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STOCHASTIC INTEREST RATE MODELS
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2.1. CONTINUOUS TIME FINANCE RECAP

Note: Please see Hull (2018), Chap.14.

• Stochastic process – any variable whose value changes over time in an uncertain 
way => different random trajectories for the variable.

• Discrete vs continuous time stochastic processes:
– Discrete – the variable value can change only at certain fixed points in time
– Continuous – changes can take place at any time

• Continuous vs discrete variables:
– Discrete – only certain values are possible
– Continuous – can take any value within a certain range

• Continuous-variable, continuous-time – variables can assume any value and 
changes can occur at any time.
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STOCHASTIC PROCESSES

• Continuous-variable, continuous-time stochastic processes are key to understanding the
pricing of options and other derivatives.

• However, in practice, most asset prices do not follow continuous-variable, continuous-time
stochastic processes.

• For instance, stock prices are restricted to discrete values (e.g. multiples of a cent) and
changes can be observed only when the markets are open.

• Nonetheless, continuous-variable, continuous-time stochastic processes are useful for many
valuation purposes.

• Markov Stochastic Process – stochastic process where only the current value of a variable is
relevant for predicting the future => all past information is irrelevant, as it is already
incorporated into today’s stock price (market efficiency).

• The probability distribution at any particular future time is independent from the path
followed by the variable in the past.

• If market efficiency didn’t hold, market participants could make above-average returns by
interpreting the past behavior of asset prices.
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STOCHASTIC PROCESSES

• Assuming a Markov process X(t), the 1-year change ~ (0,1).

• 2-year change = (0,1) + (0,1) = (0,2), as both distributions are independent - given that
this is a Markov process, the 2nd distribution does not depend on the 1st.

t (very small period of time) change ~ (0,t)

The expected value of any future outcome is equal to the current value (Martingale): z=25 => 1
year after, z ~ N(25,1); 5 years after, z ~ N(25,5)
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WIENER PROCESS

Wiener Process – a particular type of Markov process with:
- a mean change = 0
- a variance rate (per year) =1

A stochastic process z follows a Wiener process (or the continuous random walk) if it
has the following properties:

Hull, John (2018), “Options, Futures and Other
Derivatives”, Pearson Prenctice Hall, 10th Edition
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Wiener processes for different magnitudes of change
in time:

When t -> 0, the path becomes much more
irregular, as the size of the movement in the variable
in time t is proportional to the . When t is
small, is much larger than t => the changes in
z will be much larger than t, as

t
t

WIENER PROCESS

Source: Hull, John (2018), “Options, Futures and Other Derivatives”,
Pearson Prenctice Hall, 10th Edition
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GENERALIZED WIENER PROCESS

• The average increases in x are proportional to time (if there is no drift, i.e. a = 0, the mean of
x doesn’t change, i.e. x = 0).

• For very small time changes t:

x ~ N, with

• Instead of a drift = 0 and a variance rate = 1 as in the Wiener process (dz), we may have a
stochastic process where the drift can assume any value a and the variance rate can be b2

=> Generalized Wiener Process.

• In the Wiener Process, a=0 and b=1:
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GENERALIZED WIENER PROCESS

Source: Hull, John (2018), “Options, Futures and Other Derivatives”, Pearson Prenctice Hall, 10th Edition
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ITÔ PROCESS

• Definition: Generalized Wiener process with average and standard-deviation as a function of
the underlying variable and time (instead of being only a function of time):

• For small time intervals, we may assume that the average and the standard-deviation don’t
change (we’re assuming that the drift and the variance rate don’t change between t and
t+t):

• This is still a Markov process, as a and b only depend on the current value of x, not on
previous values.

• It may be tempting to assume that a stock price follows a Generalized Wiener process
(constant drift and variance).

• However, this assumption is not valid, having in mind that investors require or expect a given
level of returns (as a % variation) regardless the price level, i.e. for higher prices, expected
changes will also be higher.

• One can acknowledge this fact by replacing the assumption of constant expected drift by the
assumption of constant expected returns (i.e. constant expected drift divided by the stock
price variable drift along time).
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ITÔ PROCESS

• Expected drift rate in S = a(x,t)) = S
(being S the stock price at time t and  the expected rate of return of the stock,

expressed in decimal form, for a time unit = 1).

• For a short interval of time t, the expected increase in S is St, i.e. the

expected rate of return on the stock, times the stock price, times the time

interval:

• If t -> 0 =>

• This corresponds to the price of an asset following a continuously compounding
process (under no uncertainty, being = risk-free rate in a risk-neutral world)

tSS  

dt
S

dS
SdtdS  

T
T eSS 

0
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GEOMETRIC BROWNIAN MOTION

• Given that in practice there is uncertainty, a reasonable assumption is that the
variability of the percentage return () in a short period of time t is the same
regardless the stock price.

• An investor is as uncertain about his return when the stock price is high or low.

• Accordingly, the standard deviation of the change in a short period of time must
also be proportional to the stock price, as the standard deviation for the
percentage change is constant – Geometric Brownian Motion:

dzdt
S

dS

SdzSdtdS








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GEOMETRIC BROWNIAN MOTION

• Example:

Source: Hull, John (2018), “Options, Futures and Other Derivatives”, Pearson Prenctice Hall, 10th Edition



Raquel M. Gaspar   |   Interest Rate and Credit Risk Models   106Jorge Barros Luís|   Interest Rate and Credit Risk Models   106

GEOMETRIC BROWNIAN MOTION

• Monte Carlo simulation:

Source: Hull, John (2018), “Options, Futures and Other
Derivatives”, Pearson Prenctice Hall, 10th Edition
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ITÔ’S LEMMA

• An option price (G) is a function of the underlying asset’s price and time.

• It is key to understand the behavior of functions of stochastic variables.

• An important result was discovered by K. Itô in 1951 and is known as Itô’s lemma.

• Assuming that a variable x follows an Itô process:
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ITÔ’S LEMMA
• Thus, G also follows an Itô process with a drift rate = and a

variance rate of

• Assuming that the stock price follows a Geometric Brownian Motion, with constant
 and 

• Applying the Ito’s Lemma to the previous equation:

• Therefore, both S and G are affected by the same volatility source – dz.

• In the Black-Scholes option pricing formula, G (the option price) is determined by
the instantaneous volatility of the returns of the underlying asset price.

SdzSdtdS  
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APPLICATION TO FORWARD CONTRACTS

• Forward:

• Forward at t:

• Ito’s Lemma =>

• The stochastic process of F can be defined calculating the derivatives of F in order
to S and t (i.e. F now corresponds to G):

=>

• Like S, F follows a GMB, with the same volatility and a trend of -r (instead of 
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PROBABILITY DISTRIBUTION

• From the stochastic process of the rate of returns,

• Its distribution gets

• Assuming , since , it follows

from the Itô’s lemma that

dzdt
S

dS  
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PROBABILITY DISTRIBUTION

• ln ST is normally distributed (and ST has a log normal distribution), with a
standard deviation (proportional to the square root of time).

• The growth rate of the asset price is normally distributed => the asset price is
lognormally distributed.
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PROBABILITY DISTRIBUTION

Source: Hull, John (2009), “Options, Futures and Other Derivatives”, Pearson Prenctice Hall, 7th Edition
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2.2.1. Interest Rate Trees

2.2.2. Continuous-time Single-factor models

2.2.3. Continuous-time Multi-Factor models

2.2. SHORT RATE MODELS
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• Focus: How to model the TSIR by specifying the behavior of the short-term interest rate?

• Bond and interest rate derivative prices depend on the behavior of the risk-free short-term
interest rate (or instantaneous short rate).

• The variable to be modeled by trees will be the instantaneous short rate.

• Why are trees used? a tree is a discrete-time representation of the stochastic process.

• Binomial trees are often used, even though trinomial trees are recommended to value
interest rate derivatives.

• At the final nodes, the value of the derivative equals its pay-off.

• At previous nodes, the value of the derivative is calculated through a rollback procedure,
calculating the expected value of the derivative according to the probabilities attached to the
different scenarios and discounting this expected value using the interest rate at that node.

2.2.1. INTEREST RATE TREES
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Assumptions:

Probabilities of up, middle and down
are 0.25, 0.5 and 0.25, respectively.

Derivative value at Node B:

Derivative value at Node C:

Derivative value at Node D = 0

Derivative value at Node A:

Source: Hull, John (2018), “Options, Futures and Other
Derivatives”, Pearson Prenctice Hall, 10th Edition
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 Non-standard branching:

 (b) and (c) are useful to represent mean-reverting interest rates when interest
rates are either very low (and are not supposed to move even lower) or very high
(and are not supposed to move even higher), respectively.

Source: Hull, John (2018), “Options, Futures and Other Derivatives”, Pearson Prenctice Hall, 10th Edition
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 General binomial model

 Given the current level of short-term rate r, the next-period short rate can take
only two possible values: an upper value ru and a lower value rl, with equal
probability 0.5.

 In the following period, the short-term interest rate can take four possible values:
ruu, rul, rlu, rll .

 More generally, in period n, the short-term interest rate can take on 2n values =>
very time-consuming and computationally inefficient.

 Recombining trees

 Means that an upward-downward sequence leads to the same result as a
downward-upward sequence (regardless being binomial or trinomial trees)

 For example, rul = rlu => only (n+1) different values at period n.
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Period 0 Period 1 Period 2 Period 3 Period 4 …
ruuuu

ruuu

ruu ruuul

ru ruul

r rul ruull

rl rull

rll rulll

rlll

rllll

INTEREST RATE TREE - RECOMBINING
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 We may write down the binomial process as:

  rt º rtt - rt   t,t,rt(    t,t,rt( et

 Continuous-time limit (Merton (1973)):

 drt º rtdt - rt  dt  dWt

 Specific case – assuming that the drift and the variance are 
proportional to the time increment:

 rt º rtt - rt  t  tet

  rt º rt1 - rt  et

INTEREST RATE TREE – ANALYTICAL

Itô process
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 In the initial term structure models, the short rate is the only driver of the yield
curve, being assumed as a continuous and stochastic or random variable.

 Therefore, a single-factor continuous-time model specifies the dynamics of the
short-term rate:   drt   t,rt( dt  t,rt( dWt

 The term W denotes a Brownian motion - process with independent normally
distributed increments:
 dW represents the instantaneous change;
 It is stochastic (uncertain);
 It is a stochastic variable with a normal distribution with zero mean and variance dt;

 A good model is a model that is consistent with reality =>
 Tractable
 Parsimonious

Stylized facts about the dynamics of the term structure:
 Fact 1: (nominal) interest rates are (usually) positive
 Fact 2: interest rates are mean-reverting
 Fact 3: interest rates with different maturities are imperfectly correlated
 Fact 4: the volatility of interest rates evolves (randomly) in time

 dWt  e t dt

2.2.2. CT SINGLE FACTOR MODELS
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EMPIRICAL FACTS 1, 2 AND 4
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EMPIRICAL FACT 3

 1M  3M  6M  1Y  2Y  3Y  4Y  5Y  7Y  10Y  
1M  1 
3M  0.999 1 
6M  0.908 0.914 1 
1Y  0.546 0.539 0.672 1 
2Y  0.235 0.224 0.31 0.88 1 
3Y  0.246 0.239 0.384 0.808 0.929 1 
4Y  0.209 0.202 0.337 0.742 0.881 0.981 1 
5Y  0.163 0.154 0.255 0.7 0.859 0.936 0.981 1 
7Y  0.107 0.097 0.182 0.617 0.792 0.867 0.927 0.97 1 
10Y  0.073 0.063 0.134 0.549 0.735 0.811 0.871 0.917 0.966 1 



Raquel M. Gaspar   |   Interest Rate and Credit Risk Models   123Jorge Barros Luís|   Interest Rate and Credit Risk Models   123

EQUILIBRIUM VS NO-ARBITRAGE MODELS OF THE SHORT RATE

Equilibrium models:
(i) Start with assumptions about economic variables and derive a process for the short rate (r).

(ii) Accordingly, the initial yield curve is given by an analytical formula as a function of the
short-term rate and the model parameters, assuming that the economy is in equilibrium.

(iii) The process for r in a one-factor equilibrium model involves only one source of uncertainty -
– the (instantaneous) short-term rate itself => endogenous models.

(iv) A one-factor model implies that all rates move in the same direction over any short time
interval, but not that they all move by the same amount => the shape of the zero curve can
change with the passage of time.

(v) The process for the short rate is usually assumed to be stationary, in the sense that the
parameters of the process are not functions of time.

(vi) If the instantaneous short rate follows a Markov process, all rates can be calculated at all
times as a function of the short rate.

(vii)A shortcoming of these models is that they do not automatically fit today’s term structure of
interest rates.
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No-arbitrage models:

(i) A no-arbitrage model is designed to be exactly consistent with today’s TSIR.

(ii) Essential difference between an equilibrium and a no-arbitrage model – in an equilibrium
model, today’s TSIR is an output, while in a no-arbitrage model it is an input.

(iii) the drift is, in general, dependent on time, as the shape of the initial spot curve governs the
average path taken by the short rate in the future – positively sloped zero curve => positive
drift for the short rate.

(iv) Some equilibrium models can be transformed into no-arbitrage models by including a
function of time in the drift of the short rate.

EQUILIBRIUM VS NO-ARBITRAGE MODELS OF THE SHORT RATE



Raquel M. Gaspar   |   Interest Rate and Credit Risk Models   125Jorge Barros Luís|   Interest Rate and Credit Risk Models   125

EQUILIBRIUM ONE-FACTOR MODELS OF THE SHORT RATE

 Interest rate dynamics:

 Main type of models:

The drift is not a function of time, but of the interest rate itself.
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EQUILIBRIUM ONE-FACTOR MODELS OF THE SHORT RATE

1. Rendleman and Bartter

- The short-term interest rate follows a GMB:

Rendleman, R. and B. Bartter (1980). "The Pricing of Options on Debt Securities". Journal of Financial and Quantitative
Analysis. 15: 11–24).

Pros:
- More tractable model, as it follows a GMB.

Cons:
- Assumes that interest rates follow a stochastic process similar to stocks, while they usually

exhibit a mean-reversion behavior.
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EQUILIBRIUM ONE-FACTOR CT MODELS OF THE SHORT RATE

2. Vasicek (1977)

Also known as Hull and White (1990) model
or an Ornstein–Uhlenbeck process.

Pros:
- More tractable model, due to constant volatility.
- Interest rates are mean-reverting (to b), at a reversion rate (pace) a.

Cons:
- The model assumes a constant volatility, while interest rate volatility is often variable, namely

during periods of higher uncertainty, when the estimation of interest rates becomes more
complex but also more useful.
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3. Cox, Ingersoll and Ross (CIR)

Pros:
- Model closer to reality, as interest rates have stochastic volatilities (higher volatilities with

higher interest rates).

Cons:
- Model becomes less tractable, as it requires the single factor to be >0, which is not a problem

when the single factor is the short-term interest rate and this is positive, but becomes a
problem if the short-term rate turns negative or the factor is a different variable.

Stochastic volatility model => higher
volatility with higher interest rates.

EQUILIBRIUM ONE-FACTOR CT MODELS OF THE SHORT RATE
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NO-ARBITRAGE SHORT RATE CT MODELS

1. Ho-Lee (1986)

(t) defines the average direction that r moves at time t:

2. Hull-White One-Factor Model (1990)

Extended version of Vasicek, to provide an exact fit to the initial TSIR:
or

Corresponds to the Ho-Lee model, with mean reversion at rate a.
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NO-ARBITRAGE SHORT RATE CT MODELS

3. Black-Derman-Toy (1990)

with and is the derivative of with respect to t.

- It is similar to Hull-White One-Factor Model, but in logs and with mean reversion rate a
being time-dependent.

- It doesn’t allow negative interest rates.

Constant volatility => = 0 => a(t)=0 => BDT model:

Log-normal version of Ho-Lee model
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NO-ARBITRAGE SHORT RATE CT MODELS
4. Black-Karasinski (1991)

- Extended version of BDT (1990) model, where the reversion rate and volatility are
determined independently of each other:

, with - BDT

- The model is the same as BDT (1990), but with no relation between a(t) and (t).
- As in practice a(t) and (t) are often assumed to be constant, the model becomes:
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2.2.3. CT MULTI FACTOR MODELS

1. Fong and Vasicek (1991) model - short rate and its volatility (v) as two-state variables
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2. Longstaff and Schwartz (1992) model

 Longstaff and Schwartz (1992) uses the same two-state variables (the short rate and its
volatility), but with a different specification, as the drift is governed by two factors or
state variables, while the variance is a function of only one of them:

 With this specification, it is ensured that the drift and the variance are not perfectly
correlated.

 The dynamics of the state variables are as follows:
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3. Balduzzi et al. (1996) models

 Balduzzi et al. (1996) suggest the use of a 3-factor model by adding the mean of the short-
term rate () to a 2-factor model.


