Normal Period Exam - January 9, 2018

Duration: 1h15
Name:
Number:

1. Consider the two variable function defined by

$$
f(x, y)=4 x^{2}+y^{2} .
$$

a. [1,0 points] Sketch the level curves of f corresponding to the values $k=1, k=4$ and $k=0$.
b. [$\mathbf{1 , 0} \mathbf{0}$ points] Consider the ellipse \mathcal{E} of equation $4 x^{2}+y^{2}=5$.

Compute all vectors \vec{u} perpendicular to \mathcal{E} at point $(1,1)$.
2. [2,0 points] Compute and classify the critical points of the function defined in \mathbb{R}^{2} by

$$
g(x, y)=x^{3}+3 x y^{2}-15 x-12 y .
$$

3. $[2,0$ points $]$ Find the maximum and the minimum of the function defined in \mathbb{R}^{2} by

$$
f(x, y)=x^{2} y
$$

over the set $M=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$.
4. [2,0 points] Using a double integral, compute the area of the region of the plane defined by

$$
\mathcal{R}=\left\{(x, y) \in \mathbb{R}^{2}: y \geq-2-\frac{1}{2} x \wedge y \leq 8-\frac{1}{2} x^{2}\right\} .
$$

5. [2,0 points] Compute the general solution of the differential equation

$$
y^{\prime \prime}(x)-4 y^{\prime}(x)+4 y(x)=4 x^{2}
$$

[Sheet for complementary resolutions]

LISBON

Mid Term Exam - November 8th, 2018 Duration: 1h15m

1. Consider the matrix $A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 2 & 0 \\ 4 & 0 & 0\end{array}\right]$.
a. $[1,0 \mathrm{pts}]$ Compute all eigenvalues of A and state their algebraic multiplicity.
b. $[1,0 \mathrm{pts}]$ Let λ_{0} the largest eigeinvalue of A. Determine the eigenspace associated to λ_{0}. State also the geometric multiplicity of λ_{0}.
2. a. [0,5 pts] Consider the quadratic form $h(x, y, z, w, t)=-x^{2}-5 x w+4 y^{2}+w^{2}+t^{2}+t y$. Compute $h(1,0,0,-1,0), h(1,0,0,0,0)$ and deduce the classification of h.
b. $[\mathbf{1 , 0} \mathbf{p t s}]$ Let A an invertible matrix. Explain why $\lambda=0$ is not an eigenvalue of A.
c. $[0,5 \mathrm{pts}]$ Consider a set $A \subset \mathbb{R}^{n}$ and a a limit point of A. Explain why a is not an exterior point of A.
3. $[\mathbf{1 , 5} \mathbf{p t s}]$ Classify the quadratic form $q(x, y, z)=x^{2}+2 y^{2}+3 z^{2}+8 x y+4 x z$.
4. $[1,5 \mathrm{pts}]$ Consider the two variable function defined by the expression $f(x, y)=\frac{\ln \left(1-(x-1)^{2}-(y+2)^{2}\right)}{\sqrt{(x-1)(y+2)}}$. Determine the domain D_{f} of f and represent it graphically. Is D_{f} open? Closed?
5. [1,5 pts] Consider the function F defined by $F(x, y)=f(u, v, w)$, where f is a function of class C^{1} and $u=x^{2}+y, v=x-y^{2}, w=\ln (x y)$.
Assuming that $\vec{\nabla} f(2,0,0)=(2,2,2)$, compute $\vec{\nabla} F(1,1)$.
6. $[1,5 \mathrm{pts}]$ Consider the function f defined in \mathbb{R}^{2} by

$$
f(x, y)= \begin{cases}\frac{y^{4}+3 y x^{3}}{\frac{1}{2} x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) ; \\ 0 & \text { if }(x, y)=(0,0) .\end{cases}
$$

Study the differentiability of f at point $(0,0)$.
[Sheet for complementary resolutions]
[Sheet for complementary resolutions]

Repeat Period Exam - January 6th, 2019 Duration: 2h15m

Name:

1. Consider the matrix $A=\left[\begin{array}{rrr}2 & 1 & -1 \\ 0 & 4 & 0 \\ 2 & -2 & 1\end{array}\right]$.
a. ($1,0 \mathrm{pts}$) Show that A admits one single real eigenvalue and compute it.
b. (1,0 pts) Determine the associated eigenspace.
2. Let B a invertible square matrix such that $B^{2}+3 B$ is not invertible.
a. $(0,5 \mathrm{pts})$ Show that $\lambda_{1}=0$ is not an eigenvalue of B.
b. (1,0 pts) Show that $\lambda_{2}=-3$ is an eigenvalue of B.
3. (2,0 pts) For $\alpha \in \mathbb{R},|\alpha| \neq \sqrt{2}$, consider the quadratic form

$$
q(x, y, z)=z^{2}+y^{2}+\frac{1}{4} x^{2}-a z y+\frac{a}{2} z x .
$$

Classify q in terms of the parameter a.
4. ($1,5 \mathrm{pts}$) Consider the two variable function defined by the expression

$$
f(x, y)=\ln \left(\left(x^{2}+x-2\right)\left(y^{2}-3 y+2\right)\right) .
$$

Determine the domain D_{f} of f and represent it graphically. Is D_{f} an open set?
5. Consider the function f defined in \mathbb{R}^{2} by

$$
f(x, y)= \begin{cases}\frac{5 y x^{3}}{y^{2}+6 x^{6}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

a. $(1,5 \mathrm{pts})$ Study the continuity of f at point $(0,0)$.
b. (1,5 pts) Compute $\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)$ if such quantities exist and determine for which vectors u the directional derivative $\partial_{u} f(0,0)$ exists.
6. ($1,5 \mathrm{pts}$) Compute the coordinates of a vector orthogonal to the line of equation

$$
x^{3}+3 y^{3}+e^{x y}=4
$$

at point $(0,1)$. Hint: Interpret the line as a level curve.
7. ($2,5 \mathrm{pts}$) Solve the initial value problem

$$
\left\{\begin{array}{l}
x^{2} y^{\prime}=x-y^{\prime} \\
y(1)=0
\end{array}\right.
$$

8. ($3,5 \mathrm{pts}$) Compute the absolute maximum and minimum of the function f defined by

$$
f(x, y)=2 x^{2}+y^{2}
$$

over the set $A=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+4 y^{2} \leq 1\right\}$.
9. ($2,5 \mathrm{pts}$) Compute

$$
\iint_{A} y d x d y
$$

where $A=\left\{(x, y) \in \mathbb{R}^{2}: x+y^{2} \leq 0 \wedge x+y+2 \geq 0\right\}$.
[Extra sheet for additional resolutions]
[Extra sheet for additional resolutions]

Mathematics Department Undergraduate Degrees in Economics and Management Mathematics 2

Mid Term Exam - April 11th, 2019
 Duration: 1h15m

Name:
 Number:

1. [2,0 pts] Classify the quadratic form

$$
q(x, y, z)=5 a x^{2}+2 a y^{2}-z^{2}-6 a x y
$$

for all possible values of the parameter $a \in \mathbb{R}$.
2. a. $[1,0 \mathrm{pts}]$ Consider a square matrix $A \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ such that

$$
A\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
2
\end{array}\right] \text { and } A\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
-3 \\
-3
\end{array}\right]
$$

Write down the characteristic polynomial of A and deduce the value of $\operatorname{det}(A)$.
b. [0,5 pts] Give an example of a 2 by 2 square matrix with no eigenvalues.
3. $[1,5 \mathrm{pts}]$ Compute the equation of the tangent straight line to the curve

$$
e^{x y}+y \cos (x)+x^{2} y=2
$$

at point $(0,1)$.
4. $[2,0 \mathrm{pts}]$ Consider the two variable function defined by the expression $f(x, y)=\frac{\ln \left(1-x^{2}-\frac{1}{4} y^{2}\right)}{\sqrt{x y}}$. Determine the domain D_{f} of f and represent it graphically. Sketch also the boundary of D_{f}.
5. Consider the function f defined in \mathbb{R}^{2} by

$$
f(x, y)= \begin{cases}\frac{x^{5}+x^{3}+3 y x^{2}+x y^{2}+3 y^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

a. $[2,0 \mathrm{pts}]$ Show that f is differentiable at point $(0,0)$.
b. [1,0 pts] Using the fact that f is differentiable at (0,0), give an approximation of

$$
f(0.05 ; 0.01) .
$$

[Sheet for complementary resolutions]
[Sheet for complementary resolutions]

Regular Period Exam - June 6, 2019

Duration: 1h15

1. [$\mathbf{2 , 0} \mathbf{0}$ points] Let $u(x, y)$ and $v(x, y)$ two functions such that

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} .
$$

Setting $U(r, \theta)=u(r \cos (\theta), r \sin \theta)$ and $V(r, \theta)=v(r \cos (\theta), r \sin \theta)$, show that

$$
\frac{\partial U}{\partial r}=\frac{1}{r} \frac{\partial V}{\partial \theta} .
$$

Hint: Start by computing $\frac{\partial U}{\partial r}$ and $\frac{\partial V}{\partial \theta}$ in terms of the partial derivatives of u and v.
2. [2,0 points] Show that the function defined in \mathbb{R}^{2} by $f(x, y)=3 x e^{y}-x^{3}-e^{3 y}$ has one single critical point and classify it. Does f has an absolute minimum?
3. [2,0 points] The temperature at a point (x, y) of a metal plate is given by

$$
T(x, y)=x y .
$$

An ant, walking on the plate, moves in the ellipse of equation $2 x^{2}+8 y^{2}=25$, making a complete loop. What are the highest and lowest temperatures encountered by the ant? Answer this question using Lagrange multipliers.
4. [2,0 points] Compute the double integral

$$
\iint_{\mathcal{R}} y d x d y
$$

where \mathcal{R} is the region bounded by the lines of equation $y=\ln (x), y=0$ and $x=e$. Note: choose the order of integration carefully.
5. [2,0 points] Find a function $y: x \in \mathbb{R} \rightarrow y(x) \in \mathbb{R}$ such that

$$
\left\{\begin{array}{l}
y^{\prime}=-4 x y^{2} \\
y(0)=1
\end{array}\right.
$$

[Sheet for complementary resolutions]
[Sheet for complementary resolutions]

Regular Period Exam - January 10, 2020
Duration: 1h15

1. [2,0 points] Consider a two-variable function F such that $\frac{\partial F}{\partial x}(1,1)=\frac{\partial^{2} F}{\partial y^{2}}(1,1)=1$ and $\frac{\partial F}{\partial y}(1,1)=\frac{\partial^{2} F}{\partial x^{2}}(1,1)=0$.
Setting $g(r, \theta)=F(r \cos (\theta), r \sin (\theta))$, compute $\frac{\partial^{2} g}{\partial \theta \partial r}\left(\sqrt{2}, \frac{\pi}{4}\right)$.
2. [2,0 points] Show that the function defined in \mathbb{R}^{2} by $f(x, y)=e^{-\left(x^{2}+y^{2}+2 x\right)}$ has one single critical point and classify it.
3. [2,0 points] Consider the function $f(x, y, z)=\sin (x) \sin (y) \sin (z), x, y, z \geq 0$. Show that if $x+y+z=\frac{\pi}{2}$, then

$$
f(x, y, z) \leq \frac{1}{8}
$$

Hint: Apply the Lagrange multipliers method to f in a convenient set.
4. [2,0 points] Compute the double integral

$$
\iint_{\mathcal{R}} x e^{y} d x d y
$$

where \mathcal{R} is the region bounded by the lines of equation $y=x^{2}$ and $y=8-x^{2}$.
5. [2,0 points] Find a function $y: x \in \mathbb{R}^{+} \rightarrow y(x) \in \mathbb{R}$ such that

$$
\left\{\begin{array}{l}
\frac{e^{y}}{\sqrt{x^{2}+1}} y^{\prime}-2 x=0 \\
y(0)=0
\end{array}\right.
$$

[Sheet for complementary resolutions]
[Sheet for complementary resolutions]

Special Exam - March 2, 2020 Duration: 2h

Name:

1. Consider the matrix $A=\left[\begin{array}{rrr}0 & 1 & 2 \\ -4 & 1 & 4 \\ -5 & 1 & 7\end{array}\right]$.
a. ($1,0 \mathrm{pts}$) Knowing that $\lambda=1$ is an eigenvalue of A, compute all its eigenvalues.
b. (1,0 pts) Determine the eigenspace associated to the largest eigenvalue of A.
2. Let B a square matrix and $\lambda \in \mathbb{R}$ an eigenvalue of B.
a. ($1,0 \mathrm{pts}$) Show that λ^{3} is an eigenvalue of B^{3}.
b. $(0,5 \mathrm{pts})$ Show that if $\lambda=0 B$ is not invertible.
3. (2,0 pts) For $\alpha \in \mathbb{R},|\alpha| \neq \sqrt{2}$, consider the quadratic form

$$
q(x, y, z)=z^{2}+y^{2}+\frac{1}{4} x^{2}-a z y+\frac{a}{2} z x .
$$

Classify q in terms of the parameter a.
4. ($1,5 \mathrm{pts}$) Consider the two variable function defined by the expression

$$
f(x, y)=\arctan (x) \arcsin \left(4 x^{2}+y^{2}\right) \ln (x y) .
$$

Determine the domain D_{f} of f and represent it graphically. Is D_{f} an open set?
5. Consider the function f defined in \mathbb{R}^{2} by

$$
f(x, y)= \begin{cases}\frac{2 y x^{3}}{7 y^{2}+6 x^{8}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

a. ($1,5 \mathrm{pts}$) Study the continuity of f at point $(0,0)$.
b. (1,5 pts) Compute $\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)$ if such quantities exist and determine for which vectors u the directional derivative $\partial_{u} f(0,0)$ exists.
6. ($1,5 \mathrm{pts}$) Compute the coordinates of a vector orthogonal to the line of equation

$$
\ln (1+x y)+e^{x}+e^{y}=2
$$

at point $(0,0)$. Hint: Interpret the line as a level curve.
7. ($2,5 \mathrm{pts}$) Solve the initial value problem

$$
\left\{\begin{array}{l}
\sqrt{1-x^{2}} y^{\prime}+2+2 y^{2}=0 \\
y(0)=1
\end{array}\right.
$$

8. ($3,5 \mathrm{pts}$) Compute the absolute maximum and minimum of the function f defined by

$$
f(x, y)=x^{2}+2 y^{2}
$$

over the set $A=\left\{(x, y) \in \mathbb{R}^{2}: 4 x^{2}+y^{2} \leq 1\right\}$.
9. ($2,5 \mathrm{pts}$) Compute

$$
\iint_{A} x y d x d y
$$

where A is the region buonded by the curves $y=-x^{2}+4, y=3 \sqrt{x}$ and $y=0$.
[Extra sheet for additional resolutions]
[Extra sheet for additional resolutions]

Lisbon School of Economics \& Management Universidade de Lisboa

Department of Mathematics

Undergraduate degrees in Economics, Finance and Management Mathematics II

Regular Period Exam - June 6, 2022

Duration: 2h

Exam Notebook I

Name: \qquad Student Number: \qquad
(1) Consider the matrix $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 0 & 1\end{array}\right]$.
(a) (1.0 pts) Compute the eigenvalues of A.
(b) (1.5 pts) Determine if A is diagonalizable.
(2) Let B be a square matrix and -1 an eigenvalue of B.
(a) (1.5 pts) Show that $B^{2}+B$ is not invertible.
(b) (1.0 pts) Show that -1 is an eigenvalue of B^{T}.
(3) (2.0 pts) For $a \in \mathbb{R}$ with $|a| \neq 2$, consider the quadratic form

$$
q(x, y, z)=x^{2}+y^{2}+4 z^{2}-2 a x z .
$$

Classify q in terms of the parameter a.
[Extra sheet for additional resolutions]

Lisbon School of Economics \& Management

Department of Mathematics

Undergraduate degrees in Economics, Finance and Management Universidade de Lisboa

Regular Period Exam - June 6, 2022
 Duration: 2h
 Exam Notebook II

Name: \qquad Student Number: \qquad
(4) (2,0 pts) Consider the following function

$$
f(x, y)=\frac{\sqrt{1-x^{2}-y^{2}} \log (x+y)}{1-x^{2}-y^{2}}+\arctan \left(x^{2}+y^{2}\right) .
$$

Determine the domain D_{f} of f and represent it graphically. Is D_{f} an open set? Justify your answer.
(5) Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{y x^{2}}{x^{4}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) (1.5 pts) Study the continuity of f at $(0,0)$.
(b) (1.5 pts) Compute $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$ if such quantities exist. Is f differentiable at $(0,0)$?
[Extra sheet for additional resolutions]

Lisbon School of Economics \& Management Universidade de Lisboa

Department of Mathematics

Undergraduate degrees in Economics, Finance and Management Mathematics II

Regular Period Exam - June 6, 2022

Duration: 2h

Exam Notebook III

Name: \qquad Student Number: \qquad
(6) (2,0 pts) Consider the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by

$$
f(x, y, z)=e^{x} \sin y+\frac{z^{2}}{2}
$$

Compute the 2nd order Taylor approximation of f around the point $(0,0,0)$.
(7) (2.0 pts) Compute the optimal points of

$$
f(x, y)=\frac{x^{2}}{2}+x y
$$

over the set $D=\left\{(x, y) \in \mathbb{R}^{2}: 2 x^{2}+y^{2} \leq 1\right\}$.
(8) (2.0 pts) Compute

$$
\iint_{A} 4 x y-y^{3} d x d y
$$

where A is the region bounded by the curves $y=x$ and $y=\sqrt{x}$.
(9) (2.0 pts) Solve the initial value problem

$$
\left\{\begin{array}{l}
(x+1) y^{\prime}-x y=0 \\
y(0)=1
\end{array}\right.
$$

[Extra sheet for additional resolutions]

Department of Mathematics

 \& ManagementUndergraduate degrees in Economics, Finance and Management Universidade de Lisboa

Resit Exam - July 1, 2022
Duration: 2h

Exam Notebook I

Name: \qquad Student Number: \qquad
(1) Consider the matrix $A=\left[\begin{array}{ccc}1 & 1 & -3 \\ 0 & -1 & 0 \\ 0 & -5 & 4\end{array}\right]$.
(a) (1.0 pts) Compute the eigenvalues of A.
(b) (1.5 pts) Determine the eigenspace associated to the largest eigenvalue of A.
(2) Let B be an invertible square matrix and (λ, v) an eigenpair of B.
(a) (1.5 pts) Show that $\left(\lambda^{-1}, v\right)$ is an eigenpair of B^{-1}.
(b) (1.0 pts) Show that $B^{3}-\lambda B^{2}+B-\lambda I$ is not invertible.
(3) (2.0 pts) For $a \in \mathbb{R}$, consider the quadratic form

$$
q(x, y)=a x^{2}+a y^{2}+x y .
$$

Determine the values of the parameter a such that $q(x, y)<0$ for every $(x, y) \neq(0,0)$.
[Extra sheet for additional resolutions]

Lisbon School of Economics \& Management

Department of Mathematics

Undergraduate degrees in Economics, Finance and Management Universidade de Lisboa

Resit Exam - July 1, 2022
Duration: 2h
Exam Notebook II
Name: \qquad Student Number: \qquad
(4) (2,0 pts) Consider the following function

$$
f(x, y)=\frac{\sqrt{1-x y}}{\log (x y)} .
$$

Determine the domain D_{f} of f and represent it graphically. Is D_{f} a compact set? Justify your answer.
(5) (2.0 pts) Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}x+y+\frac{y^{2} x}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Show that f is differentiable at $(0,0)$ and compute its differential.
(6) Consider a differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function defined by

$$
g(u, v)=f\left(u^{2}-v^{2}, 2 u v\right)
$$

(a) $(1,5 \mathrm{pts})$ Show that $(0,0)$ is a critical point of g.
(b) ($1,5 \mathrm{pts})$ Suppose that $f(x, y)=x+y$. Classify the critical point of g.
[Extra sheet for additional resolutions]

Lisbon School of Economics \& Management

Department of Mathematics

Undergraduate degrees in Economics, Finance and Management Mathematics II

Resit Exam - July 1, 2022
Duration: 2h
Exam Notebook III

Name:

\qquad Student Number: \qquad
(7) (2.0 pts) Compute the optimal points of

$$
f(x, y)=x^{2}+y^{2}
$$

over the set $D=\left\{(x, y) \in \mathbb{R}^{2}:(x-3)^{2}+y^{2} \leq 4\right\}$.
(8) (2.0 pts) Compute

$$
\iint_{A} x+y d x d y
$$

where A is the triangle with vertices $(0,0),(1,0)$ and $(0,1)$.
(9) (2.0 pts) Solve the initial value problem

$$
\left\{\begin{array}{l}
(1+x) e^{y} y^{\prime}=1+e^{y} \\
y(0)=0
\end{array}\right.
$$

[Extra sheet for additional resolutions]

Lisbon School of Economics \& Management Universidade de Lisboa

Department of Mathematics

Undergraduate degrees in Economics, Finance and Management Mathematics II

Regular Period Exam - June 5, 2023

Duration: 2h

Exam Notebook I

Name: \qquad Student Number: \qquad
(1) Consider the matrix $A=\left[\begin{array}{lll}a & 0 & 1 \\ 1 & 2 & 1 \\ a & 0 & 1\end{array}\right], \quad a \in \mathbb{R}$.
(a) (1.0 pts) Compute the eigenvalues of A depending on the parameter a.
(b) (1.5 pts) Assuming $a=1$, determine if A is diagonalizable.
(2) Let B be a square matrix such that $B^{3}=0$.
(a) (1.5 pts) Show that 0 is an eigenvalue of B.
(b) (1.0 pts) Can we conclude that $B=0$? Justify your answer.
(3) (2.0 pts) For $a \in \mathbb{R}$, consider the quadratic form

$$
q(x, y, z)=y^{2}+2 a y z+2 x y+x^{2}
$$

Classify q in terms of the parameter a.
(4) (2,0 pts) Consider the following function

$$
f(x, y)=\frac{\ln \left(\sqrt{1-x^{2}-y^{2}}\right)}{x^{2}-y^{2}}
$$

Determine the domain D_{f} of f and represent it graphically. Is D_{f} a compact set? Justify your answer.
(5) Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{x \sin y}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) (1.5 pts) Study the continuity of f at $(0,0)$.
(b) (1.5 pts) Compute $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$ if such quantities exist. Is f differentiable at $(0,0)$? Justify your answer.
[Extra sheet for additional resolutions]

Lisbon School of Economics \& Management Universidade de Lisboa

Department of Mathematics

Undergraduate degrees in Economics, Finance and Management Mathematics II

Regular Period Exam - June 5, 2023
 Duration: 2h
 Exam Notebook II

Name: \qquad Student Number: \qquad
(6) (2,0 pts) Let $w(x, y, z)=e^{x} y+\frac{z^{2}}{2}$ and

$$
x(s, t)=\sin (s-t), \quad y(s, t)=s-t, \quad z(s, t)=\sqrt{s+t} .
$$

Use the chain rule to show that

$$
\frac{\partial w}{\partial s}+\frac{\partial w}{\partial t}=1
$$

(7) (2.0 pts) Compute the optimal points of

$$
f(x, y, z)=x^{2}-10 y
$$

over the set $D=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=25\right\}$.
(8) (2.0 pts) Compute

$$
\iint_{A} x e^{-2 y} d x d y
$$

where A is the region bounded by the axes of the plane and the curves $y=1$ and $y=\ln x$.
(9) (2.0 pts) Solve the boundary value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+4 y=0 \\
y(0)=0, y\left(\frac{\pi}{4}\right)=0
\end{array}\right.
$$

[Extra sheet for additional resolutions]

Resit Period Exam - June 29, 2023
Duration: 2h

Exam Notebook I

Name: \qquad Student Number: \qquad
(1) Consider the matrix $A=\left[\begin{array}{lll}2 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 2\end{array}\right]$.
(a) (1.0 pts) Compute the eigenvalues of A.
(b) (1.5 pts) Determine if A is diagonalizable and compute the eigenspace associated to the smallest eigenvalue of A.
(2) Let B be a 3×3 matrix with eigenvalues equal to 0,1 and 2 .
(a) (1.5 pts$)$ Determine the eigenvalues of $I+B$.
(b) (1.0 pts) Is $I+B$ an invertible matrix? Justify your answer.
(3) (2,0 pts) Consider the following function

$$
f(x, y)=\frac{\sqrt{y-x^{2}}}{\ln \left(1+x^{2}+y^{2}+\sqrt{1-y}\right)}
$$

Determine the domain D_{f} of f and represent it graphically. Is D_{f} a compact set? Justify your answer.
(4) Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{3}+y^{4}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) (1.5 pts) Study the continuity of f at $(0,0)$.
(b) (1.5 pts) Compute $\frac{\partial f}{\partial y}(0,0)$. Is f differentiable at $(0,0)$? Justify your answer.
[Extra sheet for additional resolutions]

Lisbon School of Economics \& Management

Department of Mathematics

Undergraduate degrees in Economics, Finance and Management Universidade de Lisboa

Resit Period Exam - June 29, 2023
 Duration: 2h
 Exam Notebook II

Name:
Student Number: \qquad
(5) (2.0 pts) For $|a| \neq 1$, consider the quadratic form

$$
q(x, y, z)=x^{2}+y^{2}+z^{2}+2 a y z .
$$

Classify q in terms of the parameter a.
(6) (2,0 pts) Consider the function

$$
f(x, y)=x e^{-x}\left(y^{2}-4 y\right)
$$

Determine and classify the critical points of f.
(7) (2.0 pts) Compute the optimal points of

$$
f(x, y, z)=x+y+z
$$

over the set $D=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=2\right\}$.
(8) (2.0 pts) Use the double integral to calculate the area of the planar region

$$
A=\left\{(x, y) \in \mathbb{R}^{2}: y^{2} \leq x \leq 4,0 \leq x y \leq 1\right\}
$$

(9) (2.0 pts) Solve the initial value problem

$$
\left\{\begin{array}{l}
x y^{\prime}+y+x=0 \\
y(1)=0
\end{array}\right.
$$

[Extra sheet for additional resolutions]

