Mathematical Economics - 1st Semester - 2023/2024

Repeat Assessment - 1st of February 2024
Duration: $(120+\varepsilon)$ minutes, $|\varepsilon| \leq 30$
Version A
Name: \qquad
Student ID \#: \qquad

Part I

- Complete the following sentences in order to obtain true propositions. The items are independent from each other.
- There is no need to justify your answers.
(a) (4) The (maximal) domain of $f: D_{f} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=\frac{\sqrt{y-x^{2}}}{\ln \left(x^{2}+y^{2}\right)}
$$

is the set

$$
D_{f}=
$$

\qquad
(b) (7) With respect to the set

$$
\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x \in[1,2] \wedge \frac{1}{x} \leq y\right\}
$$

we may conclude that $\left(\frac{3}{2}, 3\right)$ is an \qquad point of Ω and $\partial \Omega=f r(\Omega)=$ \qquad
Since Ω is unbounded, then Ω is not \qquad
(c) (4) Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $g(x, y)=-y^{2}+\cos (x)$ and $\left.f: \mathbb{R} \rightarrow\right]-\infty,-1[$ be the map whose graphical representation is given by:

Then

$$
\lim _{(x, y) \rightarrow(0,-\infty)} \frac{-3}{(f \circ g)(x, y)}=
$$

(d) (4) With respect to a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, one knows that

$$
\nabla f(x, y)=\left(-2 x \sin \left(x^{2}+y\right) ;-\sin \left(x^{2}+y\right)\right) .
$$

If $f(x, y)$ does not have constant terms in both components, then

$$
f(x, y)=
$$

(e) (4) If $u_{n}=\left(\ln \left(1-\frac{1}{2 n+1}\right)^{n+\frac{1}{2}} ; \frac{1}{n}\right), n \in \mathbb{N}$ and $f(x, y)=-2 x+\cos y$, then

$$
\lim _{n \rightarrow+\infty} f\left(u_{n}\right)=\ldots \ldots
$$

(f) (8) The graphical representation of the correspondence $H:[0,1] \rightrightarrows \mathbb{R}$ defined by

$$
H(x)= \begin{cases}{[\sqrt{x}, 1-2 x]} & x<\frac{1}{4} \\ {[0,2 x],} & \frac{1}{4} \leq x \leq \frac{1}{2} \\ \{1\} & x>\frac{1}{2}\end{cases}
$$

is:

The set of fixed points of H are explicitly given by: \qquad
(g) (4) Let $f:[0,1] \rightarrow[0,1]$ be a continuous map. Then the equation has at least one solution, as a consequence of the Brouwer Fixed Point Theorem.
(h) (4) With respect to the C^{2} map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, we know that $\nabla f(3,2)=(0,0)$ and

$$
H_{f}(3,2)=\left(\begin{array}{cc}
-5 & \ldots \ldots \\
0 & \ldots . .
\end{array}\right)
$$

Then, we conclude that $(3,2)$ is a local maximizer of f.
(i) (4) Consider the following utility maximisation problem. There are two goods and an agent with income 3 who wishes to maximize the utility:

$$
U(x, y)=\ln (x+1)+y, \quad x \geq 0, \quad y \geq 0
$$

subject to a budget constraint $\frac{1}{2} x+y \leq 3$. The necessary conditions to solve the utility maximization problem are:

$$
\left\{\begin{array}{l}
\ldots \ldots \ldots \ldots \ldots .-\frac{1}{2} \mu_{1}+\mu_{2}=0 \\
\ldots \ldots \ldots \ldots \ldots-\mu_{1}+\mu_{3}=0 \\
\mu_{1} x=0, \mu_{2} y=0 \\
\ldots \\
\mu_{1}, \mu_{2}, \mu_{3} \ldots \ldots \ldots . . \\
\frac{1}{2} x+y \leq 3 \\
x \geq 0, y \geq 0
\end{array}\right.
$$

(j) (4) The map $y(x)=\cos (4 x), x \in \mathbb{R}$, is a solution of the IVP $\left\{\begin{array}{l}y^{\prime \prime}=\ldots \ldots \\ y(\ldots \ldots)=0\end{array}\right.$.
(k) (5) The law (associated to a given population of size p that depends on the time $t \geq 0$) states that

$$
p^{\prime}=k p, \quad k \in \mathbb{R}
$$

If $p(0)=10$ and $k=-2$, then the solution of the previous differential equation is given explicitly by
\qquad where $t \in \mathbb{R}_{0}^{+}$.
(1) (3) Assuming that y depends on x, any solution of the differential equation $y^{\prime}=e^{-x}$ is monotonically \qquad
(m) (6) For $b \in \mathbb{R}$, consider the following differential equation (P depends on $t \in \mathbb{R}$):

$$
P^{\prime \prime}+b P^{\prime}+5 P=15
$$

The solution P is periodic on t if and only if \qquad If $b=2$, then $\lim _{t \rightarrow+\infty} P(t)=$ \qquad
(n) (7) The linearisation of

$$
(*)\left\{\begin{array} { l }
{ \dot { x } = 3 x - x y ^ { 2 } } \\
{ \dot { y } = 8 y - y x ^ { 2 } }
\end{array} \quad \text { around } (0 , 0) \quad \text { is } \quad (* *) \left\{\begin{array}{l}
\dot{x}= \\
\dot{y}=.
\end{array}\right.\right.
$$

\qquad
With respect to the Lyapunov's stability, we may conclude that $(0,0)$ is \qquad Furthermore, \qquad .-......................... .Theorem says that, in a small neighbourhood of $(0,0)$, the dynamics of $\left(^{*}\right)$ and $\left({ }^{* *}\right)$ are "qualitatively" the same (topologically conjugated).
(o) (4) The phase portrait of $\dot{X}=A X$, where $A \in M_{2 \times 2}(\mathbb{R})$ and $X \in \mathbb{R}^{2}$, is given by:

Then the following inequalities hold: $\operatorname{det}(A)$. \qquad and $\operatorname{Tr}(A)$
(p) (8) Consider the following problem of optimal control where $x:[0,10] \rightarrow \mathbb{R}$ is the state and $u:[0,10] \rightarrow \mathbb{R}$ is the control:

$$
\max _{u(t) \in \mathbb{R}} \int_{0}^{10} \ln (u(t)) d t, \quad x^{\prime}(t)=x(t)-u(t), \quad x(0)=1 \quad \text { and } \quad x(10)=1
$$

Then the Hamiltonian is given by (specify the formulas to the case under consideration):

$$
H(t, x, u, p)=
$$

\qquad
The Pontryagin maximum principle says that the optimal control u^{\star} should satisfy the equality \qquad The Hamiltonian equations are given by:

Part II

- Give your answers in exact form. For example, $\frac{\pi}{3}$ is an exact number while 1.047 is a decimal approximation for the same number.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solve a problem, you may get little or no credit for it, even if your answer is correct.

1. Consider the map $f:[0,+\infty[\rightarrow \mathbb{R}$ defined by

$$
f(x)=\frac{x+1 / 2}{x+1}
$$

(a) Sketch the graph of f and compute $\lim _{x \rightarrow+\infty} f(x)$.
(b) Show that f satisfies the hypotheses of the Banach fixed point Theorem and find the fixed point of f.
2. Consider the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=y(x+2)^{2}+x y^{2}-y x^{2}
$$

(a) Identify the critical points of f and show that they are saddle-points.
(Suggestion: First simplify the expression of $f(x, y)$)
(b) Consider the set $M=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+(y+2)^{2} \leq 10\right\}$.

Without performing computations:

(i) show that $\left.f\right|_{M}$ has a global maximum and a global minimum.
(ii) show that the global extrema of $\left.f\right|_{M}$ lie on the boundary of M.
3. For $\alpha \in \mathbb{R}$, consider the following differential equation of order 2 :

$$
\begin{equation*}
y^{\prime \prime}(x)-\alpha y(x)=5 \sin (2 x) \tag{1}
\end{equation*}
$$

for which $y(x)=\sin (2 x)$ is a particular solution.
(a) Show that $\alpha=-9$.
(b) Write the general solution of (1), identifying its maximal domain.
4. Consider the linear system in \mathbb{R}^{2} given by (x and y depend on t):

$$
\left\{\begin{array}{l}
\dot{x}=-y \\
\dot{y}=-x
\end{array}\right.
$$

(a) Write the general form of the solution.
(b) Sketch the associated phase portrait.
5. Consider the following Problem on Calculus of Variations, where $x:[0,1] \rightarrow \mathbb{R}$ is a smooth function on t :

$$
\min _{x(t) \in \mathbb{R}} \int_{0}^{1}\left[2 t x(t)+\dot{x}^{2}(t)\right] d t, \quad \text { with } \quad x(0)=0 \quad \text { and } \quad x(1) \in \mathbb{R} .
$$

(a) Write the corresponding Euler-Lagrange equation applied to the case under consideration.
(b) Find the solution of the problem.

Credits:

I	II.1(a)	II.1(b)	II.2(a)	II.2(b)	II.3(a)	II.3(b)	II.4(a)	II.4(b)	II.5(a)	II.5(b)
80	10	15	15	15	10	10	15	5	10	15

