## PRODUCTION AND OPERATIONS MANAGEMENT 2023/2024

## Capacity and Constraint Management

## Supplement 7

Lisbon School of Economics \& Management Universidade de Lisboe

Baseado em Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.

```
\# GMD PRME \(=-60\)
```

- ACcreditations and partnerships

 A3ES (i) rics

洌


## Capacity

The throughput, or the number of units a facility can hold, receive, store, or produce in a period of time (e.g., seating capacity of a concert hall)

- Determines fixed costs

Determines if demand will be satisfied
Three time horizons


Lisbon School of Economics \& Management

## Planning Over a Time Horizon

## Time Horizon

## Options for Adjusting Capacity

Long-range
planning
Intermediate-
range planning
(aggregate
planning)

Short-range
planning
(scheduling)


* Difficult to adjust capacity as limited options exist

Lisbon School of Economics \& Management Universidade de Lisboe
 (3) rics慰: oo ande家


## Big 5 Process Measures

## - Capacity

- Capacity utilization

Cycle time (CT)
Throughput time (TPT)
Lead Time (LT)

## Design and Effective Capacity

Design capacity is the maximum theoretical output of a system

- Normally expressed as a rate

Effective capacity is the capacity a firm expects to achieve given current operating constraints

- Often lower than design capacity

Lisbon School \& Management Universidade de Lisboe

## Capacity Measurements

| TABLE S7.1 | Capacity Measurements <br> MEASUREDEFINITION |  |
| :---: | :--- | :--- |
| Design capacity | Ideal conditions exist <br> during the time that <br> the system is <br> available | Machines at Frito-Lay are designed to <br> produce 1,000 bags of chips/hr., and the plant <br> operates 16 hrs./day. <br> Design Capacity $=\mathbf{1 , 0 0 0}$ bags/hr. $\times 16 \mathrm{hrs}$. <br> $=16,000$ bags/day. |

Baseado em Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.


## Capacity Measurements

| TABLE S7.1 | Capacity Measurements |  |
| :--- | :--- | :--- |
| MEASURE | DEFINITION | EXAMPLE |

## Capacity Measurements

| TABLE S7.1 | Capacity Measurements |  |
| :---: | :---: | :---: |
| MEASURE | DEFINITION | EXAMPLE |
| Actual output | Effective capacity <br> minus lost <br> output during <br> unplanned resource <br> idleness (e.g., <br> absenteeism, machine <br> breakdowns, <br> unavailable parts, <br> quality problems) | On average, if machines at Frito-Lay are not running 1 hr ./day due to late parts and machine breakdowns. $\begin{aligned} & \text { Actual Output = 13,000 bags/day - (1,000 } \\ & \text { bags/hr.)(1 hr./day) } \\ & =13,000 \text { bags/day }-1,000 \text { bags/day } \\ & =12,000 \text { bags/day } \end{aligned}$ |



- Accreditations and partnerships
 $=-\quad$


## Capacity Utilization and Efficiency

Utilization is the percent of design capacity actually achieved

- Capacity Utilization = Actual output/Design capacity

Efficiency is the percent of effective capacity actually achieved

- Efficiency = Actual output/Effective capacity


## Capacity Utilization and Efficiency

Example: Plant processing deluxe breakfast rolls

- Operates 7 days a week, $3 \times 8$ hour shifts per day
- Design capacity $-1,200$ per hour
- Effective capacity - 175,000 rolls per week
- Actual output -148,000 rolls per week

Design capacity $=7 \times 3 \times 8 \mathrm{hr} \times 1,200$ rolls/hour $=201,600$ week

## Utilization = Actual output/Design capacity $148,000 / 201,600=73.4 \%$ <br> Efficiency = Actual output/Effective capacity $148,000 / 175,000=84.6 \%$

Lisbon Schoo of Economics
\& Management Universidade de Lisboe

## Capacity and Strategy

- Capacity decisions impact all 10 decisions of operations management as well as other functional areas of the organization
- Capacity decisions must be integrated into the organization's mission and strategy


## Capacity Considerations

1. Forecast demand accurately
2. Match technology increments and sales volume
3. Find the optimum operating size (volume) - see next slide
4. Build for change

Lisbon School of Economics \& Management

## Managing Demand

## - Demand exceeds capacity

- Curtail demand by raising prices, scheduling longer lead times
- Long-term solution is to increase capacity
- Capacity exceeds demand
- Stimulate market
- Product changes


## - Adjusting to seasonal demands

- Produce products with complementary demand patterns Universidade de Lisboe


## Complementary Demand Patterns

Figure S7.3 By Combining Products That Have Complementary Seasonal Patterns, Capacity Can Be Better Utilized


$$
\begin{gathered}
\text { J F M A M J JA S OND JFMAM J JA S OND J } \\
\text { Time (months) }
\end{gathered}
$$

Baseado em Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.


## Tactics for Matching Capacity to Demand

1. Making staffing changes
2. Adjusting equipment

- Purchasing additional machinery
- Selling or leasing out existing equipment

3. Improving processes to increase throughput
4. Redesigning products to facilitate more throughput
5. Adding process flexibility to meet changing product preferences
6. Closing facilities (e.g., production lines, factories)

Lisbon School of Economics
\& Management Universidade de Lisboe


## Service Sector Demand and Capacity Management

- Demand management
- Appointment (doctors' office), reservations (hotels), First Come First Served (FCFS) rule (post office)
- Capacity management (when managing demand is not feasible)

- Changes in full time, temporary, or part-time staff

Lisbon School of Economics \& Management Universidade de Lisboo

## Process Measures

- Task time: Time required at a particular task to complete the activities (sum of set up and run time)
- Throughput time: is the time it takes a unit to go through production from start to end with no waiting
- Cycle tíme: The average interval between two successive units of output
- Lead Time: Time spent from the point of order to the point of delivery
- Yield: Percentage of units without defects

Lisbon School of Economics \& Management Universidade de Lisboo

## Capacity is the Inverse of Cycle Time



Lisbon School of Economics \& Management Universidade de Lisboe

## Capacity is the Inverse of Cycle Time

## Capacity $=\frac{1}{\text { Cycle Time }} ;$ Capacity $\rightarrow$ e．g．， 15 units／hour

## Cycle Time $=\frac{1}{\text { Capacity；}} ;$ Cycle Time $\rightarrow$ e．g．， 15 seconds

Lisbon School of Economics \＆Management Universidade de Lisboe

| －rankings |  |  |  | －member |  |  |  | －ACCREDITATIONS AND PARTNERSHIPS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FT | Master in Finance Ranking 2020 |  | $\frac{2 \sin \theta}{2 \operatorname{anckNG}}$ | 4 EFMD | PRME Mastanum | （1） | $\begin{gathered} \text { GO } \\ \text { GRLI } \end{gathered}$ | $\underset{\text { ACAREOIIED }}{\text { AACSE }}$ | A3ES | （f）RICS | PNo Project | $\begin{aligned} & \text { 制业 } \\ & \text { cas instiute } \end{aligned}$ | 解 |  |

## Bottleneck Analysis and the Theory of Constraints

- Each work area can have its own unique capacity
- Capacity analysis determines the throughput capacity of workstations in a system
- The time to produce a unit or a specified batch size is the process time
- A bottleneck is a limiting factor or constraint
- A bottleneck has the lowest effective capacity in a system
- The bottleneck time is the time of the slowest workstation (the one that takes the longest) in a production system
- The capacity of the bottleneck defines the capacity of the entire process!
- Complex systems with multiple products may have different bottlenecks for different products.

Lisbon School of Economics Universidade de Lisbo

## Theory of Constraints (TOC)

TOC is a body of knowledge that deals with anything that limits or constrains an organization's ability to achieve its goals.
Constraints can be physical (e.g., process or personnel availability, raw materials, or supplies) or nonphysical (e.g., procedures, morale, and training).
Recognizing and managing these limitations through a five-step process is the basis of TOC.

Lisbon School of Economics \& Management \&Management

## Theory of Constraints (TOC)

- Five-step process for recognizing and managing limitations Step 1: Identify the constraints
Step 2: Develop a plan for overcoming the constraints
Step 3: Focus resources on accomplishing Step 2
Step 4: Reduce the effects of constraints by offloading work or expanding capability
Step 5: Once overcome, go back to Step 1 and find new constraints

Lisbon School of Economics
\& Management Universidade de Lisboa

## Bottleneck Management

1. Release work orders to the system at the pace set by the bottleneck's capacity.
$>$ Concepts of:

- Drum - is the pace of production
- Buffer - is the resource, usually inventory, which may be helpful to keep the bottleneck operating at the pace of the drum
- Rope - provides the synchronization or communication necessary to pull units through the system

2. Lost time at the bottleneck represents lost time for the whole system - this principle implies that the bottleneck should always be kept busy with work

Lisbon School of Economics \& Management Universidade de Lisbo

- member

$0=8$



## Bottleneck Management

3. Increasing the capacity of a non-bottleneck station is a mirage - increasing the capacity of non-bottleneck stations has no impact on the system's overall capacity, therefore working faster on a nonbottleneck station may just create extra inventory
4. Increasing the capacity of a bottleneck increases the capacity of the whole system - bottleneck capacity may be improved by various means, inc/uding offloading some of the bottleneck operations to another, increasing capacity of the bottleneck, subcontracting, developing alternative routings, and reducing setup times Universidade de Lisboa

## Capacity Analysis: Example 1 - Parallel Processes

- Two identical sandwich lines
- Each Line has two workers and three operations
- All completed sandwiches are wrapped


Lisbon School of Economics \& Management Universidade de Lisboo

Baseado em Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.


- ACCREDITATIONS AND PARTNERSHIPS
 (3) rics昰: Reme
 ,


## Capacity Analysis: Example 1 - Parallel Processes



- The two lines each deliver a sandwich every 20 seconds
- At 37.5 seconds, wrapping and delivery has the longest processing time and is the bottleneck
- Capacity per hour is 3600 seconds/37.5 seconds/sandwich $=96$ sandwiches per hour
- Throughput time is $30+15+20+20+37.5=122.5$ seconds
- Cycle time $=37.5$ seconds

Lisbon School of Economics \& Management Universidade de Lisboe

## Capacity Analysis: Example 1 - Parallel Processes

- Standard process for cleaning teeth
- Cleaning and examining X-rays can happen simultaneously


Lisbon School of Economics \& Management Universidade de Lisboe

## Capacity Analysis: Example 2 - Simultaneous Processes <br> 

- All possible paths must be compared
- Bottleneck is the hygienist at 24 minutes
- Hourly capacity is $60 / 24=2.5$ patients
- X-ray exam path is $2+2+4+5+8+6=27$ minutes
- Cleaning path is $2+2+4+24+8+6=46$ minutes
- Longest path involves the hygienist cleaning the teeth, patient should complete in 46 minutes

Lisbon School of Economics \& Management Universidade de Lisboe

- ACCREDITATIONS AND PARTNERSHIPS

FT Master in Finance

(3) RICs




## Process Flow Charting or Mapping

| Conventions we use |  |  |
| :---: | :--- | :--- |
| Operations: Tasks/Processes | Rectangles <br> Ovals |  |
| Inventory/Buffers | Triangles | $\Delta \nabla$ |
| Decision Points | Diamonds |  |
| Product Service Flows | Solid Lines |  |
| Information Flows | Dotted Lines | ------ |



## Capacity Analysis: Example 3 - Pizza Nostra

Task times for each step in the process:

- Knead and shape the dough: 8 minutes (1 person)
- Put on the toppings: 5 minutes (1 person)
- Cook the pizza: 20 minutes (1 oven)
- Slice and box the pizza: 2 minutes (1 person)


## Draw the Process Flow Diagram

 \& Management
## Capacity Analysis: Example 3 - Pizza Nostra

## Steps in the Process:

- Knead \& Shape dough (1 person)
- Put on the toppings (1 person)

```
Assumptions:
- no WIP buffers
(i.e. bottleneck pacing)
- one pizza / one oven
```

- Cook the pizza (1 person and 1 oven)
- Slice and box the pizza (1 person)


Lisbon School of Economics \& Management Universidade de Lisboa

Baseado em Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.


- accreditations and partnerships

 CHz


## Capacity Analysis: Example 3 - Pizza Nostra



Which operation is the Bottleneck? - Oven
What is the Cycle Time of the bottleneck? - 20 min
What is the Cycle Time for the entire process? - $\mathbf{2 0} \mathbf{~ m i n}$
What is the Capacity of the process? - 1 pizza/20 min = 3 pizzas/hour

Lisbon School of Economics \& Management Universidade de Lisboa

## Capacity Analysis: Example 3 - Pizza Nostra

## A Question for the Manager

Since your capacity is only 3 pizzas/hour, you are asked to invest wisely in the expanding the resources
You have the choice of:

1. Getting another person to knead and shape dough
2. Hire another person to add toppings
3. Buy another oven
4. Hire a second person to cut and box pizzas

What would you consider doing first and why?

Lisbon School of Economics Universidade de Lisboe


## Capacity Analysis: Example 3 - Pizza Nostra

A Question for the Manager

## ANSWER:

## Buy another oven.

The oven is the bottleneck!
You cannot improve the process by making any other change!
RANKINGS

$$
\begin{array}{l|l}
\text { FT } & \begin{array}{l}
\text { Master in Finance } \\
\text { Ranking 2020 }
\end{array}
\end{array}
$$


$\square$

## Capacity Analysis: Example 3 - Pizza Nostra Process Improvement: 2 Ovens



Which operation is the Bottleneck? - Ovens
What is the Cycle Time of the bottleneck? - $\mathbf{1 0} \mathbf{~ m i n}$
What is the Cycle Time for the entire process? - $\mathbf{1 0} \mathbf{~ m i n}$
What is the Capacity of the process? -1 pizza/10 $\mathrm{min}=6$ pizzas/hour

Lisbon School of Economics \& Management Universidade de Lisboe

## Capacity Analysis: Example 3 - Pizza Nostra Process Improvement: 2 Ovens



What is the Utilization of the cut \& box operation? $\rightarrow$
$\rightarrow$ (6 pizzas/hour)/(30 pizzas/hour) $=20 \%$

What is the Utilization of the toppings operation? $\rightarrow$
$\rightarrow$ (6 pizzas/hour)/(12 pizzas/hour) $=50 \%$
What is the Utilization of the ovens? $\boldsymbol{\rightarrow}$ (6 pizzas/hour)/(6 pizzas/hour) $=\mathbf{1 0 0 \%}$

Lisbon School of Economics \& Management Universidade de Lisboe

## Capacity Analysis：Example 3 －Pizza Nostra

## More generally，how do we address the Bottleneck？

－Increase the number of resource units at the bottleneck．
－Buy another oven．
－Increase load batch of the bottleneck．
－Fit two pizzas into the oven．
－Increase scheduled availability of the bottleneck（overtime work）．
－Have the oven operate for longer hours．
－Decrease unit load into the bottleneck．
－Different pizza design（e．g．thin crust）that could cook faster．

OPEN MINDS.
GRAB
THEFUTURE.

