Dimension Reduction
Algorithms

Carlos J. Costa

v

s Y

3
OBJECTIVES
e

Know concept of Dimension Reduction Algorithms

il

] Distinguish between Feature Extraction and Feature
Learning Selection

Goals Distinguish between main algorithms

Apply algorithms by using python libraries

v

Summary

 Dimension reduction
* Feature Extraction vs Feature Selection
« Feature Extraction (PCA, LDA, NMF, TSVD)

 Feature Selection

Dimension Reduction Algorithms

« dimensionality reduction

» seek and exploit the inherent
structure in the data

* Unsupervised learning

* Feature extraction

* Feature selection

feature extraction feature selection

Dimension
Reduction
Algorithms

« Feature Extraction

» PCA (principal
Components analysis)

* LDA (Linear
Discriminant Analysis)

* NMF (Non-negative
Matrix Factorization)

 TSVD (Truncate

Singular Value
Decomposition)

Feature

Extraction

>@®

PCA

* Principal Component Analysis

« Data is first centered around
its mean

« then finding the eigenvectors
and eigenvalues of the

111i1tl]i[#izl' X —-UV*L: covariance matrix.
: : - The eigenvectors represent
subject to UTU=VIV =1 the directions of maximum

variance, while the
eigenvalues represent the
amount of variance explained
by each eigenvector.

ergial data space — « The eigenvectors are then
i used to project the data onto a
a4 lower-dimensional space.

)

e — * The number of principal

o

Gene 3

2o components to keep is
determined by the amount of
variance we want to retain.

1 # Load libraries
P‘ A from sklearn import datasets
from sklearn.decomposition import FCA

La [|

Load the Iris flower dataset:

2 1ris = datasets.load iris()

3 X = iris.data

4 y = iris.target

1 # Create an PCA that will reduce the data down to 2 feature
2 PCAModel = PCA(n components=Z)

4 # run an PCA and use it to transform the features

5 XPCA = PCAMcdel.fit (X).transform(X)

Print the number of features
print ('Original number of features:', X.shape[l1l])
print ('Reduced number of features:', XPCA.shapel[l])

[I o I

Original number of features: 4
Reduced number of features: 2

1 ## View the ratio of explained variance
2 PCAModel.explained variance ratio

array([0.92461621, 0.05301557])

PCA:
component axes that
maximize the variance

LDA

LDA:
maximizing the component
axes for class-separation

&

4
. I x
bad proection ; 4 : o % X
xi.;.q...-. Y x
% ¥ X X X
X x X M X
w ¥ Oox

e mlaecoe waall

Linear Discriminant Analysis (LDA)
Supervised Learning
Is a linear transformation techniques that is commonly

used for dimensionality reduction (like PCA)

Reducing features by maximizing class separation

LDA

L [=

[TS W I %

[0 Y =S Y T i T)

[% I

Load libraries
from sklearn import datasets
from sklearn.discriminant analysis impeort LinearDiscriminantAnalysis

Load the Iris flower dataset:
iris = datasets.load iris()

¥ = iris.data

y = iris.target

Create an LDA that will reduce the data down te 1 feature
ldaModel = LinearDiscriminantAnalysis(n_components=2)

run an LDA and use it teo transform the features
XILda = ldaModel.fit (X, vy).transform(X)

Print the number of features
print ("Original number of features:', X.shape[l])
print ('Reduced number of features:', XLda.shapel[l])

Original number of features: 4
Reduced number of features: 2

2

View the ratio of explained varliance
ldaModel.explained variance ratio

array([0.99147248, 0.00852752])

NMF

Non-negative Matrix Factorization

where a matrix is factorized into (usually) two matrices, with the
property that all three matrices have no negative elements.

Performs matrix factorization NME

It can be applied for:
« Recommender Systems,
« Collaborative Filtering
« topic modelling
« dimensionality reduction.

Does not provide the explained variance

minimize || X — UVTHQF
UV

subjectto UZ>0,V >0

NMF

[I L B T

L b =

Load libraries
from sklearn import datasets
from sklearn.decomposition import NMF

Load the Iris flower dataset:
iris = datasets.load iris({()
X = iris.data

S e L N O Y S P B L I]

Lo o0

Create an NMF that will reduce the data down to 2 feature
NMFModel = NMF (n components=Z)

run an LDA and use 1t to transform the features
¥NMF = NMFModel.fit (¥X).transform ()

Print the number of features
print ("Original number of features:', X.shapel[l])
print ('Eeduced number of features:', XNMF.shape[1l])

TSVD

- Truncated Singular Value
Decomposition

- Used in sparce feature matrix

- Contrary to PCA, this estimator
does not center the data before
computing the singular value
decomposition.

Any real rectangular matrix A can be tactored into the form

A=U £ vT?

mxn mxXxm mxn nxn

Tall & skinny: A = U y
e -

‘ T
Short & fat: | A = U E V

TSVD

Load libraries

from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import TruncatedSVD
from scipy.sparse import csr matrix

from sklearn impeort datasets

import numpy as np

Lad |.\,'l =

[0 Y =

)}

Load the data

digits = datasets.load digits()

Standardize the feature matrix

X = StandardScaler().fit transform(digits.data)
Make sparse matrix

X sparse = csr_matrix{xj

(WS S

&

Create a TSVD
tsvdModel = TruncatedSVD(n components=10)

Conduct TSVD on sparse matrix
X sparse tsvd = tsvdMDdel.fit{X_sparsej.transform{x_

Show results
print ('Original number of features:', X sparse.shape
print ('Reduced number of features:', X sparse tsvd.s

W L

Original number of features: &4
Eeduced number of features: 10

Sum of first three components' explained variance
tsvdModel.explained variance ratic [0:3].sum()

0.3003938538627534

Dimension
Reduction
Algorithms

 Feature Selection

Thresholding numerical
features variance

Thresholding binary
features variance

Handling high correlated
features

Removing irrelevant
features for
Classification

RFE (Recursive Feature
Elimination)

Feature
Selection

@ X
®o—©O
@® X
@ X
®o—©O

Thresholding numerical
features variance

 The dataset has set of numerical features
Approach:

 Remove those with the low variance
 Low variance likely contains little information

v

Thresholding numerical
features variance

1 from sklearn import datasets
2 from sklearn.feature selection import VarianceThreshold

]

Load iris data
iris = datasets.load iris()

W b

Create features and target
X = iris.data
v = iris.target

oy

Create VarianceThreshold object with a variance with a
#threshold of 0.5
thresholder = VarianceThreshold(threshold=.5)

W b

Conduct variance thresholding
XHighVariance = threshclder.fit transform(X)

[«]

View first five rows with features with variances above
threshold
XHigthriance[O:E]

w M

array([[5.1, 1.4, 0.2]1,
[4.9, 1.4, 0.2],
(4.7, 1.3, 0.21,
[4.6, 1.5, 0.2],
[5. , 1.4, 0.2]11)

Handling high correlated
features

(TSI

IS U S

~1 oy wn

oW m

F
b

Load libraries
import pandas as pd
import numpy as np

Create feature matrix with two highly correlated features
X = np.array([[e, 12, 11,

[S, 10, 01,

[4, s, 11,

[3, 3, 01,

(2 5 l,

[, 2, o1,

[2x G5 s

[5, 10, 01,

[9, 15, 111)

Convert feature matrix into DataFrame
df = pd.DataFrame (X)

TSP I I Y

@ n

Create correlation matrix

corr_matrix = df.corr() .abs ()

Select upper triangle of correlation matriﬁ

upper = corr matrix.where(np.triu(np.ones{corr matrix.shape), k=1).astype(np.bool))
Find index of feature columns with correlation greater than 0.95

to drop = [column for column in upper.columns if any(upper[column] > 0.95)]

[N

Drop features
df.drop (df [to_dropl, axis=1)

Removing irrelevant features
for Classification

Categorical features:

 Calculate Chi-square statistic between each
feature and target

Quantitative features:

e Calculate ANOVA F-Value between each
feature and target

v

Recursive Feature Elimination

[T VNI OV I

- @

o I MU BT S VS I O I S [SS N Lol W b [an]

o

[SS I

Load libraries

from sklearn.datasets import make regression
from sklearn.feature selection import RFECV
from sklearn impeort datasets, linear model
import warnings

Suppress an annoying but harmless warning
warnings.filterwarnings (action="ignore", module="scipy", message=""internal gelsd")

Generate features matrix, target vector, and the true coefficients
X, vy = make regression(n samples = 10000,

n features = 100,

n_informative = 2,

random state = 1)

Create a linear regression
olsModel = linear model.LinearRegression()

Create recursive feature eliminator that scores features by mean squared errors
rfecvModel = RFECV (estimator=olsModel, step=l, scoring='neg mean squared error')

Fit recursive feature eliminator
rfecvModel.fit (X, V)

Recursive feature elimination
rfecvModel . transform (X)

Number of best features
rfecvModel.n features

Conclusion

* Dimensionality reduction
 Feature Extraction and Feature Selection
« Feature Extraction (PCA, LDA, NMF, TSVD)

 Feature Selection

	Untitled Section
	Slide 1: Dimension Reduction Algorithms
	Slide 2: Learning Goals
	Slide 3: Summary
	Slide 4: Dimension Reduction Algorithms
	Slide 5: Dimension Reduction Algorithms
	Slide 6: PCA
	Slide 7: PCA
	Slide 9: LDA
	Slide 10: LDA
	Slide 11: NMF
	Slide 12: NMF
	Slide 13: TSVD
	Slide 15: TSVD
	Slide 16: Dimension Reduction Algorithms
	Slide 17: Thresholding numerical features variance
	Slide 18: Thresholding numerical features variance
	Slide 19: Handling high correlated features
	Slide 20: Removing irrelevant features for Classification
	Slide 21: Recursive Feature Elimination
	Slide 22: Conclusion

