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Cost function

The previous chapter introduced the cost function:

c(w, y) = min
x

wx

such that f (x) = y .

The cost function c(w, y) = wx(w, y) gives us the minimal costs for producing y units of output
against input prices w.

W Where the production function describes the technological possibilities of the firm, the cost
function describes its economic possibilities.

This chapter uses comparative statics exercises to derive insights into the cost function (and some
more).
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Short run versus long run

The cost function is,

c(w, y) = wx(w, y).

In the short run, some factors of production may be fixed. Let xf be the fixed factors and let xv be
the variable factors, and break up the prices into w = (wv ,wf ). The short-run cost function is,

c(w, y , xf ) = wv xv (w, y , xf ) + wf xf .

where xv (w, y , xf ) is the short-run conditional factor demand function, which now also depends
upon xf .

Note that the short- and long run are relative concepts: They depend upon the problem that is
analyzed. The long run, for a particular problem or firm, is the time period over which all factors
are variable.
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Various short-run cost concepts

The short-run cost function is,

c(w, y , xf ) = wv xv (w, y , xf ) + wf xf .

From which we can define:

SR total cost = STC =c(w, y , xf ),

SR average cost = SAC =
c(w, y , xf )

y
,

SR average variable cost = SAVC =
wv xv (w, y , xf )

y
,

SR average fixed cost = SAFC =
wf xf

y
,

SR marginal cost = SMC =
∂c(w, y , xf )

∂y
.
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Various long-run cost concepts

When all factors are variable, the firm can also optimize the usage of xf . The long-run cost function
is identical to how we analyzed the cost function in Ch 4: There were no fixed factors.

We can, however, express the long-run cost function in terms of the short-run cost function.

Let xf (w, y) be the optimal long-run conditional factor demand functions for the fixed factors. We can
then plug xf (w, y) into the short-run cost function c(w, y , xf ) to obtain the long-run cost function:

c(w, y , xf (w, y)) =wv xv (w, y , xf (w, y)) + wf xf (w, y)

=wv xv (w, y) + wf xf (w, y)

=wx(w, y)

=c(w, y).
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Various long run cost concepts

The long-run cost function is,

c(w, y) = wx(w, y).

From which we can define:

LR total cost = LTC =c(w, y),

LR average cost = LAC =
c(w, y)

y
,

LR average variable cost = LAVC = LAC,

LR average fixed cost = LAFC = 0,

LR marginal cost = LMC =
∂c(w, y)

∂y
.
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Exercise

Consider a Cobb-Douglas production function where the factor x2 is fixed at k . Hence, the
cost-minimization problem is:

min
x1

w1x1 + w2k subject to xα
1 k1−α = y .

1. Find the short-run conditional factor demand function x1(w, y , x2 = k).

2. Find the short-run cost function c(w, y , x2 = k).

3. Find the following cost curves: SAC, SAVC, SAFC, and SMC.
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Exercise

In the long run the firm is also able to choose x2. The cost-minimization problem becomes:

min
x1,x2

w1x1 + w2x2 subject to xα
1 x1−α

2 = y .

1. Find the long-run conditional factor demand functions x1(w, y) and x2(w, y).

2. Show that x1(w, y) can also be found by plugging x2(w, y) into the short-run conditional factor
demand function x1(w, y , x2 = k) derived in the previous exercise. That is, show that:

x1(w, y) = x1(w, y , x2(w, y)).
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Long-run and short-run cost curves

For any output y , the long-run cost function must be weakly lower than the short-run cost function
since the short-run cost minimization is a constrained version of the long-run cost minimization.

To be precise, let input xf be fixed on the short-run at xf = k , where on the long-run xf (w, y) is the
optimal conditional factor demand, so that:

STC =c(w, y , xf = k),

LTC =c(w, y , xf (w, y)).

Now let xf = k be the associated optimal conditional factor demand at y = yk . Hence,
xf (w, y = yk ) = k . Then it must be that:

c(w, y = yk , xf = k) = c(w, y = yk , xf (w, y = yk )), but

c(w, y ̸= yk , xf = k) ≥ c(w, y ̸= yk , xf (w, y ̸= yk )).
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Long-run and short-run cost curves
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The geometry of cost curves

The total cost curve is increasing in y : when y increases, total costs should increase.

But how about the average total, average variable, average fixed, and marginal cost curves? When
discussing the geometry of these cost curves, lets consider a time horizon where at least one factor
is fixed.
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The geometry of cost curves

(i) SAVC: will (eventually) increase with output y due to decreasing returns to scale: Increasing y
will require increasingly more inputs. Intuition: firm encounters capacity constraints because of fixed
factors.

(ii) SAFC: will decrease with output y since fixed costs can be spread over more y .

(iii) SAC: is a U-shaped curve: SAC = SAVC + SAFC.

(iv) SMC is equal to SAC in the minimum of SAC: if SMC < SAC the SAC must be declining and if
SMC > SAC the SAC must be increasing.
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Exercise

Consider a firm that uses two inputs x1 and x2 to produce one output via y = xα
1 x2. However, x2 is

fixed at k . The cost-minimization problem is:

min
x1

w1x1 + w2k subject to xα
1 k = y .

1. Find the short-run conditional factor demand function x1(w, y , k).

2. Find the short-run average variable cost function (SAVC).

3. Show the following:

• SAVC is increasing in y in case of DRTS

• SAVC is constant in y in case of CRTS

• SAVC is decreasing in y in case of IRTS
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Exercise

Show that SMC is equal to SAC at the point of minimum SAC. That is, let y = y∗ be the point of
minimum SAC, and show that:

∂c(y∗)

∂y
=

c(y∗)

y∗ .

(Note that c(y) = c(w, y , xf ) is the (short-run) cost function, but we suppressed w and xf as they do
not play a role here.)
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Long-run and short-run average cost curves

We already saw that the long-run cost function must be weakly lower than the short-run cost
function. This must also be true for the average cost functions.
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Long-run and short-run average cost curves

Imagine that the short-run fixed input has three different levels: k1, k2, k3. For instance, ki implies i
number of factories. Then we have three different SACs: the SACi is the cost-minimizing SAC with
the fixed input at ki . In the long run the input is not fixed anymore, we can switch from k1 to k2 to k3,
so that the LAC will simply be the lower envelope of all SACs.
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Conditional demand function from cost function

If you were given the conditional factor demand functions x(w, y) finding the cost function is easy:
just substitute the conditional factor demand functions into wx:

c(w, y) =wx
=wx(w, y).

It turns out that if you know the cost function, it also easy to find the conditional factor demand
functions. This is what Shephards’s lemma shows us.
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Shephard’s lemma

Shephard’s lemma shows that we can find the conditional factor demand functions from the cost
function as follows:

∂c(w, y)
∂wi

= xi(w, y).

In words, Shephard’s lemma is that the derivative of the cost function towards the input price gives
us the conditional factor demand function. This is similar to Hotelling’s lemma, but then in the
context of constrained optimization.
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Proof Shephard’s lemma

Let’s consider the case with two inputs: x = (x1, x2). Consider the Lagrangian,

L(w, y , x, λ) = w1x1 + w2x2 − λ(f (x)− y).

First, note that:

∂L(w, y , x, λ)
∂w1

= x1.

Second, substitute the conditional factor demand functions x(w, y) and the Lagrange multiplier
λ(w, y) into the Lagrangian to obtain the Lagrangian evaluated at the optimal point:
L(w, y , x(w, y), λ(w, y)) = L(w, y). It turns out, this is equal to:

L(w, y) =w1x1(w, y) + w2x2(w, y)− λ(w, y)
(

f (x(w, y))− y
)
,

=w1x1(w, y) + w2x2(w, y),

=wx(w, y),

=c(w, y).
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Proof Shephard’s lemma

Third, use the logic of the envelope theorem to show that at the optimal point:

∂L(w, y)
∂w1

=
∂L(·)
∂w1︸ ︷︷ ︸

direct effect

+
∂L(·)
∂x1

∂x1(·)
∂w1

+
∂L(·)
∂x2

∂x2(·)
∂w1

+
∂L(·)
∂λ

∂λ(·)
∂w1︸ ︷︷ ︸

indirect effect

,

=
∂L(·)
∂w1

,

=x1(w, y),

as the indirect effects are zero because of the FOCs of the Lagrangian.

Since L(w, y) = c(w, y), we conclude that:

∂L(w, y)
∂w1

=
∂c(w, y)

∂w1
= x1(w, y).

Indeed, this is similar to the proof for the Lagrange multiplier.
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Exercise

Consider the following cost-minimization problem:

min
x1,x2

w1x1 + w2x2 subject to xα
1 x1−α

2 = y .

In a previous exercise you have found the conditional factor demand functions x1(w, y) and x2(w, y),
and the cost function c(w, y). Now show that:

∂c(w, y)
∂wi

= xi(w, y) for i = 1, 2.
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Homework exercises

Exercises: 5.11, and exercises on the slides
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