Data: 18-12-2024 **Época Normal** Duração: **2 horas**

Tópicos de Resolução

1.

(a) Valor ótimo: $z^*=500x4+600x2=3200$ é o lucro total obtido com a venda do azeite. Solução ótima: $x^*=(4,2,0,1,0)$,

 $x_1^* = 4$ vender no mercado interno 4Mt de azeite; $x_2^* = 2$ vender no mercado externo 2Mt de azeite,

 $x_3^* = |6 - 6| = 0$ é produzido o máximo possível (6 Mt),

 $x_4^* = |2 - 3| = 1$ o valor máximo de venda no mercado externo (3Mt) não é atingido, ainda fica uma margem de 1Mt,

 $x_5^* = |16 - 16| = 0$ a despesa total iguala o valor máximo permitido (16000).

(b)

- i. Analisar a variação do termo independente da restrição R1, sem alterar a estratégia ótima. Nestas condições, o termo independente $b_1=6$ pode aumentar 2 e diminuir 1, logo $\Delta b_1\in[-1,2]$. Uma vez que o seu preço sombra é de 400, $y_1^*=400$, o impacto do aumento máximo, $\Delta b_1=2$, é de $\Delta z^*=y_1^*\times \Delta b_1=400\times 2=800$. Contudo, há que considerar o custo de 300 por Mt, pelo que o valor da f.o. apenas aumentará $800-2\times 300=200$ u.m..
- ii. Analisar a variação do termo independente da restrição R3, sem alterar a estratégia ótima. Nestas condições, o termo independente $b_3=16$ pode aumentar 2 e diminuir 4, logo $\Delta b_1=2\in[-4,2]$. Uma vez que o seu preço sombra é de 50, $y_3^*=50$, o impacto do aumento máximo, $\Delta b_3=2$, é de $\Delta z^*=y_3^*\times\Delta b_3=50\times2=100$. Portanto, o valor da f.o. aumentará 100u.m.

R: Assim, a melhor decisão será a opção (i) e aumentar a produção da quantidade total de azeite o máximo possível que é de 2Mt.

- (c) Adição de uma nova variável x_N que indica a quantidade de azeite, em Mt, a vender no novo mercado. Os seus coeficientes serão 1 na R1, 0 na R2 e 5 na R3. Pretende-se determinar o seu coeficiente c_N na f.o.. A restrição do dual associada a x_N é $y_1^* + 5y_3^* \ge c_N$. Temos $y_1^* = 400$ e $y_3^* = 50$, resultando $400 + 5 \times 50 = 650$. Se pretendermos vender neste novo mercado terá de ser $c_N \ge 650$. Portanto, o preço de venda deste azeite teria de ser igual ou superior a 650u.m..
- (d)

i. Trata-se de um problema de transportes equilibrado (Oferta (3+1+2=6) = Procura (1,5+1,5+1,5+1,5=6)).

Se definirmos as variáveis x_{ij} que indicam a quantidade, em Mt, de azeite a transportar entre a unidade de produção i, com i=1,2,3, sendo i=1=Vila Real, i=2=Guarda, i=3=Beringel, e o armazém Aj, com j=1,2,3,4, uma solução admissível pode ser $x_{11}=1,5$; $x_{12}=1,5$; $x_{23}=1$; $x_{33}=0,5$; e $x_{34}=1,5$; restantes variáveis x_{ij} têm valor zero. O custo deste plano de transportes é $z=10\times1,5+3\times1,5+6\times1+3\times0,5+4\times1,5=15+4,5+6+1,5+6=33$.

ii. Usando as variáveis x_{ij} definidas na alínea anterior, a formulação em PL deste problema é

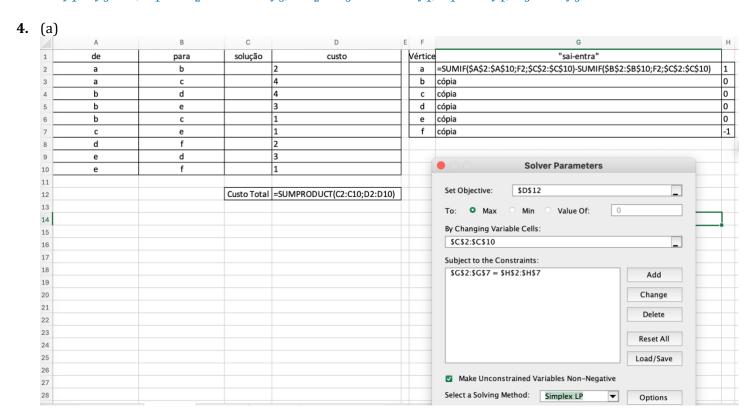
 $\min Z = 10x_{11} + 3x_{12} + 5x_{13} + 7x_{14} + 8x_{21} + 10x_{22} + 6x_{23} + 3x_{24} + 5x_{31} + 6x_{32} + 3x_{33} + 4x_{44}$ sujeito a

$$\sum_{j=1}^{4} x_{1j} = 3; \quad \sum_{j=1}^{4} x_{2j} = 1$$

$$\sum_{j=1}^{4} x_{3j} = 2; \quad \sum_{i=1}^{3} x_{ij} = 1,5; \quad j = 1,2,3,4$$

$$x_{ij} \ge 0, i = 1,2,3; j = 1,2,3,4.$$

2.


- (a) A solução associada a este quadro é x = VB z x_1 (0,1,0,0,9,8) e trata-se de uma solução básica z x_2 x_3 admissível não ótima porque na linha z existem x_2 x_3 x_4 x_5 x_5
- (b) CE: $min\{-3\} = -3 \rightarrow x_1$; CS: $min\left\{\frac{9}{3}\right\} = 3 \rightarrow x_5$ Obteremos a solução $x^* = (3,10,0,0,0,8)$ com valor $z^* = 13$. Trata-se de uma solução básica admissível que é a solução ótima, porque na linha de z todos os coeficientes são ≥ 0 .

۷D	Z	λ_1	x_2	λ_3	λ_4	λ_5	λ_6	11
Z	1	-3	0	7	2	0	0	4
x_2	0	-3	1	2	3	0	0	1
x_5	0	3	0	-3	-1	1	0	9
x_6	0	0	0	2	3	0	1	8
Z	1	0	0	4	1	1	0	13
x_2	0	0	1	-1	2	1	0	10
x_1	0	1	0	-1	-1/3	1/3	0	3
Y	0	0	0	2	3	0	1	8

(c) Que o problema não tem solução ótima uma vez que é ilimitado.

3.

- (a) $y_3 \le y_2$; $x_2 \le M y_2$; $x_3 \le M y_3$, sendo M uma constante suficientemente grande
- (b) $y_1 = y_2$; $x_1 \le M y_1$, $x_2 \le M y_2$, sendo M uma constante suficientemente grande
- (c) sendo M uma constante suficientemente grande: $y_1 + y_3 = 1$, $x_1 + 2x_2 \le 12 + M$ y_3 , $3x_2 + x_3 \le 16 + My_1$, $x_1 \le M$ y_1 , $x_3 \le M$ y_3 .

(b) O caminho (a,b,d,f) define a solução $x_{ab} = 1$, $x_{bd} = 1$, $x_{df} = 1$, restantes variáveis com valor zero, com valor z = 2 + 4 + 2 = 8.

(c) Usando o algoritmo de PRIM, com n-1=5 iterações, poderemos verificar que o custo de reconstrução é de 2+1+1+2=7 e as ligações que devem ser reconstruídas em primeiro lugar são (a,b), (b,c), (c,e), (e,f) e (f,d).

Iteração	Vértices na árvore	Vértice adjacente, não na árvore, a <custo< th=""><th>Custo da ligação</th><th>Aresta para a árvore</th></custo<>	Custo da ligação	Aresta para a árvore
1	a	b	2	(a,b)
2	a	С	4	
	b	С	1 <-mín	(b,c)
3	a	-	-	
	b	e	3	
	С	e	1 <- mín	(c,e)
4	b	d	4	
	С	-	-	
	e	f	1	(e,f)
5	b	d	4	
	e	d	3	
	f	d	2 <- mín	(f,d)