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2.1. CONTINUOUS TIME FINANCE RECAP

Note: Please see Hull (2018), Chap.14.

e Stochastic process —any variable whose value changes over time in an uncertain
way => different random trajectories for the variable.

e Discrete vs continuous time stochastic processes:
— Discrete — the variable value can change only at certain fixed points in time
— Continuous — changes can take place at any time

e Continuous vs discrete variables:
— Discrete — only certain values are possible
— Continuous — can take any value within a certain range

e Continuous-variable, continuous-time — variables can assume any value and
changes can occur at any time.
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STOCHASTIC PROCESSES

e Continuous-variable, continuous-time stochastic processes are key to understanding the
pricing of options and other derivatives.

e However, in practice, most asset prices do not follow continuous-variable, continuous-time
stochastic processes.

e For instance, stock prices are restricted to discrete values (e.g. multiples of a cent) and
changes can be observed only when the markets are open.

e Nonetheless, continuous-variable, continuous-time stochastic processes are useful for many
valuation purposes.

e Markov Stochastic Process — stochastic process where only the current value of a variable is
relevant for predicting the future => all past information is irrelevant, as it is already
incorporated into today’s stock price (market efficiency).

4

e The probability distribution at any particular future time is independent from the path
followed by the variable in the past.

e |f market efficiency didn’t hold, market participants could make above-average returns by
interpreting the past behavior of asset prices.
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STOCHASTIC PROCESSES

e Assuming a Markov process X(t), the 1-year change ~ MO,1).

e 2-year change = M0,1) + M0,1) = MO0,2), as &h distributions are independent - given that
this is a Markov process, the 2" distribution does not depend on the 1.

2

At (very small period of time) change ~ MO, At)

l

The expected value of any future outcome is equal to the current value (Martingale): z=25 =>1
year after, z~ N(25,1); 5 years after, z~ N(25,5)
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WIENER PROCESS

Wiener Process — a particular type of Markov process with:

- amean change=0
- avariance rate (per year) =1

A stochastic process z follows a Wiener process (or the continuous random walk) if it

has the following properties:

Property 1. The change Az during a small period of time At is
Az = ev/At (14.1)

where € has a standard normal distribution ¢(0,1).

Property 2. The values of Az for any two different short intervals of time, At, are

independent.

It follows from the first property that Az itself has a normal distribution with

mean of Az=0
standard deviation of Az = VAt

vanance of Az = At

The second property implies that = follows a Markov process
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WIENER PROCESS

Wiener processes for different magnitudes of change
in time:

When At -> 0, the path becomes much more
irregular, as the size of the movement in the variable
in time At is proportional to the\/Kt . When At is
small, /Ar is much larger than At => the changes in
z will be much larger than At, as Az = ¢/Ar

Source: Hull, John (2018), “Options, Futures and Other Derivatives”,

Pearson Prenctice Hall, 10t Edition
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GENERALIZED WIENER PROCESS

e |nstead of a drift = 0 and a variance rate = 1 as in the Wiener process (dz), we may have a
stochastic process where the drift can assume any value a and the variance rate can be b?

=> Generalized Wiener Process.

Ax =aAt+bev/At  where g and b are constants.

e |n the Wiener Process, a=0 and b=1: Az = evAL
e For very small time changes At: Ax = a At + bev/At
Ax ~ N, WIIth mean of Ax =a At

standard deviation of Ax = bv/At

s 8 |
variance of Ax = b° At

e The average increases in x are proportional to time (if there is no drift, i.e. a = 0, the mean of

x doesn’t change, i.e. Ax = 0).
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GENERALIZED WIENER PROCESS

Figure 14.2 Generalized Wiener process with ¢ = 0.3 and b = 1.5.

A Value of .
T ngerdllzed
Wiener process
dx = adt + bdz

dx = adt

Wiener process, dz

Time

W

Source: Hull, John (2018), “Options, Futures and Other Derivatives”, Pearson Prenctice Hall, 10t Edition
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ITO PROCESS

¢ Definition: Generalized Wiener process with average and standard-deviation as a function of
the underlying variable and time (instead of being only a function of time):

.
dx = a(x, t)dt + b(x, ) dz Ax = a At + bev/Al

e For small time intervals, we may assume that the average and the standard-deviation don’t
change (we’re assuming that the drift and the variance rate don’t change between t and

t+AL):  Ax = a(x, )At + b(x, t)ev/At

e This is still a Markov process, as a and b only depend on the current value of x, not on
previous values.

e It may be tempting to assume that a stock price follows a Generalized Wiener process
(constant drift and variance).

e However, this assumption is not valid, having in mind that investors require or expect a given
level of returns (as a % variation) regardless the price level, i.e. for higher prices, expected
changes will also be higher.

* One can acknowledge this fact by replacing the assumption of constant expected drift by the
assumption of constant expected returns (i.e. constant expected drift divided by the stock
price <> variable drift along time).
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ITO PROCESS

4

e Expected drift rate in S=a(x,t)) = uS

(being S the stock price at time t and u the expected rate of return of the stock,

expressed in decimal form, for a time unit =1).

e For a short interval of time At, the expected increase in S is uSAt, i.e. the
expected rate of return on the stock, times the stock price, times the time

interval:

AS = uSAt Ax = a(x, t)At + b(x, t)ev/At

e IfAt->0=> dszwdt@d?szydt

e This corresponds to the price of an asset following a continuously compounding
process (under no uncertainty, being i = risk-free rate in a risk-neutral world)

S, =S,e"
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GEOMETRIC BROWNIAN MOTION

e Given that in practice there is uncertainty, a reasonable assumption is that the
variability of the percentage return (o) in a short period of time Atis the same

regardless the stock price. ‘

e Aninvestor is as uncertain about his return when the stock price is high or low.

e Accordingly, the standard deviation of the change in a short period of time must
also be proportional to the stock price, as the standard deviation for the
percentage change is constant — Geometric Brownian Motion:

dS = uSdt + oSdz <

d—S:,LwltJrO'dZ

S

Jorge Barros Luis| Interest Rate and Credit Risk Models




GEOMETRIC BROWNIAN MOTION

e Example:
Consider a stock that pays no dividends, has a volatility of 30% per annum, and
provides an expected return of 15% per annum with contafuous compounding. In
this case, g = 0.15 and o = ().S(Wf process for stock price 1s

\ Y 2
d? = 0.15dt + 0.304d:z

If S 1s the stock price at a particular time and AS 1s the increase in the stock price
in the next small interval of time, the discrete approximation to the process is

AS | Y 2. /A s
T—().ISA!‘+0.3(J€ At

where € has a standard normal distribution. Consider a time interval of 1 week.,
or 0.0192 year, so that At = 0.0192. Then the approximation gives

AS u - —
——=0.15x 0.0192 +0.30 x V0.0192¢

or

AS = 0.002885 + 0.0416S5¢

Source: Hull, John (2018), “Options, Futures and Other Derivatives”, Pearson Prenctice Hall, 10t Edition
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GEOMETRIC BROWNIAN MOTION

e Monte Carlo simulation:

A path for the stock price over 10 weeks can be simulated by sampling repeatedly for €
from ¢(0, 1) and substituting into equation (14.10). The expression =RAND() in Excel
produces a random sample between 0 and 1. The inverse cumulative normal distribution
1s NORMSINYV. The instruction to produce a random sample from a standard normal
distribution in Excel is therefore =NORMSINV(RAND()). Table 14.1 shows one path
for a stock price that was sampled in this way. The initial stock price i1s assumed to be
S100. For the first period, € 1s sampled as 0.52. From equation (14.10), the change during
the first time period is

Table 14.1  Simulation of stock price when u = 0.15 and

= 0.15 x 0.0192 4 0.30 x v0.0192€ o =0.30 during l-week periods.

[ %

. Stock price Random sample  Change in stock price
at start of period for e during period

AS = 0.002885 4 0.0416S5¢ 100.00 0.52 2.45
102.45 1.44 6.43

108.88 —0.86 —3.58

105.30 1.46 6.70

112.00 —0.69 —2.89

109.11 ~0.74 ~3.04

106.06 0.21 1.23

107.30 ~1.10 —4.60

102.69 0.73 3.4l

Source: Hull, John (2018), “Options, Futures and Other 106.11 1.16 543
Derivatives”, Pearson Prenctice Hall, 10th Edition 111.54 2.56 12.20
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IT6’S LEMMA

e An option price (G) is a function of the underlying asset’s price and time.

e [tis key to understand the behavior of functions of stochastic variables.

e An important result was discovered by K. [t6 in 1951 and is known as I1t06’s lemma.

® See K. Itd, “On Stochastic Differential Equations,” Memoirs of the American Mathematical Society,,
4 (1951): 1-51.

e Assuming that a variable x follows an 1t6 process:
dx = alx,t)dt + b(x, t)dz

where dz 1s a Wiener process and a and b are functions of x and t. The variable x has a
drift rate of @ and a variance rate of b~. It0’s lemma shows that a function G of x and ¢
follows the process
2
G dG ,0°G G
dG = |—a+—+ %—-—sz dt+-—bdz
0x at 0x . 0x
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ITO6’S LEMMA
2
e Thus, G also follows an 1t6 process with a drift rate = E;Ga+ 83(: + %%gbz and a
variance rate of ( dG ) b2 * ‘
ax, dx = a(x, t)dt + b(x, 1)dz

e Assuming that the stock price follows a Geometric Brownian Motion, with constant

uand o dS = uSdt + o5dz

e Applying the Ito’s Lemma to the previous equation: :
3G 3G 3G ,\ . , G
—a+—“+§'5'x'§'b)dt-i-_ P bdz

> . dG =
ad(s G 3G 5 5 aG / (Bx dat
. ‘)dr +ﬁ05 dz -

dG = (—uS . ! =
aS ot a5-

e Therefore, both S and G are affected by the same volatility source — dz.
e In the Black-Scholes option pricing formula, G (the option price) is determined by
the instantaneous volatility of the returns of the underlying asset price.
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APPLICATION TO FORWARD CONTRACTS

e Forward: Fy= Sy’
e Forward at t: F = S
3G 3G ,8G 5. aG
’ - IG=—uS+—++—0°8" |dt+ —oSd:z
e lto’'s lemma => - (_as ST o TI13527 )‘ as

!

e The stochastic process of F can be defined calculating the derivatives of F in order
to Sand t (i.e. F now corresponds to G):
dF nT—r) d:F HF « N T—t)
= e = —rSe

ac ¢ ' —s = U, —_—
35S T =
Substituting F for S

dF = [e"uS —rSe’" ) dt + &' VoSdz => dF =(u —r)Fdt+ oF dz
e Like S, F follows a GMB, with the same volatility and a trend of w-r (instead of w).
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PROBABILITY DISTRIBUTION

e From the stochastic process of the rate of returns,

dFSZILIdl‘-l-O'dZ

e |[ts distribution gets

A - |
"—S'—S-‘~¢(;J,At, o’ At)
G 1 ’*G 1 3G

. B . 3G _1 v6_. 1 96 _, .
e Assuming G=InS |, since =5’ 35 7 P , it follows

from the 1td’s lemma that - 2 |
TG = (u—g—-)dt+adz

! 2
aG 8 .0 oo aG
dG = ( wnS + + 35— G‘S')dt +—o0S8d:
as a - as? _, :
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PROBABILITY DISTRIBUTION

Since u and o are constant, this equation indicates that G = In § follows a generalized
Wiener process. It has constant drift rate u — 0“/2 and constant variance rate o*. The
change in In § between time 0 and some future time T is therefore normally dlstnbuted
with mean (i — o? /2T and variance ¢*T. This means that

InS; —InS, ~¢[(u-32-)-r 02T

2

lnsT~¢[1nso+( ——)T AT

4

e In §; is normally distributed (and S; has a log normal distribution), with a
standard deviation o'\/— T (proportional to the square root of time).

4

e The growth rate of the asset price is normally distributed => the asset price is
lognormally distributed.
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PROBABILITY DISTRIBUTION

Figure“ 13.1 Légﬁormél distribution.

0

Source: Hull, John (2009), “Options, Futures and Other Derivatives”, Pearson Prenctice Hall, 7t" Edition
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2.2. SHORT RATE MODELS

2.2.1. Interest Rate Trees

2.2.2. Continuous-time Single-factor models

2.2.3. Continuous-time Multi-Factor models
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2.2.1. INTEREST RATE TREES

* Focus: How to model the TSIR by specifying the behavior of the short-term interest rate?

* Bond and interest rate derivative prices depend on the behavior of the risk-free short-term

interest rate (or instantaneous short rate).

* The variable to be modeled by trees will be the instantaneous short rate.
 Why are trees used? a tree is a discrete-time representation of the stochastic process.

* Binomial trees are often used, even though trinomial trees are recommended to value

interest rate derivatives.
e At the final nodes, the value of the derivative equals its pay-off.

* At previous nodes, the value of the derivative is calculated through a rollback procedure,
calculating the expected value of the derivative according to the probabilities attached to the

different scenarios and discounting this expected value using the interest rate at that node.
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Figure 32.4 Example of the use of tnnomial interest rate trees. Upper number at each
node 1s rate; lower number is value of instrument. Assumptions:

% 14% Probabilities of up, middle and down

3
are 0.25, 0.5 and 0.25, respectively.
S B . = 12% Derivative value at Node B:
1
L [0.25 x 3+ 0.5 x 1 40.25 x 0} 12! = 1.11
lU(;j.'( f\ kln(};‘. C — G “]q - =
0.35 " > o Derivative value at Node C:
o 0.23
(025 x 140.5x 04025 x 0" =0.23
8% 5 H e
- 0 ; .
0 Derivative value at Node D=0
L & Derivative value at Node A:

0 (025x1.114+05x023+4+0.25x0)e "™ =035

The tree 1s used to value a derivative that provides a payoff at the end of the second
time step of . “« i
max[100(R — 0.11), 0] Sou.rce.- Hl:l’”, John (2018),. Options, Fut.u.res and Other
Derivatives”, Pearson Prenctice Hall, 10t Edition
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Non-standard branching:

Figure 32.5 Alternative branching methods in a trinomial tree.
/ \
/ \
\
' \

>

\

(a) (b) (c)

]

Source: Hull, John (2018), “Options, Futures and Other Derivatives”, Pearson Prenctice Hall, 10t Edition

(b) and (c) are useful to represent mean-reverting interest rates when interest
rates are either very low (and are not supposed to move even lower) or very high
(and are not supposed to move even higher), respectively.
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General binomial model

Given the current level of short-term rate r, the next-period short rate can take
only two possible values: an upper value r, and a lower value r, with equal
probability 0.5.

In the following period, the short-term interest rate can take four possible values:

ruu' rul’ r/u' r/l'

More generally, in period n, the short-term interest rate can take on 2" values =>
very time-consuming and computationally inefficient.

Recombining trees

Means that an upward-downward sequence leads to the same result as a
downward-upward sequence (regardless being binomial or trinomial trees)

For example, r = r,, => only (n+1) different values at period n.
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INTEREST RATE TREE - RECOMBINING

Period 0 Period 1 Period 2 Period 3

Period 4

ruuuu

Lol
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INTEREST RATE TREE — ANALYTICAL

We may write down the binomial process as:
Itd process

Ar.=r

t i+1 — 1y = 0&;

l dx = alx,t)dt + b(x, t)dz

Ar =10 =1 = p(tALn ) + o (LAY e,

Specific case —assuming that the drift and the variance are
proportional to the time increment:

Ar,=v,, \ — 1 = At + oV Atg,

Continuous-time limit (Merton (1973)):

ar, =T g — 1, = pdt + odW,
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2.2.2. CT SINGLE FACTOR MODELS

In the initial term structure models, the short rate is the only driver of the yield
curve, being assumed as a continuous and stochastic or random variable.

Therefore, a single-factor continuous-time model specifies the dynamics of the
short-term rate: dr, = ,u( t,7, )dt + G(I,?‘t )th
The term W denotes a Brownian motion - process with independent normally
distributed increments:

dW, = e ~N dt

dW represents the instantaneous change;

It is stochastic (uncertain);
It is a stochastic variable with a normal distribution with zero mean and variance dt;

A good model is a model that is consistent with reality =>
Tractable

Parsimonious

Stylized facts about the dynamics of the term structure:
Fact 1: (nominal) interest rates are (usually) positive
Fact 2: interest rates are mean-reverting
Fact 3: interest rates with different maturities are imperfectly correlated
Fact 4: the volatility of interest rates evolves (randomly) in time
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EMPIRICAL FACTS 1, 2 AND 4
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EMPIRICAL FACT 3

1M 3IM oM 1Y 2Y 3Y 4Y SY 7Y 10Y
1M 1
3IM 0.999 1
oM 0.908( 0914 1
1Y 0.546( 0.539] 0.672 1
2Y 0.235] 0.224| 0.31 | 0.88 1
3Y 0.246] 0.239] 0.384] 0.808] 0.929| 1
4Y 0.209] 0.202] 0.337] 0.742] 0.881| 0.981 1
SY 0.163| 0.154| 0.255{ 0.7 | 0.859[ 0.936] 0.981 1
7Y 0.107] 0.097] 0.182] 0.617] 0.792] 0.867] 0.927]| 0.97 1
10Y | 0.073] 0.063] 0.134] 0.549| 0.735] 0.811] 0.871] 0.917] 0.966 1
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EQUILIBRIUM VS NO-ARBITRAGE MODELS OF THE SHORT RATE

Equilibrium models:

Start with assumptions about economic variables and derive a process for the short rate (r).

Accordingly, the initial yield curve is given by an analytical formula as a function of the
short-term rate and the model parameters, assuming that the economy is in equilibrium.

The process for r in a one-factor equilibrium model involves only one source of uncertainty -
— the (instantaneous) short-term rate itself => endogenous models.

A one-factor model implies that all rates move in the same direction over any short time
interval, but not that they all move by the same amount => the shape of the zero curve can
change with the passage of time.

The process for the short rate is usually assumed to be stationary, in the sense that the
parameters of the process are not functions of time.

If the instantaneous short rate follows a Markov process, all rates can be calculated at all
times as a function of the short rate.

A shortcoming of these models is that they do not automatically fit today’s term structure of
interest rates.
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EQUILIBRIUM VS NO-ARBITRAGE MODELS OF THE SHORT RATE

No-arbitrage models:
A no-arbitrage model is designed to be exactly consistent with today’s TSIR.

Essential difference between an equilibrium and a no-arbitrage model — in an equilibrium

model, today’s TSIR is an output, while in a no-arbitrage model it is an input.

the drift is, in general, dependent on time, as the shape of the initial spot curve governs the

average path taken by the short rate in the future — positively sloped zero curve => positive
drift for the short rate. '

Some equilibrium models can be transformed into no-arbitrage models by including a

function of time in the drift of the short rate.
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EQUILIBRIUM ONE-FACTOR MODELS OF THE SHORT RATE

Interest rate dynamics:

dr = m(r)dt + s(r)dz —— The drift is not a function of time, but of the interest rate itself.

Main type of models:

m(r) = ur; s(r) = or (Rendleman and Bartter model)
m(r) =alb—r): s(r) =0 (Vasicek model)

m(r) =alb —r); s(r) =a/r (Cox, Ingersoll, and Ross model)
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EQUILIBRIUM ONE-FACTOR MODELS OF THE SHORT RATE

Rendleman and Bartter

The short-term interest rate follows a GMB:  dyr = urdt + ord:z

Rendleman, R. and B. Bartter (1980). "The Pricing of Options on Debt Securities". Journal of Financial and Quantitative
Analysis. 15: 11-24).

Pros:

More tractable model, as it follows a GMB.

Cons:
Assumes that interest rates follow a stochastic process similar to stocks, while they usually
exhibit a mean-reversion behavior.
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EQUILIBRIUM ONE-FACTOR CT MODELS OF THE SHORT RATE

Vasicek (1977) dr =alb—r)dt +od:

Vasicek. O., 1977, "An Equilibrium Characterization of the Term Structure."” Journal
of Financial Economics, 5. 177-188.

AISO known as HU” and Whlte (1990) mOdeI Hull, J., and White, A., “Pricing Interest Rate Derivative Securities”, Review of
. Financial Studies, 1990, pp. 573-592.
or an Ornstein—Uhlenbeck process. i b £

Pros:
More tractable model, due to constant volatility.

Interest rates are mean-reverting (to b), at a reversion rate (pace) a.

Cons:

The model assumes a constant volatility, while interest rate volatility is often variable, namely

during periods of higher uncertainty, when the estimation of interest rates becomes more
complex but also more useful.
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EQUILIBRIUM ONE-FACTOR CT MODELS OF THE SHORT RATE

Cox, Ingersoll and Ross (CIR)

Stochastic volatility model => higher
dr = alb —r)dt + aﬁd: volatility with higher interest rates.

Cox, Ingersoll, and Ross. 1985, "A Theory of the Term Structure of Interest
Rates", Econometrica, Vol 53, March.

Pros:

Model closer to reality, as interest rates have stochastic volatilities (higher volatilities with
higher interest rates).

Cons:
- Model becomes less tractable, as it requires the single factor to be >0, which is not a problem

when the single factor is the short-term interest rate and this is positive, but becomes a
problem if the short-term rate turns negative or the factor is a different variable.
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NO-ARBITRAGE SHORT RATE CT MODELS

Ho-Lee (1986)

Ho. T.S.Y., and S.-B. Lee, “Term Structure Movements and Pricing Interest Rate Contingent
Claims,” Journal of Finance, 41 (December 1986): 1011-29.

dr=6(1)dt + o dz

0(t) defines the average direction that r moves at time t:
Hull-White One-Factor Model (1990)

Extended version of Vasicek, to provide an exact fit to the initial TSIR:
dr = [0(1) — (U’]dl +odz Or 4dr =a|i® — r] dt +odz

da

Corresponds to the Ho-Lee model, with mean reversion at rate a.

Hull, J. C., and A. White, “Pricing Interest Rate Derivative Securities,” The Review of Financial
Studies, 3. 4 (1990): 573-92.
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NO-ARBITRAGE SHORT RATE CT MODELS

Black-Derman-Toy (1990)

Black, F., E. Derman, and W. Toy, “A One-Factor Model of Interest Rates and Its Application
to Treasury Bond Prices.” Financial Analysts Journal, January/February 1990: 33-39.

dinr = [6(t) — a(t) Inr]dt + o(t) dz

with a(r) = —0(—(:)) and o'(1) is the derivative of o with respect to t.
a

It is similar to Hull-White One-Factor Model, but in logs and with mean reversion rate a
being time-dependent.

It doesn’t allow negative interest rates.

Constant volatility =>¢'(r)= 0 => a(t)=0 => BDT model: dInr=0(t)dt + o dz

Log-normal version of Ho-Lee model «———
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NO-ARBITRAGE SHORT RATE CT MODELS

Black-Karasinski (1991)

Black, F., and P. Karasinski, “*Bond and Option Pricing When Short Rates Are Lognormal,™
Financial Analysts Journal, July/August (1991): 52-59.

- Extended version of BDT (1990) model, where the reversion rate and volatility are

determined independently of each other: ,(_)
. , o (t
dinr = [6(t) — a(t) Inr]dt + o(t)dz , with alt) = ~og BDT

The model is the same as BDT (1990), but with no relation between a(t) and oft).
As in practice a(t) and oft) are often assumed to be constant, the model becomes:

dinr =\|68(t) —alnr|dt + od:z
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2.2.3. CT MuLTiI FACTOR MODELS

Fong and Vasicek (1991) model - short rate and its volatility (v) as two-state variables

H. G. Fong and O. A. Vasicek: Fixed-income volatility management. Journal of Port-
folio Management, 41-56, 1991.

dr = o(F — r)dt +Jvdz,

dv = y(V —v)dt +Efvdz,
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Longstaff and Schwartz (1992) model

Longstaff, F. A. and E.S. Schwartz, “Interest Rate Volatility and the Term Structure: A Two
Factor General Equilibrium Model,” Journal of Finance, 47, 4 (September 1992): 1259-82.

Longstaff and Schwartz (1992) uses the same two-state variables (the short rate and its
volatility), but with a different specification, as the drift is governed by two factors or
state variables, while the variance is a function of only one of them:

d

'Z? — (X + 8Y)dt + oV¥ dZ,
With this specification, it is ensured that the drift and the variance are not perfectly
correlated.

The dynamics of the state variables are as follows:

dX = (a — bX) dt + VX dZ,
dY = (d —eY)dt + f/Y dZ,.
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3. Balduzzi et al. (1996) models

Balduzzi. P.. S. R. Das, S. Foresi. and R. Sundaran, 1996, “A Simple Approach to Three-
Factor Affine Term Structure Models,” The Journal of Fixed Income, 6, 14-31.

Balduzzi et al. (1996) suggest the use of a 3-factor model by adding the mean of the short-

term rate () to a 2-factor model.

dr = . (r, ©, dt + 0,(r, V, t)dz dr = (0 - r)dt + y/Vdz
dB = (8, t)de + 04(0, r)dw do = a(f - 0)dt + ndw
dV = (V. t)de + 0,(V, t)dy dV = a(b = V)dt + (D\,'IGdy
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