt+1))

where
Ht (Vt+1) = G−1 (EtG (Vt+1))

with F and G increasing and concave, and F homogeneous of degree
one
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EZ Preferences

Observation: F is homogeneous of degree one if

F (tX , tY ) = tF (X ,Y ), for t > 0

and
F = X · F ′X + Y · F ′Y

Also known as Euler’s theorem

Note that
Ht (Vt+1) = G−1 (EtG (Vt+1))

Ht (Vt+1) = Vt+1

if there is no uncertainty on Vt+1
The more concave G is, and the more uncertain Vt+1 is, the lower is
Ht (Vt+1). Hint: Use a graph for the intuition.
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Functional forms

Most of the literature considers simple functional forms for F and G

Power function

G (x) ≡ x1−α

1− α
, α > 0

CES

F (c , z) ≡
(
(1− β)c1−γ + βz1−γ

) 1
1−γ

,γ > 0

the ES is 1/γ.

For this case get

Vt = F (ct ,Ht (Vt+1)) , with Ht (Vt+1) = G−1 (EtG (Vt+1))

Vt ≡
(
(1− β)c1−γ

t + β
(
Et
(
V 1−α
t+1

)) 1−γ
1−α

) 1
1−γ
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Functional forms

Proposition: If ct is deterministic we have the standard time-separable
expected discounted utility with discount factor β, and IES = 1/γ and risk
aversion = γ. Also, when α = 0 we have the standard utility function.
Proof: Given

Vt ≡
(
(1− β)c1−γ

t + β
(
Et
(
V 1−α
t+1

)) 1−γ
1−α

) 1
1−γ

If ct is deterministic then

(Vt )
1−γ = (1− β)c1−γ

t + β (Vt+1)
1−γ = (1− β)

∞
∑
s=0

βsc1−γ
t+s ,

when α = 0 iterate forward to get

(Vt )
1−γ = (1− β)c1−γ

t + βEt (Vt+1)
1−γ = (1− β)

∞
∑
s=0

βsEtu (ct+s ) .
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Limits

G (x) ≡ x1−α

1− α
, α > 0

F (c, z) ≡
(
(1− β)c1−γ + βz1−γ

) 1
1−γ , γ > 0

Implies
G (x) = log x , if α = 1

Cobb-Douglas
F (c, z) = c1−βzβ, if γ = 1
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Limits

As

G (x) ≡ x1−α

1− α
, α > 0

G (x) = log x , if α = 1

and
Ht (Vt+1) = G−1 (EtG (Vt+1))

Thus:

α > 0

Ht (Vt+1) =
[
Et (Vt+1)

1−α
] 1
1−α

α = 1
Ht (Vt+1) = exp (Et log(Vt+1))
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F is Cobb-Douglas if gamma=1

Define

F (c, z) =
(
(1− β)c1−γ + βz1−γ

) 1
1−γ

divide and multiply by c

F (c , z) = c
(
(1− β) + βx1−γ

) 1
1−γ

= cf (x)

where
x = z/c and f (x) =

(
1− β+ βx1−γ

) 1
1−γ

so

f ′(x)
f (x)

=
1

1− γ

(
1− β+ βx1−γ

) 1
1−γ−1 (1− γ) βx−γ

(1− β+ βx1−γ)
1
1−γ

=
βx−γ

(1− β+ βx1−γ)
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F is Cobb-Douglas if gamma=1

And

lim
γ→1

f ′(x)
f (x)

= lim
γ→1

βx−γ

(1− β+ βx1−γ)

= lim
γ→1

β

(1− β) xγ + βx1
=

β

x

Since f is continuous then

lim
γ→1

f (x) = x β

or Cobb-Douglas function

F (c, z) = cf (x) = c (z/c)β = c1−βzβ
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Risk Aversion vs IES

In general α is the relative risk aversion coeffi cient for static gambles
and γ is the inverse of the intertemporal elasticity of substitution for
deterministic variations
Suppose consumption is c today and consumption tomorrow is
uncertain: {cL, c, c , ....} or {cH , c , c , ....} , each has prob. 0.5
Lifetime utility today

Vt = F
(
c,G−1 (0.5G (VL) + 0.5G (VH ))

)
where

VL = F (cL, c) ,VH = F (cH , c)

Curvature of G determines how adverse you are to the uncertainty.
If G is linear you only care about the expected value
If not, it is the certainty equivalent:

G
(
V̂
)
= 0.5G (VL) + 0.5G (VH )
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Special Case: Deterministic consumption

If consumption is deterministic: we have the usual standard
time-separable expected discounted utility with discount factor β and
IES= 1/γ, risk aversion = γ.

Proof: Without uncertainty, then
Ht (Vt+1) = G−1 (EtG (Vt+1)) = Vt+1 and

Vt = F (ct ,Ht (Vt+1))

With a CES functional form for F , we recover CRRA preferences:

Vt =
[
(1− β)c1−γ

t + β (Vt+1)
1−γ
] 1
1−γ

Ut = (1− β)c1−γ
t + βUt+1 = (1− β)

∞
∑
s=0

βsc1−γ
t+s

where
Ut = (Vt )

1−γ .
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Special Case: RRA=1/IES

if α (=RRA) = γ (=1/IES) , then the formula

Vt ≡
(
(1− β)c1−γ

t + β
(
Et
(
V 1−α
t+1

)) 1−γ
1−α

) 1
1−γ

simplifies to

(Vt )
1−γ ≡ (1− β)c1−γ

t + β
(
EtV

1−γ
t+1

)
Define

Ut = V
1−γ
t

then
Ut = (1− β)c1−γ

t + βEt (Ut+1),

is the expected utility
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Simple example with two lotteries

Lotteries:

lottery A pays in each period t = 1, 2, ... either ch or cl , with
probability 0.5 and the outcome is iid across periods;

lottery B pays starting at t = 1 either ch at all future dates for sure,
or cl at all future dates for sure; there is a single draw at time t = 1

With expected utility, you are indifferent between these lotteries, but
with EZ lottery B is preferred iff α > γ.

In general, early resolution of uncertainty is preferred if and only if
α > γ i.e. risk aversion > 1

IES

This is another way to motivate these preferences, since early
resolution seems intuitively preferable.
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Resolution of uncertainty

Vt ≡
(
(1− β)c1−γ

t + β
(
Et
(
V 1−α
t+1

)) 1−γ
1−α

) 1
1−γ

For lottery B, the utility once you know your consumption is either
ch, or cl forever,

Vh = F (ch,Vh) =
(
(1− β)c1−γ

h + βV 1−γ
h

) 1
1−γ

or

Vl = F (cl ,Vl ) =
(
(1− β)c1−γ

l + βV 1−γ
l

) 1
1−γ

The certainty equivalent before playing the lottery is

G−1 (0.5G (ch) + 0.5G (cl )) =
(
0.5c1−α

h + 0.5c1−α
l

) 1
1−α
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Resolution of uncertainty

Given

Wt ≡
(
(1− β)c1−γ

t + β
(
Et
(
W 1−α
t+1

)) 1−γ
1−α

) 1
1−γ

For lottery A, the values satisfy

W 1−γ
h = (1− β)c1−γ

h + β
(
0.5W 1−α

h + 0.5W 1−α
l

) 1−γ
1−α

W 1−γ
l = (1− β)c1−γ

l + β
(
0.5W 1−α

h + 0.5W 1−α
l

) 1−γ
1−α
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Resolution of uncertainty

We want to compare

G−1 (0.5G (ch) + 0.5G (cl ))

with
G−1 (0.5G (Wh) + 0.5G (Wl ))

notice that function
x
1−γ
1−α

is concave if 1− γ < 1− α, i.e. γ > α, and convex otherwise. As a
result, if γ > α(
0.5W 1−α

h + 0.5W 1−α
l

) 1−γ
1−α > 0.5

(
W 1−α
h

) 1−γ
1−α + 0.5

(
W 1−α
l

) 1−γ
1−α

= 0.5W 1−γ
h + 0.5W 1−γ

l
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Resolution of uncertainty

Since
W 1−γ
h = (1− β)c1−γ

h + β
(
0.5W 1−α

h + 0.5W 1−α
l

) 1−γ
1−α

and
W 1−γ
l = (1− β)c1−γ

l + β
(
0.5W 1−α

h + 0.5W 1−α
l

) 1−γ
1−α

Then
W 1−γ
h > (1− β)c1−γ

h + β
(
0.5W 1−γ

h + 0.5W 1−γ
l

)
and

W 1−γ
l > (1− β)c1−γ

l + β
(
0.5W 1−γ

h + 0.5W 1−γ
l

)
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Resolution of uncertainty

Multiplying both equations by 0.5 and summing them up

(1− β)
(
0.5W 1−γ

h + 0.5W 1−γ
l

)
> (1− β)

(
0.5c1−γ

h + 0.5c1−γ
l

)
These results imply that if γ > α then

0.5W 1−γ
h + 0.5W 1−γ

l > 0.5c1−γ
h + 0.5c1−γ

l

In this case the certainty equivalent of lottery A is higher than the
certainty equivalent of lottery B and agents prefer late to early
resolution of uncertainty.
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Stochastic Discount Factor

The stochastic discount factor with these preferences turns out to be
slightly different:

mt+1 = β
c−γ
t+1

c−γ
t

 Vt+1(
EtV 1−α

t+1

) 1
1−α

γ−α

The first term is familiar. The second term is next period’s value
(lifetime utility) relative to its certainty equivalent.
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Stochastic Discount Factor

This equation consists of two key components:

Consumption Growth Component:

c−γ
t+1

c−γ
t

captures intertemporal substitution.

Risk Adjustment Component:

 Vt+1(
EtV 1−α

t+1

) 1
1−α

γ−α

adjusts for risk preferences.
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Stochastic Discount Factor

Let Ut be the expected lifetime utility

U = Et
∞

∑
s=t

βsu
(
c
(
st
))

Discount factor general formula:

mt+1 =
βu′
(
c
(
st+1

))
u′ (c (st ))

=
1

π (st+1|st )

∂Ut
∂ct+1
∂Ut
∂ct
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Stochastic Discount Factor

The stochastic discount factor of

Vt =
(
(1− β)c1−γ

t + β (Ht (Vt+1))
1−γ
) 1
1−γ

is

mt+1 = 1
π(s t+1 |s t )

∂Vt
∂ct+1
∂Vt
∂ct

= 1
π(s t+1 |s t )

∂Vt
∂Vt+1

∂Vt+1
∂ct+1

∂Vt
∂ct

One of the terms of the ratio is

∂Vt
∂ct

= (1− β)V γ
t c
−γ
t
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Stochastic Discount Factor

Preferences

Vt =
(
(1− β)c1−γ

t + β (Ht (Vt+1))
1−γ
) 1
1−γ

where the certainty equivalent

Ht (Vt+1) =
[
Et (Vt+1)

1−α
] 1
1−α

=

[
π (s1) (Vt+1 (s1))

1−α + π (s1) (Vt+1 (s1))
1−α

+...+ π (sN ) (Vt+1 (sN ))
1−α

] 1
1−α
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Stochastic Discount Factor

Another term of the ratio above

∂Vt
∂Vt+1 (s1)

=
1

1− γ
(Vt )

γ (1− γ) β (Ht (Vt+1))
−γ

1
1− α

[
Et (Vt+1)

1−α
] 1
1−α−1

π (s1) (1− α) (Vt+1 (s1))
−α

∂Vt
∂Vt+1 (si )

= (Vt )
γ β [Ht (Vt+1)]

−γ

[Ht (Vt+1)]
α π (si ) (Vt+1 (si ))

−α

∂Vt
∂Vt+1 (si )

= (Vt )
γ β [Ht (Vt+1)]

α−γ π (si ) (Vt+1 (si ))
−α
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Stochastic Discount Factor

Thus

mt+1 = 1
π(s t+1 |s t )

∂Vt
∂Vt+1

∂Vt+1
∂ct+1

∂Vt
∂ct

=
[βV γ

t (Ht (Vt+1))
α−γV −α

t+1][(1−β)V γ
t+1c

−γ
t+1]

(1−β)V γ
t c
−γ
t

= β
c−γ
t+1

c−γ
t

(Ht (Vt+1))
α−γ

V α−γ
t+1

= β
c−γ
t+1

c−γ
t

(EtV 1−α
t+1

) 1
1−α

Vt+1

α−γ

mt+1 = β
c−γ
t+1

c−γ
t

 Vt+1(
EtV 1−α

t+1

) 1
1−α

γ−α
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Stochastic Discount Factor

It is usual to write the stochastic discount factor

mt+1 = β
c−γ
t+1

c−γ
t

(
Vt+1

Ht (Vt+1)

)γ−α

as

mt+1 = βθ

(
ct+1
ct

)−γθ

Rθ−1
m,t+1

where Rm,t+1, (known as the market return), is:

Rm,t+1 =
cγ
t+1

βcγ
t

(
Vt+1

Ht (Vt+1)

)1−γ

and
θ =

1− α

1− γ
.
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Stochastic Discount Factor

Now take logs

mt+1 = βθ

(
ct+1
ct

)−γθ

Rθ−1
m,t+1

to obtain

logmt+1 = θ log β− γθ log
(
ct+1
ct

)
+ (θ − 1) logRm,t+1

In lecture 2 (where α = γ ⇐⇒ θ = 1)

mt+1 = β
c−γ
t+1

c−γ
t

logmt+1 = log β− γ log
(
ct+1
ct

)

Bernardino Adao, ISEG (Institute) Financial Economics — Lecture 6 March 14, 2025 33 / 44



Risk free rate

Assume that both log
(
ct+1
ct

)
is normal distributed and log (Rm,t+1) is

normal distributed and they are independent distributed.
Remember: If z is normal distributed then exp(z) is lognormal. Also
E exp(z) = exp(Ez + 0.5σ2 (z)).

Let ∆ct+1 = log
(
ct+1
ct

)
and log (Rm,t+1) = rm,t+1.

Then exp(∆ct+1) and exp(rm,t+1) are lognormal distributed.(
R ft+1

)−1
= Et (mt+1)

(
R ft+1

)−1
= Et exp

(
log

(
βθ

(
ct+1
ct

)−γθ

Rθ−1
m,t+1

))
(
R ft+1

)−1
= e log βθ

Ete−γθ(∆ct+1)Ete−(1−θ)rm,t+1

using the fact that for independent variables Exy = ExEy .
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Risk free rate

(
R ft+1

)−1
= e log βθ

e−γθEt (∆ct+1)+ 1
2 (γθ)2σ2(∆ct+1)e−(1−θ)Et rm,t+1+ 1

2 (1−θ)2σ2(rm,t+1)

taking logarithms

r ft+1 = −θ log β+ γθEt (∆ct+1)−
1
2
(γθ)2 σ2 (∆ct+1)

+ (1− θ)Et rm,t+1 −
1
2
(1− θ)2 σ2 (rm,t+1)

if rm,t+1 and ∆ct+1 are jointly lognormal distributed (not
independent) then there is an additional term

r ft+1 = ...− γθ (1− θ) covt (∆ct+1, rm,t+1)
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Equity premium

Assume that consumption growth and asset returns are jointly
log-normally distributed like in lecture 2.[

∆ct+1
r it+1

]
∼ N

([
∆c t+1
r it+1

]
,

[
var (∆ct+1) cov

(
∆ct+1, r it+1

)
cov

(
∆ct+1, r it+1

)
var
(
r it+1

) ])
We established (in lecture 2) that,

r it+1 − r ft+1 = −
1
2
var(r it+1) + γcovt (∆ct+1, r it+1)
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Equity premium

If log
(
R it+1

)
and logmt+1 are normal distributed

The Euler equations are

1 = exp
(
Et logmt+1 + r ft+1 +

1
2
var(logmt+1)

)

1 = exp
(
Et logmt+1 + r it+1 +

1
2
var(logmt+1 + r it+1)

)
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Equity premium

Take logs and equate these equations:

Et logmt+1 + r ft+1 +
1
2
var(logmt+1) = Et logmt+1 + r it+1

+
1
2
var(logmt+1 + r it+1)

r ft+1 +
1
2
var(logmt+1) = r it+1 +

1
2
var(logmt+1 + r it+1)

r ft+1 +
1
2
var(logmt+1) = r it+1 +

1
2

[
var(logmt+1) + var(r it+1)
+2cov(logmt+1, r it+1)

]
r it+1 − r ft+1 = −

1
2
var(r it+1)− cov(logmt+1, r it+1)

r it+1 +
1
2
var(r it+1)− r ft+1 = −cov(logmt+1, log

(
R it+1

)
)
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Equity premium

log EtR it+1 − logR ft+1 = −cov(logmt+1, log
(
R it+1

)
)

Since

logmt+1 = θ log β− γθ log
(
ct+1
ct

)
+ (θ − 1) logRm,t+1

Then:

log

(
EtR it+1
R ft+1

)
= γθcov(∆ct+1, r it+1) + (1− θ) cov(rm,t+1, r it+1)

Conclusion: Epstein-Zin is a linear combination of the CAPM and the
CCAPM model
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Market return

For the market return, rm,t+1, we have

log

(
EtRm,t+1
R ft+1

)
= γθcov(∆ct+1, rm,t+1) + (1− θ) σ2(rm,t+1)

or

Et rm,t+1 +
1
2

σ2 (rm,t+1)− r ft+1 = γθcov(∆ct+1, rm,t+1)

+ (1− θ) σ2(rm,t+1)

Now we compute (1− θ)Et rm,t+1 to use later (i.e. we multiply by
(1− θ))

(1− θ)Et rm,t+1 = (1− θ) r ft+1 −
(1− θ)

2
σ2 (rm,t+1) +

(1− θ) γθcovt (∆ct+1, rm,t+1) + (1− θ)2 σ2t (rm,t+1)
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Risk free rate

From a previous "slide" we got the riskless rate

r ft+1 = −θ log β+ γθEt (∆ct+1) + (1− θ)Et rm,t+1 −
1
2
(γθ)2 σ2 (∆ct+1)

−1
2
(1− θ)2 σ2 (rm,t+1)− γθ (1− θ) covt (∆ct+1, rm,t+1)

replacing (1− θ)Et rm,t+1

r ft+1 = −θ log β+ γθEt (∆ct+1) +

(1− θ) r ft+1 −
(1− θ)

2
σ2 (rm,t+1) +

(1− θ) γθcovt (∆ct+1, rm,t+1) + (1− θ)2 σ2t (rm,t+1)

−1
2
(γθ)2 σ2 (∆ct+1)

−1
2
(1− θ)2 σ2 (rm,t+1)− γθ (1− θ) covt (∆ct+1, rm,t+1)
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Risk free rate

Rearranging

θr ft+1 = −θ log β+ γθEt (∆ct+1)−
(1− θ)

2
σ2 (rm,t+1) +

−1
2
(γθ)2 σ2 (∆ct+1) +

1
2
(1− θ)2 σ2 (rm,t+1)

r ft+1 = − log β+ γEt (∆ct+1)−
(1− θ)

2θ
σ2 (rm,t+1) +

−1
2

γ2θσ2 (∆ct+1) +
1
2θ
(1− θ)2 σ2 (rm,t+1)

r ft+1 = − log β+ γEt (∆ct+1)−
1
2

γ2θσ2 (∆ct+1)−
(1− θ)

2
σ2 (rm,t+1)

Again if γ = α then θ = 1 we have the standard risk-free rate equation.
If α > γ then θ < 1 and the volatility from the market return reduces the
real interest rate. Helps in the risk free puzzle.
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EZ preference and riskless rate

US Historical data

Et (∆ct+1) = 0.02,

σ2 (∆ct+1) = (0.036)2 = 0.0013

σ2 (rm,t+1) = (0.167)2 = 0.0279

with β = 0.98, α = 2 and γ = 0.5 (which are reasonable) get 1% riskless
interest rate
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EZ preference and equity premium

Equity premium

log

(
EtRm,t+1
R ft+1

)
= γθcovt (∆ct+1, rm,t+1) + (1− θ) σ2t (rm,t+1)

US Historical data

Et (∆ct+1) = 0.02, σr = 0.167

σ2 (∆ct+1) = (0.036)2 = 0.0013

σ2 (rm,t+1) = (0.167)2 = 0.0279

corr(∆ct+1, r) = 0.4

with β = 0.98, α = 2 and γ = 0.5 (which are reasonable) get 7.4% equity
premium
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