

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO

INVESTIGAÇÃO OPERACIONAL

10 de janeiro de 2025

Época Recurso

TÓPICOS DE RESOLUÇÃO

- **1.** a) Devem realizar 100 inquéritos na zona A ($x_A^* = 100$), 700 na zona B ($x_B^* = 700$) e 200 na zona C ($x_c^* = 200$). É igualado o número máximo de questionários que se podem fazer nas zonas A e B $(x_4^* = 0)$, são realizados mais 700 questionários do que o mínimo exigido nas zonas B e C $(x_5^* =$ 700) e todo o orçamento disponível é gasto ($x_6^* = 0$).
 - b) Dual

$$Max W = 1000y_1 + 800y_2 + 200y_3 + 3000y_4$$

s.a:
$$\begin{cases} y_1 + y_2 + 5y_4 \le 20 \\ y_1 + y_2 + y_3 + 3y_4 \le 40 \\ y_1 + y_3 + 2y_4 \le 60 \\ y_1 \ livre; \ y_2, y_4 \le 0, y_3 \ge 0 \end{cases}$$

c) $y_1 = 80$: por cada família que fosse possível entrevistar a mais (menos), compatível com o IS, o tempo total aumenta (diminui) 80 minutos; $y_3 = 0$: alterar o número de famílias mínimo a entrevistar nas zonas B e C, compatível com o IS, não provoca alterações no tempo total; $y_4 =$ -10: por cada u.m. de orçamento disponível a mais (menos), compatível com o IS, o valor do tempo total diminui (aumenta) 10 minutos.

d)
$$\bar{c}_B = 30 \Longrightarrow \Delta c_B = 30 - 40 = -10 \text{ e } IS(\Delta c_B) = [-20; 6,6(6)]. \text{ Como } \Delta c_B \in IS(\Delta c_B)$$
 $\Delta z = \Delta c_B \times x_B = -10 \times 700 = -7000 \text{ minutos}.$

Mantém o número de questionários em cada zona e o tempo total é reduzido em 7000 minutos.

e)
$$\Delta z = -600$$
; $IS(\Delta b_4) = [-200; 1400]$. Se $\Delta b_4 \in IS(\Delta b_4) \Rightarrow y_4 = -10$ $\Delta z = y_4 \times \Delta b_4 \Leftrightarrow -600 = -10 \times \Delta b_4 \Leftrightarrow \Delta b_4 = 60$ que pertence ao IS.

É necessário aumentar o orçamento em 60 u.m

f) Seja a variável binária $y = \begin{cases} 1 \text{ se } x_B + x_C \ge 950 \\ 0 \text{ caso contrário} \end{cases}$. Devem ser incluídas no modelo as seguintes restrições:

$$5x_A + 3x_B + 2x_C \le 3000 + 500y$$
 em substituição da quarta restrição $x_B + x_C \ge 950y$ $y \in \{0,1\}$.

2. a) x_{ij} número de elementos do tipo j (j = 1-TP; 2 - Aux) a fornecer pela equipa i (i = 1,2,3,4)

$$Min z = 15x_{12} + 25x_{21} + 20x_{31} + 10x_{32} + 25x_{41} + 5x_{42}$$

s.a:
$$\begin{cases} x_{12} \le 1 \\ x_{21} \le 1 \\ x_{31} + x_{32} \le 2 \\ x_{41} + x_{42} \le 2 \\ x_{21} + x_{31} + x_{41} = 1 \\ x_{12} + x_{32} + x_{42} = 2 \\ x_{12}, x_{21}, x_{ij} \ge 0 \ i = 3,4; j = 1,2 \end{cases}$$

- **b)** A solução $x_{31}=1$; $x_{42}=2$; $(x_{ij}=0 \text{ outros } ij)$ tem valor $30=20+5\times 2$ e é admissível, como coincide com o valor ótimo, é também ótima.
- SBA ótima: B; SBA não ótima: O; SNBA: D e SBNA: E.

4. a) Trata-se do problema da árvore geradora mínima.

b)

it	$\in V_T$	$\notin V_T$ mais perto	Comprimento	Juntar a E_T
1	S	ı	4	(S,I)
2	S	II	5	
		II	3	(1,11)
3	S	IV	7	
	1	III	6	
	Η	IV	4	(II,IV)
4	S	III	8	
	1	III	6	
	Ш	III	7	
	IV	V	2	(IV,V)
5	S	III	8	
	1	III	6	
	Ш	III	7	
	IV	III	5	(IV,III)
	V	III	10	

Tempo total consumido pela ONG na distribuição: 18.

Arestas da árvore $E_T = \{(S, I); (I, II); (II, IV); (IV, V); (IV, III)\}.$

c) A sede deve enviar para a equipa I todo o material que chega. A equipa I retira o seu e envia o restante para II. Esta equipa deve recolher o seu material e entregar a IV o restante. Por sua vez, IV recebe o seu material e encarrega-se de entregar a V e a III os materiais respetivos destas equipas