Instituto Superior de Economia e Gestão
BsC in Economics, Finance and Management

Mathematics II - 1st Semester - 2023/2024

Repeat Assessment - 1st of February 2024
Duration: $(120+\varepsilon)$ minutes, $|\varepsilon| \leq 30$
Version A
Name:
Student ID \#: \qquad

Part I

- Complete the following sentences in order to obtain true propositions. The items are independent from each other.
- There is no need to justify your answers.
(a) (4) If $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear map given by $A(x, y)=(3 x+4 y,-7 y)$ then the eigenvalues of A^{-1} are \qquad and
(b) (7) The (maximal) domain of $f: D_{f} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=\frac{\sqrt{y-x^{2}}}{\ln \left(x^{2}+y^{2}\right)}
$$

is the set

$$
D_{f}=
$$

\qquad and its planar representation in the cartesian plane (x, y) is:
(c) (7) The symmetric matrix associated to the quadratic form in \mathbb{R}^{3} :

$$
Q(x, y, z)=(x+3 y)^{2}+5 z^{2}
$$

is

$$
\left(\begin{array}{ccc}
\cdots \cdots & \cdots \cdots & \cdots . . \\
\cdots \cdots & \cdots & \cdots \\
\cdots \cdots & \cdots . . & \cdots .
\end{array}\right)
$$

and Q may be classified as \qquad defined.

Since Q is positively homogeneous of degree \qquad Euler's identity says that:

$$
x \frac{\partial Q}{\partial x}(x, y, z)+y \frac{\partial Q}{\partial y}(x, y, z)+z \frac{\partial Q}{\partial z}(x, y, z)=
$$

\qquad
(d) (7) With respect to the set

$$
\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x \in[1,2] \wedge \frac{1}{x} \leq y\right\}
$$

we may conclude that $\left(\frac{3}{2}, 3\right)$ is an \qquad point of Ω and
$\partial \Omega=f r(\Omega)=$ \qquad
Since Ω is unbounded, then Ω is not
(e) (4) With respect to the continuous map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, its directional derivatives along the non-null vector $\left(v_{1}, v_{2}\right)$ at $(0,0)$ are given by

$$
D_{\left(v_{1}, v_{2}\right)} f(0,0)=\frac{v_{1}^{2}}{1+v_{2}^{2}} .
$$

Hence we may conclude that:

$$
\frac{\partial f}{\partial x}(0,0)=\ldots \ldots \ldots \ldots \ldots . \quad \text { and } \quad \frac{\partial f}{\partial y}(0,0)=
$$

(f) (4) If $u_{n}=\left(\ln \left(1-\frac{1}{2 n+1}\right)^{n+\frac{1}{2}} ; \frac{1}{n}\right), n \in \mathbb{N}$ and $f(x, y)=-2 x+\cos y$, then

$$
\lim _{n \rightarrow+\infty} f\left(u_{n}\right)=\ldots \ldots
$$

(g) (6) If $f(x, y)=\frac{x^{2} y}{x^{2}-y^{2}}$ where $x \neq \pm y$, then

$$
=\lim _{(x, y) \rightarrow(0,0), y=x^{2}+x} f(x, y) \neq \lim _{(x, y) \rightarrow(0,0), y=2 x} f(x, y)=\ldots \ldots \ldots .
$$

which means that f
(h) (6) If $f(x, y)=x^{2} y, x(t)=e^{3 t}$ and $y(t)=\sin t$, by the Chain rule we get:

$$
\frac{d f}{d t}(t)=
$$

(i) (4) Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $g(x, y)=-y^{2}+\cos x$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map whose graphical representation is given by:

Then

$$
\lim _{(x, y) \rightarrow(0,-\infty)} \frac{-3}{(f \circ g)(x, y)}=
$$

(j) (4) With respect to a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, one knows that

$$
\nabla f(x, y)=\left(-2 x \sin \left(x^{2}+y\right) ;-\sin \left(x^{2}+y\right)\right) .
$$

If $f(x, y)$ does not have constant terms in both components, then

$$
f(x, y)=
$$

\qquad
(k) (3) The differential of order 2 of the map $f(x, y)=1+3 x+y^{2}$ at the point $(0,0)$ is given by

$$
D_{2} f(0,0)\left(h_{1}, h_{2}\right)=\ldots \ldots . h_{1}^{2}+\ldots \ldots . h_{1} h_{2}+\ldots \ldots . . h_{2}^{2}
$$

(1) (4) With respect to the C^{2} map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, we know that $\nabla f(3,2)=(0,0)$ and

$$
H_{f}(3,2)=\left(\begin{array}{cc}
-5 & \ldots \ldots \\
0 & \ldots . .
\end{array}\right)
$$

Then, we conclude that $(3,2)$ is a local maximizer of f.
(m) (4) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\sin (2 x+y)$. Then:

$$
\frac{\partial^{200} f}{\partial x^{200}}(x, y)=
$$

\qquad
(n) (4) The following equality holds:

$$
\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} 1 \mathrm{dy} \mathrm{dx}=\ldots \ldots
$$

(o) (4) The map $y(x)=\cos (4 x), x \in \mathbb{R}$, is a solution of the IVP $\left\{\begin{array}{l}y^{\prime \prime}=\ldots \ldots . \\ y(\ldots \ldots)=0\end{array}\right.$.
(p) (4) The \qquad law (associated to a given population of size p that depends on the time $t \geq 0$) states that

$$
p^{\prime}=k p, \quad k \in \mathbb{R}
$$

If $p(0)=10$ and $k=-2$, then the solution of the previous differential equation is given explicitly by
\qquad where $t \in \mathbb{R}_{0}^{+}$.
(q) (3) Assuming that y depends on x, any solution of the differential equation $y^{\prime}=e^{-x}$ is monotonically \qquad
(r) (6) For $b \in \mathbb{R}$, consider the following differential equation (P depends on $t \in \mathbb{R}$):

$$
P^{\prime \prime}+b P^{\prime}+5 P=15
$$

The solution P is periodic on t if and only if \qquad

If $b=2$, then $\lim _{t \rightarrow+\infty} P(t)=$ \qquad

Part II

- Give your answers in exact form. For example, $\frac{\pi}{3}$ is an exact number while 1.047 is a decimal approximation for the same number.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solve a problem, you may get little or no credit for it, even if your answer is correct.

1. For $\alpha \in \mathbb{R}$, consider the following matrix $\mathbf{A}=\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & \alpha\end{array}\right]$.
(a) Classify the quadratic form $Q(X)=X^{T} \mathbf{A} X, X \in \mathbb{R}^{3}$, as function of α.
(b) If $\alpha=5$, find the eigenspace associated to the eigenvalue 5 and indicate its geometrical multiplicity.
2. Consider the map $f(x, y)=\left\{\begin{array}{ll}\frac{x(x+y)}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{array}\right.$.
(a) Show that f is continuous in \mathbb{R}^{2}.
(b) Find the directions $\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2} \backslash\{(0,0)\}$ along with there exists directional derivative of f at $(0,0)$. In these cases, compute it.
3. Consider the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=y(x+2)^{2}+x y^{2}-y x^{2}
$$

(a) Identify the critical points of f and show that they are saddle-points.
(Suggestion: first simplify the expression of $f(x, y)$)
(b) Consider the set $M=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+(y+2)^{2} \leq 10\right\}$.

Without performing computations:

(i) show that $\left.f\right|_{M}$ has a global maximum and a global minimum.
(ii) show that the global extrema of $\left.f\right|_{M}$ lie on the boundary of M.
4. Consider the set $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2} \leq y \leq-3 x \wedge x \leq-1\right\}$.
(a) Sketch the set Ω in the cartesian plane (x, y).
(b) Compute

$$
\iint_{\Omega} \frac{e^{\frac{y}{x}}}{x} \mathrm{dx} \mathrm{dy} .
$$

5. Consider the following IVP (y is a function of x):

$$
\left\{\begin{array}{l}
x^{4} y^{\prime}+4 x^{3} y=\cos x \\
y(\pi)=\pi
\end{array}\right.
$$

Write the solution y of the IVP, identifying its maximal domain.

Credits:

I	II.1(a)	II.1(b)	II.2(a)	II.2(b)	II.3(a)	II.3(b)	II.4(a)	II.4(b)	II.5
85	10	10	10	15	15	15	5	15	20

