Lisbon School U

of Economics
& Management LISBOA

Universidade de Lisboa

A 4

IIIIIIIIIIII
DDDDDDDD

NATURAL LANGUAGE
PROCESSING (NLP)

Carlos J. Costa

‘! Carlos J. Costa (ISEG) 2025/26 -1
v

~ | oBJECTIVES :

|
% ‘ﬁ_

il

* Understand the context of NLP

* Explain main concepts

Learning
Goals

e Use main libraries

‘! Carlos J. Costa (ISEG) 2025/26 -2
v

Table of Contents

e Definition
* Main Concepts
e Libraries

‘! Carlos J. Costa (ISEG) 2025/26 -3
v

NLP

: narm nti

automatic speech recs n?t?ofw E:NEE B

recognition (ASR) & | NLU
part-of-speech relation
tagging (POS) extraction — y sraphrase &

syntactic natural language
I inference
categ?r}gatiﬂn o sk
parsing dialogue
coreference sentiment agents
resolution analysis
text-to-speech o question
(TTs) translation answering (QA) summarization

Natural language processing

NLP

Subfield of artificial intelligence, linguistics, and computer
science

Create software to process and analyze large amounts of natural
language data

Sentiment
Analysis

4

Information
Extraction

Information
Retrieval

Natural Language |
Machine Question

Translation Processi ng Answering
(NLP)

Carlos J. Costa (ISEG) 2025/26 -5

NLP

« Tokenization * Text Summarization

« Stemming * Information Extraction
« Lemmatization * Question Answering

* Part-of-Speech (POS) Tagging * Text Classification

. z\jNaEnI;)ed Entity Recognition » Topic Modeling

* Sentiment Analysis * Dependency Parsing

- Language Modeling * Discourse Analysis

e Machine Translation

‘! Carlos J. Costa (ISEG) 2025/26 -6
v

import nltk
sentence data = "First, T will explain you how this work. Then, you will do it.

nltk_tokens = nltk.Sent_tokenize(sentence_data)
print (nltk tokens)

['First, I will explain you how this work.', "Then, you will do it."]

Tokenization

Breaking down text into
Smaller unItS SUCh as WOI’dS, text = "First, I will explain you how this work. Then, you will do it.|"
phrases, or sentences. import nitk

new text = nltk.word_tokenize{text)
print (new text)

["First*, ',', 'I', 'will', 'explain', 'you', 'how', 'this', 'work',
l-l’ 'Thenl’ l!l! lyoul’ lwilllr Idol’ lj_tl’ l-l]

from nltk.tckenize import RegexpTokenlizer
tokenizer = RegexpTokenizer (r'\w+")
new text=tokenizer.tokenize (text)

print (new text)

["First"', 'I', 'will', 'explain', 'you', 'how', 'this', 'work', 'Then',
'you', "will', 'do', 'it']

Stemming

Removing suffixes or
prefixes from words
to obtain their root
form.

from nltk.stem import PorterStemmer

€ words= ["studies", "studying”,
ps =PorterStemmer ()
for w in e words:
rootWord=ps.stem(w)
print (rootWord},

studi
studi
cri
cri

"cries™,

”CI'Y" :

Lemmatization

Reducing words to their base
or dictionary form while still
ensuring they are valid
words.

import nltk
from nltk.stem import WordNetLemmatizer
wordnet lemmatizer = WordNetLemmatizer ()
text = "studies studying cries cry"
tokenization = nltk.word tokenize (text)
for w in tokenization:

print (wordnet lemmatizer.lemmatize (w))

study
studying
ory

cry

Part-of-Speech
(POS) Tagging

Assigning grammatical categories (such
as noun, verb, adjective, etc.) to words
in a sentence.

Part-of-Speech (P0OS) Tagging
import nltk

text = "I am waiting for the end of the class.”
tokens = nltk.word_tokenize(text)

pos_tags = nltk.pos_tag(tokens)

print(pos_tags)

[('T', "PRP"), ('am', 'VBP'), ('waiting', 'VBG'), ('for', 'IN'), ('the', 'D
T'y, ('end’, 'NN'), ('of', 'IN'), ('the', 'DT'), ('class', 'NN'), ('.', '.")]

POS Tagging

PRP

[ver]

like

TO

to

[ve

[NN |

Fead

books

Named Entity
Recognition (NER)

Named Entity Recognition (NER):

Identifying and import nltk
ClaSSifying named text = "The campus of ISEG is in Lisbon, Portugasl. Carlos works there.”

i+ tokens = nltk.word_tokenize(text)
entities (such as person o S

names, locations, entities = nltk.chunk.ne_chunk(tags)
. . . rint{entities
organizations, etc.) in print(;
(s

text. The/DT

campus,/NN

of /IN

(ORGANIZATION ISEG/NNP)

is/VBZ

in/IN

(GPE Lisbon/NNP)

J‘llllll‘
(GPE Portugal/NNP)
.
(PERSON Carlos/NNP)
works /VBZ
there/RE
)

Sentimen
Analysis

Determining the
sentiment or opinion
expressed in text,
typically categorized
as positive, negative,
or neutral.

LA &l R

o

O =

N

Sentiment Analysis:

from nltk.sentiment.vader import SentimentIntensityfnalyzer
analyzer = SentimentIntensityAnalyzer()

text = "I love this movie! It's amazing.”

sentiment scores = analyzer.polarity scores(text)
print(sentiment_scores)

1'neg': 8.8, 'neu': B8.266, 'pos': ©.734, "compound': @.8516}

Building statistical models to predict the next

word in a sequence of words, often used in
Language machine translation, autocomplete, and speech
Model_ing recognition.

Language Modeling:

[T T

import nltk
nltk.download('gutenberg’)
5 #nltk.corpus.gutenberg. fileids()

7 text = nltk.corpus.gutenberg.raw('bible-kjv.txt")

8 #text = nltk.corpus.gutenberg.raw('shakespeare-hamlet.txt")

9 words = nltk.word_tokenize(text)

% bigrams = nltk.ngrams(words, 2)

11 model = nltk.ConditionalFregDist(bigrams)

12 rrint{mudel["face"].must_cummun{S}} # Predict next word after "to"

[("of', 109), (',', 79), ('to', 43), ('.', 31), ('from', 20)]

Machine
Translation

Translating text from one language to another
automatically using computational methods.

Tsso realmente funciona bem.

from deep_translator import GoogleTranslator

def translate text(text, dest lang='es'):
try:
translated text = GoogleTranslator(source="autc', target=dest lang).translate(text)
return translated text
except Exception as e:
return "An error occurred: {str{e)}”
Example usage
translated text = translate text("Das funktioniert tatsichlich gut.", dest_lang="pt')
print(translated text)

Text
Summarization

Generating concise summaries of longer text
documents while preserving the most
important information.

from transformers import pipeline

Load the summarization pipeline with a specific model
summarizer = pipeline("summarization™, model="t5-base", tokenizer="t5-base")

Example text

text = "We are currently exploring the applications of Artificial Intelligence in management and economics. Our focus exte

Generate summary
summary = summarizer(text, max_length=58, min_length=18, do_sample=False)}[@]['summary_text']

Print the summary
print(summary)

< >

our focus extends beyond studying the use of AT to include the management of artificial intelligence . we hawve been significa
nt in organizing annual Artificial Intelligence and Management workshops since 2819 .

Information Extraction:
import re

text = “Jodo Dugque is the dean of ISEG, University of Lisbon. Luis Carrigo is the dean of FCUL, University of Lisbon.™
matches = re.findall(r'([A-Za-zA-00-8d-F]+)\s+([A-Za-zA-00-8d-7]+) \s+is\s+the\s+dean\s+of\s+([",.]+) ", text)

print({matches)

[("Jodc', 'Duque', '"ISEG"), ('Luis', 'Carrigo', 'FCUL"}]

Automatically extracting structured

I nfO rm atl O n information from unstructured text, such as
. extracting entities, relations, and events.
Extraction

Regular Expression

NOW, THIS PART
OF THE REGEX

l

—)

(P::(NQ))2(2:\ /(T 2] %)) 2(2: \?(T*

o Sequence of characters that specifies a search pattern.

o https://docs.python.org/3/howto/regex.html

‘! Carlos J. Costa (ISEG) 2025/26 -24

Q U eSt|O N Building systems that can understand and
answer guestions posed in natural language.
Answering

#Question Answering:
from transformers import pipeline

ga_pipeline = pipeline("question-answering”, model="bert-large-uncased-whole-word-masking-finetuned-squad”,
tokenizer="bert-large-uncased-whole-word-masking-finetuned-squad™)

context = """Natural Language Processing (NLP) is a subfield of artificial intelligence that focuses on the
interaction between computers and humans through natural language. """
guestion = “"What is NLP2?"

answer = ga_pipeline(question=questicn, context=context)
print{answer["answer'])

Matural Language Processing

Categorizing text documents into predefined
TeXt categories or classes, such as spam detection,
sentiment classification, topic classification,

Classification etc.

Text Classification:

from sklearn.feature extraction.text import CountVectorizer
from sklearn.naive bayes import MultinomialNE

from sklearn.pipeline import make pipeline

from sklearn.model selection import train_test split

from sklearn.metrics import accuracy score

X = ["I love this movie!", "This movie is terrible."]
y = [1, o

X train, X test, y train, y test = train_test split(X, y, test size=8.2, random state=42)
model = make pipeline(CountVectorizer(), MultinomialNB())

model.fit(X train, y train)

predictions = model.predict(X_test)

accuracy = accuracy score(y test, predictions)

print(“Accuracy:", accuracy)

Topic Modeling

|dentifying topics

or themes present
in a collection of || —)

documents, often
using techniques
like Latent
Dirichlet
Allocation (LDA).

T e
Collection of Text Dociements

‘! Carlos J. Costa (ISEG) 2025/26 - 27

pmod

root ob obj
SHN E\\, / det

ate, the3 fish, with; a, fnll

Analyzing the grammatical
Dependency structure of sentences to

Parsing determine the relationships
between words.

‘! Carlos J. Costa (ISEG)

2025/26 - 28
v

Discourse Analysis

[
from nltk.corpus import stopwords
from nltk.tokenize import sent tokenize, word_tokenize

Example text with multiple sentences
toxt = """

[J
Natural Language Processing (NLP) is a subfield of artificial intelligence.
It focuses on the interaction between computers and humans through natural language.
NLP techniques are used in variocus applications such as machine translation, sentiment

bnalysis, and text summarization.

Tokenize the text into sentences
sentences = sent_tokenize(text)

Tokenize each sentence into words and remove stopwords

1 stop_words = set(stopwords.words("english'))
Studylng the tokenized sentences = [word_tokenize(sentence) for sentence in sentences]
. . filtered_sentences = [[word for word in tokens if word.lower() not in stop_words] for tokens in tokenized_sentences]
organization and
Compute lexical chains based on word similarity
def te_lexical chai t :
structure of connected =« gyt aeintentence)

for i, sentence in enumerate(sentences):

texts beyond the chain = []

for word in sentence:
for j, prev_sentence in enumerate(sentences[:i]):
Sentence level, if word in prev_sentence:
chain.append((word, j))

including coherence, break

chains.append{chain)

H return chains
cohesion, and
Compute lexical chains for the example

rhetorical relations. lexical chains = compute lexical_chains(filtered_sentences)

Print the lexical chains for each sentence
for i, chain in enumerate(lexical chains):
print(f"Sentence {i+1} Lexical Chain: {chain}"}

Sentence 1 Lexical Chain: []
sentence 2 Lexical Chain: [(".", @)]
Sentence 3 Lexical Chain: [('MLP', @), ('.', @)]

Web
Scraping

“I dow't think this is what they mean
by ‘data scraping’, Jume!”

Beautiful Soup is a HTML parser.

This Python library is designed for
screen-scraping projects.

Three features make it powerful:

navigating, searching, and
modifying a parse tree

converts incoming documents
to Unicode and outgoing
documents to UTF-8

sits on top of popular Python
parsers like Ixml and html5lib.

https://www.crummy.com/software/
BeautifulSoup/

. Removing stop words is an essential step in
NLP text processing

Stopword - filtering out high-frequency words that add
little or no semantic value to a sentence

for example to, at, for, is, etc.

‘! Carlos J. Costa (ISEG) 2025/26 -
v

Libraries

0‘ spaCy

TextBlob

. topic modelling for humans é

NLTK

4! Carlos J. Costa (ISEG) 2025/26 - 32

g L ikt

Natural Language Toolkit

A suite of text processing libraries for:
Classification

. Tokenization
N LTK . Stemming

Tagging
Parsing
Semantic reasoning

http://www.nltk.org/book/

2025/26 - 33

‘! Carlos J. Costa (ISEG)
v

Conclusions

e NLP as subset of Al and CS
* Main concepts and Applications
 Main libraries

‘! Carlos J. Costa (ISEG) 2025/26 - 34

	Slide 1: Natural Language Processing (NLP)
	Slide 2: Learning Goals
	Slide 3: Table of Contents
	Slide 4
	Slide 5
	Slide 6: NLP
	Slide 7: Tokenization
	Slide 10: Stemming
	Slide 13: Lemmatization
	Slide 16: Part-of-Speech (POS) Tagging
	Slide 17: Named Entity Recognition (NER)
	Slide 18: Sentiment Analysis
	Slide 20: Language Modeling
	Slide 21: Machine Translation
	Slide 22: Text Summarization
	Slide 23: Information Extraction
	Slide 24
	Slide 25: Question Answering
	Slide 26: Text Classification
	Slide 27: Topic Modeling
	Slide 28: Dependency Parsing
	Slide 29: Discourse Analysis
	Slide 30
	Slide 31
	Slide 32: Libraries
	Slide 33
	Slide 34: Conclusions

