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Further Issues in Using OLS with Time Series Data.

So far we showed that under Assumptions TS.1 to TS.6 the
Ordinary Least Squares estimator has exactly the same
properties that in the cross sectional case.
However, these Assumptions are very strong, and will not be
satisfied in some models (e.g. Assumption TS.3 [E(utjX) = 0]
does not hold if we have lagged dependent variables as
regressors).
It will be shown that under a different set of Assumptions the
inference procedures introduced in the cross-sectional case can
be used in such models in the time series context.
In some cases we would like to have as regressors lagged
dependent variables.
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Further Issues in Using OLS with Time Series Data.

Example: Partial adjustment model: Suppose y�t is the desired level of
inventories of a firm and yt is the actual level and xt is the sales.
Assume that the desired level of inventories depends of sales plus a
error term

y�t = α+ βxt + vt.

Because of frictions in the market the gap between the actual and
desired level cannot be closed instantaneously but only with some
lag. That is the inventory in time t would equal that at time t� 1 plus
an adjustment factor.

yt = yt�1 + λ(y�t � yt�1),
0 < λ < 1

In this case combining these two equations we obtain

yt = γ0 + γ1yt�1 + γ2xt + ut

where γ0 = αλ, γ1 = (1� λ),γ2 = βλ, ut = λvt.
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Further Issues in Using OLS with Time Series Data.
Main points:

If lagged dependent variables are included as regressors OLS is
biased and is not BLUE (the Gauss Markov theorem does not
hold).
The justification for the use of the inference procedures relies on
Large Sample analysis (If lagged dependent variables are included
as regressors OLS is consistent and Asymptotically normal).
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Further Issues in Using OLS with Time Series Data.
Stability and Dependence

Stability

We need to assume stability: If we allow the relationship between
two variables (say yt and xt) to change arbitrarily each time
period we cannot hope to learn much about how a change in one
variable affects the other variable if we only have access to a
single realization, hence we require a definition of stability (in
time series this is given by the notion of stationary processes).

Dependence

In the cross sectional case we had a random sample
fX1, X2, ..., Xng. Each random variable X1 to Xn were
independent with the same mean µX and finite variance σ2

X.
Under independence a Law of Large numbers (LLN) and a
Central limit theorem (CLT) would be valid. That is,

plim X̄ = µX, (Law of Large numbers)
p

n
(X̄� µ)

σX

a� N(0, 1), (Central limit theorem)
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Further Issues in Using OLS with Time Series Data.
Stability and Dependence

However in the time series context we do not have a random
sample as the random variables X1 to Xn are not independent.
Dependence is typical with time series: what happens this period
and what happened last period are related, as is what happened
the period before last and so on.
Thus with time-series data we typically have to deal with
dependence between the observations (with cross-section we
typically do not have to deal with such dependence).
We have to introduce key concepts that address these issues.
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Further Issues in Using OLS with Time Series Data.
Covariance Stationary Process

Definition

A stochastic process fxt, t = 1, ..g is covariance stationary if

I E(xt) is constant (does not vary with t)
I Var(xt) is constant,
I for any h 6= 0, Cov(xt, xt+h) depends only on h and not on t.

Example: The process fεt, t = 1, ...g such as E(εt) = 0,
Var(εt) = σ2

ε and Cov(εt, εt+h) = 0 with h 6= 0 is known as a white
noise process. It is covariance stationary.
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Further Issues in Using OLS with Time Series Data.
Covariance Stationary Process

Stationarity is important in time series because
if we want to understand the relationship between two or more
variables using regression analysis we need to assume some sort of
stability of the relationship over time.
it also simplifies the assumptions required for a LLN and a CLT to
hold.
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Further Issues in Using OLS with Time Series Data.
Weakly Dependent Time Series

We need to replace the concept of independence by a different
concept in time series.

A stationary time series is weakly dependent if xt and xt+h are
“almost uncorrelated” as h increases.
If for a covariance stationary process Corr(xt, xt+h)! 0 as
h ! ∞, we’ll say this covariance stationary process is weakly
dependent.
We need weak dependence for LLN’s and CLT’s to hold.
We won’t give a rigorous technical definition of weak dependent
process.
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Further Issues in Using OLS with Time Series Data.
MA(1) Process

A stochastic process is a moving average process of order one,
MA(1), if

xt = et + ρ1et�1, t = 1, 2, . . .

with et being a white noise process with variance σ2
e .

This is a stationary, weakly dependent sequence as variables 1
period apart are correlated, but 2 periods apart they are not.
Notice that

E(xt) = 0.
Var(xt) = σ2

e (1+ ρ2
1).

Corr(xt, xt�1) = ρ1/(1+ ρ2
1).

Corr(xt, xt�h) = 0, h � 2
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Further Issues in Using OLS with Time Series Data.
MA(1) Process
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Further Issues in Using OLS with Time Series Data.
An AR(1) Process

An autoregressive process of order one , AR(1), can be characterized
as one where

xt = ρ1xt�1 + et,

t = 1, 2, . . .with et being a white noise process.
A necessary condition for an AR(1) process to be stationary and
weakly dependent is that �1 < ρ1 < 1: an AR(1) process
satisfying this condition is called stable.

It is possible to show that if jρ1j < 1:

E(xt) = 0.

Var(xt) =
σ2

e
1�ρ2

1

Corr(xt, xt+h) = Cov(xt, xt+h)/Var(xt) = ρh
1 which becomes small

as h increases.
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Further Issues in Using OLS with Time Series Data.
An AR(1) Process
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Further Issues in Using OLS with Time Series Data.
Trends Revisited

yt = α+ βt+ ut,

where E(ut) = 0.

A trending series cannot be stationary, since the mean is changing
over time E(yt) = α+ βt.
A trending series is weakly dependent if ut is weakly dependent.
If a ut is weakly dependent and stationary, we will call yt a
trend-stationary process.
As long as a trend is included, all is well.
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Further Issues in Using OLS with Time Series Data.
Assumptions for consistency and asymptotic normality of the OLS

The following Assumptions are required to show that the OLS
estimator is consistent.

Assumption (TS.1’ - linearity in parameters)

The stochastic process f(yt, xt1, xt2, ..., xtk); t = 1, 2, ..., ng is stationary and
weakly dependent and follows the linear model:

yt = β0 + β1xt1 + ...+ βkxtk + ut

Note that some regressors may be lagged values of other
regressors or lagged values of y.

Assumption (TS.2’ - no perfect collinearity)

No regressor independent variable is a constant nor a perfect linear
combination of the other regressors.
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Further Issues in Using OLS with Time Series Data.
Assumptions for consistency and asymptotic normality of the OLS

Write xt = (xt1,...,xtk).

Assumption (TS.3’ - zero conditional mean)

E(utjxt) = 0, t = 1, 2, . . . , n

Theorem
Under assumptions TS.1’ through TS.3’ the OLS estimator is consistent:

plim β̂j = βj,

j = 0, 1, ...k
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Further Issues in Using OLS with Time Series Data.
Assumptions for consistency and asymptotic normality of the OLS

Remarks:

Thus, can have correlation between ut�1 and xt (OK if
yt = α0 + α1yt�1 + ut , where yt�1 naturally depends on ut�1).
Can have feedback from y (or u) to future values of the
regressors.
Weaker assumptions than those for unbiasedness.
Main difference: Assumption TS.3 does not hold with lagged
dependent variables as regressors (E(utjX) 6= 0) hence OLS is
biased. However, in this case Assumption TS.3’ holds and
therefore it is consistent.
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Further Issues in Using OLS with Time Series Data.
Assumptions for consistency and asymptotic normality of the OLS

Why do lagged dependent variables violate strict exogeneity?
Consider the model

yt = α1yt�1 + ut (1)
This is the simplest possible regression model with a lagged
dependent variable

Contemporaneous exogeneity: E(utjyt�1) = 0
Strict exogeneity: E(utjy0, y1, y2, ..., yn�1) = 0.
Strict exogeneity would imply that cov(yt, ut) = 0 for all
t = 1, . . . , n� 1
But this is incompatible with model (1) as this leads to a
contradiction:

Notice that equation (1) implies that for all t = 1, . . . , n� 1

cov(yt, ut) = α1cov(yt�1, ut) + var (ut)

On the other hand, strict exogeneity implies also that
cov(yt�1, ut) = 0, it follows that cov(yt, ut) = var (ut) > 0, hence
contradiction!

The solution to this problem is to drop the assumption of strict
exogeneity and assume contemporaneous exogeneity.
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Further Issues in Using OLS with Time Series Data.
Assumptions for consistency and asymptotic normality of the OLS

Let us consider:

Assumption (TS.4’ - contemporaneous homoskedasticity)

For each t = 1, 2, ..., n :

Var(utjxt) = Var(ut) = σ2

Assumption (TS.5’ - No Serial Correlation)

For each t; s = 1, 2, ..., n such that t 6= s:

Corr(ut, usjxt, xs) = 0

Theorem
With assumptions TS.1’ through TS.5’, we have asymptotic normality of the
OLS estimators. The usual standard errors, t statistics, F statistics and LM
statistics are valid asymptotically (that is if the sample size is large).
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Further Issues in Using OLS with Time Series Data.
Autoregressive distributed Lag model

Now we have the tools to estimate a dynamic model with lagged
dependent variables as regressors.
The Autoregressive distributed Lag model is given by

yt = α+∑q
i=0 βi+1xt�i +∑p

i=1 γ1yt�i + ut
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Further Issues in Using OLS with Time Series Data.
Autoregressive distributed Lag model

Let us consider a simple case

yt = α+ γ1yt�1 + β1xt + β2xt�1 + ut,
jγ1j < 1

We are going to study the change in yt, yt+1, yt+2 as x changes
temporarily or permanently in period t :
The change in yt as x changes temporarily in period t :

∂yt

∂xt
= β1

The change in yt as x changes permanently in period t :

∂yt

∂xt
= β1
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Further Issues in Using OLS with Time Series Data.
Autoregressive distributed Lag model

Now in period t+ 1:

yt+1 = α+ γ1yt + β1xt+1 + β2xt + ut

The change in yt+1 as x changes temporarily in period t :

∂yt+1

∂xt
= γ1

∂yt

∂xt
+ β2

= γ1β1 + β2

The change in yt+1 as x changes permanently in period t :

∂yt+1

∂xt
+

∂yt+1

∂xt+1
= γ1β1 + β2 + β1

22 / 38



Further Issues in Using OLS with Time Series Data.
Autoregressive distributed Lag model

Now in period t+ 2 :

yt+2 = α+ γ1yt+1 + β1xt+2 + β2xt+1 + ut

The change in yt+2 as x changes temporarily in period t :

∂yt+2

∂xt
= γ1

∂yt+1

∂xt

= γ1(γ1β1 + β2)

The change in yt+2 as x changes permanently in period t :

∂yt+2

∂xt+2
+

∂yt+2

∂xt+1
+

∂yt+2

∂xt
= β1 + γ1β1 + β2 + γ1(γ1β1 + β2).
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Further Issues in Using OLS with Time Series Data.
Autoregressive distributed Lag model

Long run multiplier
Suppose that the economy were in a steady state in which all of the
variables were constant over time. Hence xt = xt�1 = x, yt = y and in
the steady state ut = 0. The long run relation is given by

y = α+ γ1y+ β1x+ β2x

Hence the long-run relationship is given by

y =
α

1� γ1
+

β1 + β2
1� γ1

x

the long run multiplier (propensity) is given by β1+β2
1�γ1

.
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Further Issues in Using OLS with Time Series Data.
Inference on the long-run propensity

Inference on β1+β2
1�γ1

.

Suppose the null hypothesis is H0 : β1+β2
1�γ1

= a, where a is a
constant.
Notice that this is equivalent to H0 : β1 + β2 + aγ1 = a
Use the t-statistic

t =
β̂1 + β̂2 + aγ̂1 � a
se(β̂1 + β̂2 + aγ̂1)

where se(β̂1 + β̂2 + aγ̂1) is the standard error of β̂1 + β̂2 + aγ̂1.
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Further Issues in Using OLS with Time Series Data
Inference on the long-run propensity

Notice that

Var(β̂1 + β̂2 + aγ̂1) = Var(β̂1) +Var(β̂2) + a2Var(γ̂1)

+2Cov(β̂1, β̂2) + 2a� Cov(β̂1, γ̂1)

+2a� Cov(β̂2, γ̂1).

Hence

se(β̂1 + β̂2 + aγ̂1)
2 = se(β̂1)

2 + se(β̂2)
2 + a2se(γ̂1)

2

+2� s(β̂1, β̂2) + 2a� s(β̂1, γ̂1)

+2a� s(β̂2, γ̂1),

where se(β̂j) is the standard error of β̂j, se(γ̂1) is the standard
error of γ̂1 and s(., .) is an estimator of Cov(., .).
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Further Issues in Using OLS with Time Series Data.
Autoregressive distributed Lag model

Example: The logarithm of consumption (lc) is expected to depend
on the logarithm of income (ly) and inflation (ir). The latter variable is
a proxy for wealth effects.

lct = β0 + β1lyt + β2irt + β3lyt�1 + β4irt�1 + β5lct�1 + ut,

We estimate the dynamic model by OLS and obtained the following
results:

lct Coef. Std. Err. t
lyt 0.7619 0.0468 16.2700
irt 0.0724 0.2605 0.2800

lct1 0.8353 0.1169 7.1400
lyt1 0.5975 0.1300 4.6000
irt1 0.3000 0.2372 1.2600

intercept 0.0708 0.1510 0.4700
Rsquared= 0.9979
Number of observations=32
Residual sum of squares= 0.003757558

Compute the change in lct, lct+1 as ly changes permanently in period
t.
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Further Issues in Using OLS with Time Series Data.
Autoregressive distributed Lag model

The variance covariance matrix of the Ordinary Least squares
estimator is given by

lyt irt lct1 lyt1 irt1 intercept
lyt 0.0022
irt 0.0014 0.0679

lct1 0.0001 0.0191 0.0137
lyt1 0.0019 0.0216 0.0143 0.0169
irt1 0.0004 0.0527 0.0149 0.0155 0.0563

intercept 0.0020 0.0187 0.0134 0.0131 0.0165 0.0228

Test the hypothesis that the long-run multiplier of the logarithm of
income is equal to 1.
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Further Issues in Using OLS with Time Series Data.
Random Walks

A random walk is an AR(1) model where ρ1 = 1, meaning the
series is not weakly dependent:

yt = yt�1 + et.

et is a white noise process with variance σ2
e .

With a random walk, the expected value of yt is always y0 – it
doesn’t depend on t
Var(yt) = σ2

e t, so it increases with t
A random walk is not covariance stationary.
We say a random walk is highly persistent since E(yt+hjyt) = yt
for all h � 1
Contrast conditional expectation of random walk,
E(yt+hjyt) = yt, with conditional expectation of the stable AR(1)
process, E(yt+hjyt) = ρh

1yt.
For stable AR(1) process (jρ1j < 1) E(yt+hjyt) approaches zero
(unconditional expected value) exponentially fast as h ! ∞.
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Further Issues in Using OLS with Time Series Data.
Random Walks (continued)

A random walk is a special case of what’s known as a unit root
process. A unit root process is defined as

yt = yt�1 + et.

where et is a weakly dependent process (like an AR(1) or MA(1)
etc. . . ).
Example: GDP is (most likely) a unit root process.
A random walk with drift (intercept) is an example of a highly
persistent series that is trending

yt = α0 + yt�1 + et
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Further Issues in Using OLS with Time Series Data.
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Further Issues in Using OLS with Time Series Data.
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Further Issues in Using OLS with Time Series Data.
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Further Issues in Using OLS with Time Series Data.
Transforming Persistent Series

In order to use a highly persistent series and get meaningful
estimates and make correct inferences, we want to transform it
into a weakly dependent process.
To have consistency and make inference, since TS.1’ fails! TS.1’
through TS.6’ are hard to get with highly persistent series!
We refer to a weakly dependent process as being integrated of
order zero, [I(0)]
A random walk (or in general a unit-root process) is integrated of
order one, [I(1)], meaning a first difference will be I(0).(
∆yt = yt � yt�1) are I(0).
In practice we do not know whether a series is I(0) or I(1).
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Further Issues in Using OLS with Time Series Data.
Deciding Whether a Time Series Is I(1)

A simple tool for determining if the process is I(1) is to consider
an AR(1) model

yt = ρ1yt�1 + ut.

If the process is I(0), jρ1j < 1, but it is I(1) if ρ1 = 1.
ρ1 = Corr(yt, yt�1), thus we can estimate it from the sample
correlation between yt and yt�1 : ρ̂1 =

dCorr(yt, yt�1); it is called
first order autocorrelation of fytg.
If the sample first order autocorrelation is close to one, this
suggests that the time series may be highly persistent (= contains
a unit root)
When estimating ρ1, we should consider a trend in the series;
detrend the series first, or include a trend in the regression.
Both unit root and trend may be eliminated by differencing.
It is possible to test the hypothesis H0 : ρ1 = 1, although we are
not going to cover these tests in this module.

35 / 38



Further Issues in Using OLS with Time Series Data.
Deciding Whether a Time Series Is I(1)

Example: Fertility equation:

For large sample analysis, the fertility series and the series of the
personal tax exemption have to be stationary and weakly
dependent. This is questionable because the two series are
highly persistent::

It is therefore better to estimate the equation in first differences.
This makes sense because if the equation holds in levels, it also
has to hold in first differences:
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Further Issues in Using OLS with Time Series Data.
Dynamically Complete Models and the Absence of Serial Correlation

Consider the general model

yt = β0 + β1x1t + ...+ βkxkt + ut,

where the explanatory variables xt = (x1t, ..., xkt) may or may not
contain lags of yt or xjt.
A model is said to be dynamically complete model. if enough
lagged variables have been included as explanatory variables so
that further lags do not help to explain the dependent variable:

E(ytjxt, yt�1, xt�1, ...) = E(ytjxt).

This implies that E(utjxt, yt�1, xt�1, ...) = 0.
A dynamically complete model must satisfy assumption about
uncorrelated regression errors (TS 5’)

E(utusjxt, xs) = 0.

One can easily test for dynamic completeness: If lags cannot be
excluded, this suggests there is serial correlation
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Further Issues in Using OLS with Time Series Data.
Dynamically Complete Models and the Absence of Serial Correlation

Sequential exogeneity

A set of explanatory variables is said to be sequentially
exogenous if "enough" lagged explanatory variables have been
included:

E(utjxt, xt�1, ...) = E(ut) = 0.

Sequential exogeneity is weaker than strict exogeneity
Sequential exogeneity is equivalent to dynamic completeness if
the explanatory variables contain a lagged dependent variable
Should all regression models be dynamically complete?
Not necessarily: If sequential exogeneity holds, E(ytjxt, xt�1, ...)
will be correctly estimated; absence of serial correlation is not
crucial.
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