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What is game theory?

Context: In situations where the actions of an individual agent
affect others, agents are incentivized to act strategically,
considering how others will respond to their actions.

What is Game Theory?

» Definition: Game theory is the systematic study of how
rational agents behave in such strategic contexts—referred to
as games.

» In these games, each agent must account for the decisions of
others before determining their optimal course of action.

Key Feature:

» The interdependence of agents’ actions. Each agent's
decisions influence and are influenced by others.



Example 1: The batter-pitcher game

Scenario:

» A pitcher can throw two types of pitches: a fastball and a
curveball.

» The fastball is the pitcher’'s strongest pitch, while the
curveball is average.

» If the pitcher were playing alone, his optimal decision would
be to always throw the fastball.

What Changes?
P> There is a batter in the game.

P> The batter anticipates the pitcher’'s actions and adjusts his
strategy accordingly.

» If the pitcher ignores the batter's response, his best pitch
could become the worst decision.



Unpredictability as a Strategy

» In the batter-pitcher game, predictable behavior leads to a
disadvantage.

» Rational and strategically behaving agents must sometimes
act in an unpredictable manner to maintain an edge over
their opponent.

» This unpredictability is formalized through the concept of
mixed strategies, where players choose their actions
according to specific probabilities.



The Prisoner’s Dilemma

Scenario:

>

| 4

Two members of a criminal gang are arrested and placed in
solitary confinement.

The police lack enough evidence to convict them on the main
charge.

Both are given the option to testify against the other or
remain silent.

If one testifies and the other remains silent, the testifier goes
free, and the silent partner receives a three-year sentence.

If both testify, they each receive a two-year sentence.

If both remain silent, they each serve one year in jail on a
lesser charge.



Normal form game

» We define the scenarios discussed as games.

» In game theory, a game is characterized by strategic
interaction among participants.

» Strategic interaction implies that each participant’s payoff
depends not only on their own actions but also on the actions
of other participants.

» The participants are referred to as players.

» The possible actions that each player can choose are called
strategies.



Strategic Form Game

We will focus on static games: all players take actions
simultaneously. A strategic form game is a tuple:

G - (Si7 ui)ll'\lzla

where:

» For each player i =1,..., N, S; is the set of strategies
available to player i. This means that the representation will
also specify the list of players.

> u;: l_LNzl S; — R describes player i's payoff as a function of
the strategies chosen by all players.

Finite Strategic Form Game: A strategic form game is finite if
each player's strategy set contains finitely many elements.



Dominant Strategies

For the following definitions, let S = 51 X - -+ x Sy represent the
set of joint pure strategies. The symbol —/ refers to 'all players
except player /'.

Strictly Dominant Strategies:
A strategy, §; for player i is strictly dominant if
ui(8i,s_;) > ui(si,s_;) for all (sj,s_;) € S with s; # §;.

‘ Left Right
Up |30 0,—4
Down | 2,4 —1,8

A rational player should play a dominant strategy, provided that
there is one.



Dominant strategies

Strictly Dominated Strategies

A strategy §; for player i strictly dominates another strategy s; if
ui(8i,s—;) > ui(Si,s—;) for all s_; € S_;. In this case, 5; is said to
be strictly dominated within S.

Consider the following game in matrix form:

| L M R

0,—5 0,—4
Cl1,-1 33 —24
41 -1,8




Dominant Strategies

Formal Definition of iterative elimination of strictly
dominated strategies:

Let S,Q = §; denote the initial set of strategies for each player /.
For n > 1, let S/ represent the set of strategies for player i that
remain after the n-th round of elimination. Specifically, s; € S/ if
si € 5,-”_1 and s; is not strictly dominated in 5,-”_1.

Iteratively strictly Undominated Strategies

A strategy s; for player i is said to be iteratively strictly
undominated in S (or to survive the iterative elimination of strictly
dominated strategies) if 5; € S/ for all n > 1.



Dominant strategies

Iterative elimination of strictly dominated strategies in
practice:

1. Step 1: Initial elimination. Since rational players will never
play a strictly dominated strategy, we can immediately remove
these from their strategy sets.

2. Step 2: lteration through common knowledge. With the
assumption of common knowledge of rationality, all players
know that strictly dominated strategies will be eliminated.

3. Step 3: Stopping condition. The process continues until no

more strictly dominated strategies remain for any player. The
remaining strategies form the set of surviving strategies.



Dominant Strategies

Two drawbacks to Iterative Elimination of Strictly dominated
strategies:

1. 2 Assumptions needed: rationality + common konwledge: all
players are rational, + all players know that all players are
rational + all players know that all players know...

2. Imprecise prediction about the game: how would you play if
there are no strictly dominated strategies?

L C R
T 0,4 40 5,3
M|4,0 0,4 53
B|3,5 3,5 6,6




An example with a coordination game

“The battle of programming languages”:

> Context: Alba and Joél, two Ph.D. friends, are working on a
programming problem set with different language preferences:

> Joél prefers Julia.
» Alba prefers Python.

» Challenge:

» Each would rather the other switch to their preferred language.
» Failure to coordinate means they can't submit the problem set.

» They choose independently without prior discussion.



An example with a coordination game

| Joél (Py) Joél (Ju)

Alba (Py) | 2.1 0,0
Alba (Ju) | 0,0 1,2



Dominant Strategies

Weakly Dominated Strategies

> A strategy §; weakly dominates another strategy §; for
Player i if:

u;(§;,s_;) > u;(§;,s_;) forall s_; € 5_;,

with at least one strict inequality (i.e., same payoff agains all
the strategies except for one where $; gives a strictly higher
payoff).

» This implies that 5; is weakly dominated in S.

» In contrast to strict dominance, weakly dominated strategies
can be equal to the dominating strategy in some cases.




Dominant Strategies

Iteratively Weakly Undominated Strategies
> Let Vl/,-0 = §; for each player i.
» For n > 1, let W] be the set of strategies that remain after
n-th round of elimination of weakly dominated strategies.

» A strategy s; € W/ if s; is not weakly dominated in W"~1.

1
P> A strategy s; is called iteratively weakly undominated if it
remains in W;" for all n > 1.
Thus, the final equilibrium outcomes from iterative deletion
of weakly dominated strategies depend on the order of
elimination.



Nash Equilibrium

In economics, equilibrium refers to a state where no agent has an
incentive to change their behavior, as they are optimizing their
situation (e.g., consumers maximize utility, firms maximize profits).

Game theory extends this concept by considering strategic
interactions between players:

» Players act in their own self-interest while considering the
actions of others.

» Equilibrium reflects mutual awareness of strategic
decision-making.
Nash Equilibrium, introduced by John Nash in 1951:

» Defined as a set of strategies where no player has a profitable
unilateral deviation.

» Each player’s strategy is a best response to the other's.

> A player cannot improve their payoff by changing their
strategy while others keep theirs unchanged.



Pure Strategy Nash Equilibrium

Given a strategic form game G = (S, u,-),’-V:l, a joint strategy § € S
is a Nash equilibrium if:

u;(§) > u,-(s,-,§_;) for all s; € S;.

Based on the following assumptions:
» Players are rational, aiming to maximize their utility.
» This rationality is common knowledge among players.
» Players form correct conjectures about the strategies of others.
Throughout previous discussions, we have reasoned in terms

of each player's best strategy. In some of the cases they were
Nash Equilibria.



Nash Equilibrium

> Proposition 1: A strategy profile that survives the iterative
elimination of strictly dominated strategies is a Nash
equilibrium.

That is, if the strategies (s1,- -, s2) are a Nash equilibrium
they will survive the iterated elimination of strictly dominated
strategies, but there can be strategies that also survive and
are not a Nash equilibrium

» Proposition 2: If the iterative elimination of strictly
dominated strategies reduces the game to a single strategy
profile, then this profile is the unique Nash equilibrium of the
game.



Mixed strategies

A mixed strategy involves randomizing over possible actions with
assigned probabilities to avoid predictability
> Motivation: Pure strategies might lead to predictable
behavior. By randomizing, players can prevent opponents
from exploiting their strategy.
> Key Idea: All players know each other’s strategies and payoffs
but may randomize to prevent being outmaneuvered.
Example: Batter-Pitcher Game
» If the pitcher always throws a fastball, the batter will always
prepare for it.
P> To avoid predictability, the pitcher might randomize between
a fastball and a curveball.

» The batter, in turn, also randomizes her response.



Mixed Strategy Nash Equilibrium

» Nash Equilibrium in Mixed Strategies: A strategy profile
where each player randomizes over actions such that no one
has an incentive to unilaterally deviate.

> Example: In the batter-pitcher game, both players randomize
with probability % for each action.

Why is this an equilibrium?

» Neither player can improve their expected payoff by changing
their strategy alone.

» The outcome is stable and self-enforcing: knowing the
randomization, neither player has a reason to change their
strategy.



Mixed Strategies in Finite Strategic Form Games

> A mixed strategy m; for player i is a probability distribution
over the player's pure strategies S;.

» Formally, m; : S; — [0, 1], where:

M= mi S —[0,1] | > mi(si) =1
si€S;

» Each pure strategy can be viewed as a mixed strategy by
assigning probability 1 to that strategy and 0 to others.

» Mixed strategies provide a broader set of choices, allowing for
all possible probabilistic combinations of pure strategies.



Mixed strategies

> Players value each strategy by making expected-value
calculations. That is, the uility function is von
Neumann-Morgenstern utility function on S:

vi(m) =" my(s1) - my(sw)ui(s).

seS

Strategies are chosen independently: the probability that the
pure strategy s = (s1,...,5y) € S is chosen is the product of
the probabilities that each separate component is chosen,
namely

N

H m,-(s,-).

i=1

In fact, this expected uility calculation allows us to define a new
game which is an augmented version of our pure-strategy game:

AG:(m17"‘;N;Vi7"’,VN)



Mixed Strategies Nash Equilibrium

>

In a finite strategic form game G = (S;, u;)Y;, a joint
strategy m € M is a Nash equilibrium if:

V,'(I’ﬁ) > V,'(I’I‘J,'7 r’h,,') Vm; € M;.

A mixed-strategy Nash equilibrium occurs when no player can
increase their expected utility by unilaterally changing their
probability distribution over actions.

Each player's mixed strategy is a best response to the other
players’ mixed strategies.

For a given game G, a mixed strategy profile m constitutes a
mixed-strategy Nash equilibrium if /M constitutes a
Nash-equilibrium of the augmented game AG.

Deviation in Mixed Strategies: Instead of switching to a
single action, players alter their probability distribution over
actions.



Simplified Nash Equilibrium Tests

The following statements are equivalent:
1. m € M is a Nash equilibrium.
2. For every player i, uj(m) = u;(s;, m—;) for every s; € S; given
positive weight by r;, and u;(m) > u;(s;, m—;) for every
s; € S; given zero weight by ;.

3. For every player i, uj(ri1) > u;(s;, m—_;) for every s; € S;.
That is, no pure strategy yields higher expected payoff than
the mixed strategy.

Recommended strategy:

1. Iterated elimination of dominated strategies.

2. Look for pure NE.

3. Look for mixed-strategies using the tests above.



The Batter-pitcher game with mixed strategies

Recall our batter-pitcher game:

|B:F B: C
P-F[-1,1 1,-1
P:C|1,-1 -1,1

Suppose the pitcher believes the batter will be ready for F with
probability g and to be ready for C with probability 1 — g.

> EUp(F.(9,1-¢q))=q(-1)+(1-q)l=1-2q
> EUy(C,(q,1-q)) =q(1)+ (1 - q)(-1) =29 -1



The Batter-pitcher game with mixed strategies

When will always F (i.e., a pure-strategy) be a best-response to
the mixed strategy of B?

» P will always do F iff
EUp(F,(q,1—q) > EUy(C,(q,1—-q)) = q<1/2

So, the best-response of P in pure-strategies is:

F, q<1/2,
BRp(q(1 — q)) = { Indifferent g =1/2
C, qg>1/2.



The batter-pitcher game with mixed strategies

Let r and 1 — r be the mixed strategy in which P throws as F and
C with probability r and 1 — r respectively. Let's find r*(g) such
that (r,1 — r) is a best response of P to B doing (g,1 — q):

Notice that the expected utility for P is:

EUp((r,1—r),(q.1=q))=rq(-1)+r(l—q) -1+ (1—r)g-1+
(1-r)(1—-9q)(-1)=(29—1)+r(2 - 4q)

> If(2—4q9) >0 = g <1/2, expected utility increases in r
and decreases if (2—4g) <0

» r=1ifqg<1/2 (e, F),r=0ifg>1/2

» g =1/2: P is indifferent between all pure strategies but also
between all mixed strategies because the EUf is independent
of r.



The Batter-pitcher game with mixed strategies

Thus the best-response (correspondence):

r=1 (ie, F), q<1/2,
r(g(l—q))=r"(q) =< re[0,1] (i.e., indifferent) q=1/2
r=0 (e, C), qg>1/2.



The Batter-Pitcher game with mixed strategies

r*(q)




The Batter-Pitcher game with mixed strategies

We apply the same reasoning to the batter. We need to find g*(r)
such that (g,1 — q) is a best response for B to P doing (r,1 —r)
Notice that the expected utility for F is:

EUB((Q, 1- q)v (r’ 1- r))
q(=1)+ (1 -r)(1-a)(1)

— (1) +r(1-q) - (~1)+(1-1)-

= (1—2r) + q(4r — 2)

» If (4r—2)>0 = r>1/2, expected utility increases in g
and decreases if (4r —2) <0

> g=1ifr>1/2(i.e., F),q=0if r <1/2
» r=1/2: B is indifferent between all pure strategies but also

between all mixed strategies because the EUg is independent
of g.



The Batter-pitcher game with mixed strategies

Thus the best-response (correspondence):

g=1 (ie., F), r>1/2
q((r,(1=r))=q*(r)=< qe[0,1] (ie. indifferent) r=1/2
g=0 (ie., C), r<1/2.



The Batter-Pitcher game with mixed strategies

q*(r)

r:1/2 A ]

(©)




The Batter-Pitcher game with mixed strategies

F) 1 r*(q)
q*(r)
YR UOR £
c :
© —y 1 q



The Batter Pitcher game with mixed strategies

The Nash Equilibrium, as we defined it, is the intersetion between
the best-response correspondences r*(q) and g*(r):
» The Pitcher throws a fastball with probability 1/2 and a
curveball with probability 1/2
» The batter throws a fastball with probability 1/2 and a
curveball with probability 1/2



Existence of Nash Equilibrium

Proposition: Consider a game where:
1. 5; € R™ is non-empty, convex and compact Vi,
2. uj(s1,- -+ ,sp) is continuous on all s; and quasiconcave in s;.

Then, there exists a pure Nash equilibrium of the game.

Corollary: Nash Theorem (1950):

» Every finite strategic form game possesses at least one Nash
Equilibrium, potentially in mixed strategies.

» This holds true regardless of the number of players involved,
as long as:

» Each player has a finite number of pure strategies.
» The game is not infinite.



Strategic interaction in product markets

> Many markets display a competitive structure combining
elements of both monopoly and competition.

» Fewer firms in an industry increase interdependence among
competitors.

» Firms adopt strategic decision-making due to the influence of
each other's actions.



Cournot Duopoly

v

Let g1 and g» denote the quantities of a homogenous product
produced by firm 1 and firm 2.

Let P(Q)=a-Q=2a-q1—q, Q<aand P(Q) =0 for
Q> a

Total cost of producing for firm i: Ci(q;) = cq;.

Assumce ¢ < a.

Firms choose the quantities simultaneously.



Cournot Duopoly

Normal form representation:

> 2 players

» Strategy space: S; = [0, 00)

> si=gq; €[0,a)
Notice that because P(Q) = 0 for Q > a, no firm produces
qi > a

> Assume payoff is equal to the profits:
ui(si,sj) = m(qi, q;) = qila— qi — q; — c]

Cournot-Nash equilibrium: output vector g maximizes profit
given competitors’ actions (i.e., being a maximum it will imply

that u;(s7,s) > ui(si, s}'))



Cournot Duopoly

Thus, the first-order condition of the maximization:

1
Gi = 5(a—a5—c),

* 1 *
a = 5(3 —qi —©).
Solving the system of equations implies: g1 = q» = agc,

What's the intuition? Notice that every firm would like to be a
monopolist:

> set g/ s.t. it maximizes 7;(q;,0). Thatis: gm = 25°.

» Profits would be: %



Cournot Oligopoly

» Suppose there are J identical firms in the market, and entry is
blocked.

» All firms share identical costs:
C(f)=cq, c¢>0 forj=1,...,J.

» Price is determined by total output, with linear inverse

demand:
J

p:a—quk, a>0,b>0.
k=1



Bertrand Oligopoly

P> Firms compete on setting prices rather than quantities.

» Consider a Bertrand duopoly: two firms producing a
homogeneous good with marginal cost c.

» Linear market demand:
Q=a— fp.

» Firms decide prices simultaneously, supplying whatever is
demanded.



Bertrand Oligopoly

» Profit function for Firm 1:

(p1—c)(a—pBp1), c<p1<po2,
m1(p1, p2) = %(Pl—c)(a—ﬁpl), c < p1=p2,
0, otherwise.

» Firms must set prices p > ¢ to avoid negative profits.



Bertrand Oligopoly

» p; = pp = cis a Nash equilibrium.

» No equilibrium exists with p; > c:
» If p1 > ¢, Firm 2 can undercut and gain the market.
» Both firms would have incentives to lower their prices.

» Bertrand competition leads to prices set equal to marginal
cost, similar to perfect competition.



Perfect vs. Imperfect Information in Games

> Assumption of Perfect Information:

>

>

So far, we've solved games assuming players know all actions
and payoffs of their rivals.
Realistic? Not always.

» Introducing Imperfect Information:

>
>

>

Players often lack complete knowledge of others’ payoffs.

We introduce beliefs about other players' payoffs to account
for uncertainty.

At least one player is uncertain about another’s player's payoff
function.

Example: Competing firms may not know each other's
production costs but form beliefs about them.



Beliefs and Player Types

> Beliefs as Part of the Game:
» Players hold beliefs about unknown factors (e.g., rivals’ costs).
» Beliefs can be probabilistic (e.g., firm 1 believes firm 2 has
high or low costs with equal probability).

> Types of Players:
» Each player has a finite set of types T; (e.g., high cost, low
cost).
» Player's payoff depends on both their type and the strategies
and types of others.

» Strategy and Type Sets:
» S;: Strategy set for player i
» T;: Type set for player i
> A strategy, s;i(t;) is a function that specifies which action to
take if your type is t;.
» Payoff Function: t; is privately known and determines the
payoff function.
» Payoff u;(s,t) depends on strategies s and types t.
» u;: 5 x T — R: von Neumann-Morgenstern utility for each

player.



Timing

Following Harsanyi (1967) we assume the following timing:
1. Nature draws a type vector t = (t1,--- , t,) from T; according
to the prior probability distribution p(t).
2. Nature reveals t; only to player i
3. Players choose simultaneously their actions

4. Payoffs are realized.

Introducing nature transforms the game of incomplete information
to imperfect information: you don't know the complete history so
far.



Beliefs in Games

> Beliefs about Others’ Types:

» For each player i and type t;, beliefs about others’ types are
denoted p;(t_; | t;).
» These probabilities must sum to 1:

Z pi(t-i | t) =1

t_;e€T_;

» Consistency of Beliefs:
» Beliefs should be consistent across players.
» Achieved through a joint probability distribution p over the
type space.



Common Prior Assumption

» Common Prior:
» A single probability distribution p represents the joint
distribution of types.

» Each player’s beliefs are derived from this common prior with
Bayes' rule:

p(t-i,ti)  p(t_i, ti)

p(t:) a Zt_’_p(t,,',t,')

pi(t_ilt;) =

» Why Common Priors?:

» Empirical distribution from repeated observations.
» Differences in beliefs arise from differences in information.



Game of Incomplete Information (Bayesian games)

Definition: A game of incomplete information is characterized by:
> Atuple G = (pi, Ti, Si, uj)Y4
» Each player i has:

» A finite set of types T;
> A strategy set S;
» A utility function u; : S x T - R

» A probability distribution p;(- | t;) over other players’ types
T ;.



Bayesian games

P> To analyze Bayesian games, we relate the incomplete
information game G to a strategic form game G*:

» Each type of player i in G is treated as a distinct player in G*.
» This transformation allows us to use previously established
techniques from strategic form games.

» Important: G* must capture all relevant aspects of the
original game G.



Associating Bayesian Games with Strategic Form Games

In general, we want to associate with each Bayesian game G a
strategic form game G* in which each type of each player is a
separate player.

For each player i € {1,..., N} and each type t; € T;, we consider
tj as a player in G* whose finite set of pure strategies is S;.
The set of players in G* is given by

THU---UTpy
and the set of joint pure strategies is

S*ZST1X~--X5TN.



Payoff Definition

To define the players' payoffs, let s;(t;) € S; denote the pure
strategy chosen by player t; € T;. Given a joint pure strategy

S* - (51(t1)7 cee 75N(tN))t1€T1,...,tN€TN S 5*7

the payoff for player t; is defined as:

vi(s) = D pilti | tui(si(t), .. snltn), tr, . t).

t_;eT_;



Interpretation of Payoffs

The payoff formula shows how G* captures the essence of the
incomplete information game. When players select pure strategies
in G*, the payoff for player i:

> piltei | t)ui(si(ty), .. sn(tn)s ts- - ta)

t_;eT_;

reflects the uncertainty player i has regarding the types of the
other players, expressed through p;(t_; | ;).

By associating G with the strategically defined game G*, we
transform the analysis of incomplete information games into
complete information games, specifically strategic form games.

This association allows us to apply the solution techniques
available for G*, particularly utilizing the Nash equilibria of G*.



Bayesian Nash Equilibrium

» A Bayesian-Nash equilibrium is a Nash equilibrium in the
strategic form game G*. The intutition is that no player
wants to change her strategy, even if the change involves only
one action by one type.

» Every finite game of incomplete information has at least one
Bayesian-Nash equilibrium.



Incomplete Information in Competition a la Bertrand

Consider two firms competing a la Bertrand. Firm 1 has a
marginal cost of production equal to zero. Firm 2's marginal cost
can be either 1 or 4, each occurring with a probability of %

If the lowest price charged is p, market demand is 8 — p. Each firm
can choose from three possible prices: 1, 4, or 6.

The payoff structure assumes that if both firms’ costs are strictly
less than the common price, the market is evenly split between
them. If Firm 1 lowers its price by a small amount ¢, it can capture
the entire market.

The strategic form game comprises three players: Firm 1, Firm 2
when of low cost type (2/), and Firm 2 when of high cost type
(2). The strategy set remains {1,4,6}.



Payoff structure

First number denotes Firm 1's payoff, the second indicates Firm
2's payoff depending on its type.

p2=6|p2=4|p=1
pp=6| 6,5 | 0,12 | 0,0
p1L = 16,0 | 8,6 0,0
pp=1] 7,0 7,0 7,0

p=6|p=4|p=1
pL=6| 6,2 0,0 [0,—21
pr=4| 16,0 | 16,0 |0,—21
pp=1] 7,0 7,0 7,0




Payoff Structure

Firm 1's choice of price determines the matrix, and firms 2; and

2,'s prices determine the row and column of the chosen matrix.
Firm 1 chooses p; =6 Firm 1 chooses p; =4
ph=06|pp=4| pp=1
p=61| 6,52 | 3,50 | 3,5,-21
p =43,12,2[0,12,0 | 0,12, —21
pr=1] 3,0,2 | 0,0,0 | 0,0, 21

Ph=06|ph=4| pp=1
py=6116,0,0|16,0,0|8,0,—-21
pi=412,6,0 | 12,6,0 | 4,6, 21
pp=1]8,0,0 | 80,0 |0,0,-21

Firm 1 chooses p; =1

pPh=6|pr=4|pn=1
p—=6] 7,0,0 | 7,0,0 | 7,0,0
p =4 7,00 700|700
pp=1|7,0,0 | 7,0,0 | 7,0,0




Finding the Bayesian-Nash Equilibrium

To identify the Bayesian-Nash equilibrium, we analyze the Nash
equilibria of the strategic form game.

Notice that for firm 2/ setting p; = 4 is a weakly dominant
strategy. So is setting p, = 6 for firm 2h.

That is the game would be reduced to:
p1="6 p1 = p1=1

ph=06| pn=4 pPh=06|pn=4 ph="06|pn=4

p=6)652]350 p=61600|1600 p=6]700]700

pl:4 3>Qa2 O>Qa0 PI:4 Qa@:g Qa@:g Pl:4 77979 77979




Finding the Bayesian- Nash Equilibrium

Firm 1 has a dominant strategy of setting p1 = 4. If Firm 1 sets
p1 = 4, it secures a payoff of 16 when Firm 2 is of type (25) and
chooses pp = 6, and a payoff of 12 when Firm 2 is of type (2/) and
also sets p; = 4.

Thus, the Bayesian Nash equilibrium occurs when Firm 1 sets a
price of 4, Firm 2, sets a price of 6, and Firm 2, also sets a price
of 4.



Revisiting Mixed Strategies

Recall that a mixed strategy for player j can be interpreted as
representing player i's uncertainty about player j's choices. This
uncertainty may arise either from player j randomizing their actions
or from player i lacking knowledge about player j's type.

Thus, we can typically view a mixed-strategy Nash equilibrium as
the Bayesian Nash equilibrium of an associated game with
incomplete information that is structurally similar.



The battle of programming languages

Let's go back to our example of the battle of programming
languages.

Of course, because Alba and Joél are Ph.D. friends -and that's a
long journey- it was reasonable to believe that both knew each
other preferences about programming languages.

Suppose instead is the very first day of the Ph.D., so they don't
know the other’s programming skills yet and they are working
together on the Problem Set.
Assume the uncertainty is captured as follows:

» Payoff for Alba is both use Python is 2 + t,

» Payoff for Joél is both use Julia is 2 + t;

» t, and t; are independent draws from a uniform distribution
on [0,x] (i.e., small perturbations of the original game).

» The last part is common knowledge
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The normal form of the Bayesian game is now
» Strategies space = 5S4 = S; = {Py, Ju}
» Typespace = T, = T; = [0,x]
> Beliefs: p,(ta) = pj(tj) = % (i.e. proba. density function of a
uniform on [0, x]).

| Joél (Py) Joél (Ju)
Alba (Py) [ 2+t,,1 0,0
Alba (Ju) | 0,0 1,241t
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We will find a pure-strategy Bayesian Nash Equilibrium in which
Alba chooses Python if t, is greater than a value ¢, and chooses
Julia otherwise. Similarly, Joél chooses Julia if t; is higher than a
value p.

» Probability that Alba chooses Python:
P(ta>c)=1-<=%=<

X

» Probability that Joél chooses Julia: P(tj > p) =1 —

X g
I
)
Jo]

The idea is to find the values of ¢ and x such that this is a
Bayesian Nash Equilibrium.
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» Given the other strategy, the expected utility for Alba and Joél
from each pure strategy is:

EUA(Py.p) =22+ 8)+ (1= B0 =B+ 1),
EUa(Ju.p) = 2@ +(1-2) =12,

EU(c, Ju) = (1= 0)(0) + (D)2 +8) = ~2+1),
EU)(c, Py) = (1 — ;)(1) —1- %
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Solving this system of equations implies:

x—3p=cp
x—3c=cp = -3p+3c=0&c=p.

Solving p? 4+ 3p — x = 0 therefore and substituting in the
probability that each chooses their preferred language (i.e., < for
Alba to choose Python and *-2 for Joél to choose Julia):

34+ V9+4x

1
2x
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Multiply both numerator and denominator by 3 + /9 + 4x to
rewrite the expression as:

4
3+ v9+4x

Notice therefore than when x goes to zero (i.e., there's no private
information), the behaviour of Alba and Joél is back to the
Mixed-Strategy Nash equilibrium in the original game with
complete information.



	Static (simultaneous) games
	Formal definitions
	Nash Equilibrium

	Applications to producer theory
	Static games of incomplete information

