Lisbon School U

of Economics
& Management LISBOA

Universidade de Lisboa

UNIVERSIDADE
DE LISBOA

Reinforcement
Learning

Carlos J. Costa (2024)

@ Carlos J. Costa (ISEG)

v

- | oBJECTIVES ,

|
%) —

il

Lea rnlng * Understand main Concepts of Reinforcement Learning
GOal_S * Understand how to implement

1& Carlos J. Costa (ISEG)

v

Summary

* Reinforcement learning

* Key components
* Example

Reinforcement learning

* s atype of machine
learning

e where

* an agent learns to
make decisions by ’J@'
interacting with an ol ato
environment, faf

* receiving rewards,
and

* improving its
behavior over time.

A

Environment]4—

@ Carlos J. Costa (ISEG)

v

Key components

* Agent - The decision-maker (e.g., a trading bot).

* Environment - The system the agent interacts
with (e.g., the stock market).

* State - The current situation of the agent (e.g.,
time or price point).

* Action - A choice the agent makes (e.g., Buy, Sell,
Hold).

* Reward - Feedback received after an action (e.g.,
profit/loss).

* Policy - A strategy that maps states to actions.

@ Carlos J. Costa (ISEG)

v

Environment

* The system the agent interacts with

* The stock prices (the world):

* The robot sees stock prices moving up and down over
100 days.

* Each "state" isjustaday— DayO0, Day 1, ..., Day 99.

qﬁ Carlos J. Costa (ISEG)

v

Action

* A choice the agent makes

* The robot can make 3 moves (actions):
* Buy — decide to buy the stock.
* Sell — decide to sellit.
* Hold — do nothing.

@ Carlos J. Costa (ISEG)

v

Reward (score)

* |If the robot buys and the price goes up > good
job > reward!

* |If it buys and the price drops > bad job > penalty.
* Same idea for selling.
* Holding gets zero reward.

@ Carlos J. Costa (ISEG)

v

What is Q-learning

* Q-learning is an algorithm

* Used in reinforcement learning

* Find the best action to take in each state
 Maximize future rewards

* |t works by learning a table of values called a
Q-table

@ Carlos J. Costa (ISEG)

v

What is Q-learning

* Each entry in the table is Q(state, action)

* |t estimates how good it is to take that action
when it is in that state.

* The goal is to learn the best action in every
state

* interacting with the environment and
updating the Q-values over time

@ Carlos J. Costa (ISEG)

v

What is Q-learning

* Q-learningis an algorithm used in
reinforcement learning to find the best action
to take in each state to maximize future
rewards.

* It works by learning a table of values called a Q-
table, where:

* Q stands for "Quality" of a certain action in a certain
state.

* Each entry in the table is Q(state, action) — it
estimates how good it is to take that action when
you're in that state.

@ Carlos J. Costa (ISEG)

v

What is Q-learning

The goal is to learn the best action in every state
by interacting with the environment and
updating the Q-values over time using this
formula:

Q(s,a)<Q(s,a)+a[r+y-max'Q(s',a')-Q(s,a)]Q(s, a)

@ Carlos J. Costa (ISEG)

v

Q-learning formula

Learning Discount
rate Reward factor

\/

Qﬂm‘ Etat-l_a* P+7*maXQ(SI+1ﬂ) st,m')

\

Future value
New value Current value

estimate

{5 Carlos J. Costa (ISEG)

What is a strategy in Q-learning

* The strategy, also called the policy, is the rule the
agent uses to decide which action to take in
each state.

* In Q-learning, the strategy is:

* For any given state, pick the action that has the
highest Q-value.
* Thisis how it's done in code:
action = actions[np.argmax(qg_table.iloc[state])]
* That line says: “Look at the current state, find the row

in the Q-table, and pick the action with the highest
number.”

@ Carlos J. Costa (ISEG)

v

How the code uses Q-learning
and learns the strategy

* [nitialize the Q-table

* Pick an action

* Get the reward

* Update the Q-table (learn)
* Repeat for many episodes

* After training, the strategy is: For any given state,
choose the action with the highest Q-value.

@ Carlos J. Costa (ISEG)

v

Example Python (1/3)

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Generate synthetic stock price data

np.random.seed(8)

dates = pd.date range(start='2824-81-81", periods=18&)

prices = np.cumsum({np.random.randn(l188)) + 188 # Synthetic stock prices
data = pd.DataFrame({ 'Date’': dates, 'Price': prices})

Q-Learning parameters
learning_rate = 8.1
discount factor = 8.9
exploration_rate = 1.8

max_exploration rate = 1.8
min_exploration_rate = 8.81
exploration decay rate = B.Bﬂ

Initialize Q-Table

states = np.arange(@, len(prices))

actions = ['Buy’', "Sell’, "Hold']

q_table = pd.DataFrame(np.zeros((len(states), len(actions))), columns=actions)

@ Carlos J. Costa (ISEG)

v

xample Python (2/3

Training the agent

rewards = []

for episode in range(1608):
state = np.random.randint(8, len(states))
done = False
total_reward = ©

while not done:
Exploration-expleoitation trade-off
if np.random.uniform(@, 1) < exploration_rate:
action = np.random.choice(actions)
else:
action = actions[np.argmax(q_table.iloc[state])]

Simulate the next state and reward
next_state = state + 1 if state < len(states) - 1 else state

if action == "Buy':

reward = prices[next_state] - prices[state]
elif action == "sell’

reward = prices[state] - prices[next_state]
else:

reward = @

Update Q-Table
gq_table.loc[state, action] = (1 - learning_rate) * g_table.loc[state, action] + \
learning_rate * (reward + discount_factor * np.max(g_table.iloc[next_state]))

state = next_state
total reward += reward

if state == len(states) - 1:
done = True

Decay exploration rate
exploration_rate = min_exploration_rate + \

(max_exploration_rate - min_exploration_rate) * np.exp(-exploration_decay_rate * episode)

rewards . append(total_reward)

Carlos J. Costa (ISEG)

v

Example Python (3/3)

Plot rewards

plt.plot({rewards)

plt.xlabel(Episode’)

plt.ylabel(Total Reward’)

plt.title(Total Reward per Episode’)
plt.show()

Display Q-Table
q table

@ Carlos J. Costa (ISEG)

v

Conclusion

* Concept
 Key components
* Example

qﬁ Carlos J. Costa (ISEG)

v

	Untitled Section
	Slide 1: Reinforcement Learning
	Slide 2: Learning Goals
	Slide 3: Summary
	Slide 4: Reinforcement learning
	Slide 5: Key components
	Slide 6: Environment
	Slide 7: Action
	Slide 8: Reward (score)
	Slide 9: What is Q-learning
	Slide 10: What is Q-learning
	Slide 11: What is Q-learning
	Slide 12: What is Q-learning
	Slide 13: Q-learning formula
	Slide 14: What is a strategy in Q-learning
	Slide 15: How the code uses Q-learning and learns the strategy
	Slide 16: Example Python (1/3)
	Slide 17: Example Python (2/3)
	Slide 18: Example Python (3/3)
	Slide 19: Conclusion

