FORMULA SHEET

Stock Management

EOQ

$Q=\sqrt{\frac{2 D S}{H}} ; \mathrm{N}=\mathrm{D} / \mathrm{Q} ; \quad \mathrm{ROP}=\mathrm{d} \times \mathrm{L}$
$T C=\frac{Q}{2} \times H+\frac{D}{Q} \times S+P \times D$

POQ

$Q=\sqrt{\frac{2 D S}{H\left(1-\frac{d}{p}\right)}}$
$T C=\frac{Q}{2}\left(1-\frac{d}{p}\right) \times H+\frac{D}{Q} \times S+P \times D$
$\mathrm{t}_{\mathrm{p}}=\mathrm{t}_{1}=\frac{\mathrm{Q}}{\mathrm{p}}$
$\mathrm{T}=\frac{\mathrm{Q}}{\mathrm{D}} \quad \mathrm{N}=\mathrm{D} / \mathrm{Q}$
$I_{\text {máx }}=M=Q\left(1-\frac{d}{p}\right)$

Probabilistic Models

$\mathrm{SS}=\mathrm{Z}_{\alpha} \sigma_{\mathrm{dLT}}$

$$
\begin{aligned}
& \mathrm{ROP}=\mu_{\mathrm{LT}} \times \mu_{\mathrm{d}}+\mathrm{SS} \\
& \mathrm{ROP}=\mathrm{LT} \times \mu_{\mathrm{d}}+\mathrm{SS} \\
& \mathrm{ROP}=\mu_{\mathrm{LT}} \times \mathrm{d}+\mathrm{SS}
\end{aligned}
$$

$$
\sigma_{\mathrm{dLT}}=\sqrt{\mu_{\mathrm{d}}^{2} \times \sigma_{\mathrm{LT}}^{2}+\mu_{\mathrm{LT}} \times \sigma_{\mathrm{d}}^{2}}
$$

$$
\sigma_{\mathrm{dLT}}=\sqrt{\mathrm{LT}} \times \sigma_{\mathrm{d}}
$$

$\alpha=\mathrm{P}(\mathrm{X}>R O P)=$ probability of rupture

$$
\sigma_{\mathrm{dLT}}=\sqrt{\mathrm{d}^{2} \times \sigma_{\mathrm{LT}}^{2}}
$$

$$
\mathrm{TC}=\left(\frac{\mathrm{Q}}{2}+\mathrm{SS}\right) \times \mathrm{H}+\frac{\mathrm{D}}{\mathrm{Q}} \times \mathrm{S}+\mathrm{P} \times \mathrm{D}
$$

Project Management

$\mathrm{EF}=\mathrm{ES}+$ activity duration
Expected Duration $=\mathrm{t}=\frac{a+4 m+b}{6}$
Variance $=[(b-a) / 6]^{2}$

Crash cost per period $=\frac{C C-N C}{N T-C T}$

Waiting Line Models

$$
L_{q}=\lambda \times W_{q} ; L_{S}=\lambda \times W_{S} ; L_{S}=L_{q}+\lambda / \mu ; \quad W_{S}=W_{q}+1 / \mu
$$

M/M/1

$$
\begin{array}{ll}
L_{q}=\frac{\lambda^{2}}{\mu(\mu-\lambda)} ; L_{S}=\frac{\lambda}{\mu-\lambda} & W_{q}=\frac{\lambda}{\mu(\mu-\lambda)} ; \\
\rho=\frac{\lambda}{\mu} ; \quad \mathrm{P}_{0}=1-\rho \quad \mathrm{P}_{\mathrm{n}}=\mathrm{P}_{0} \times\left(\frac{\lambda}{\mu}\right)^{\mathrm{n}} & W_{S}=\frac{1}{\mu-\lambda} \\
& \mathrm{P}(\mathrm{n}>\mathrm{k})=\rho^{\mathrm{k}+1}
\end{array}
$$

$$
\begin{array}{ll}
\underline{\text { M/M/S }} \\
P_{0}=\frac{1}{\left[\sum_{n=0}^{S-1} \frac{1}{n!}\left(\frac{\lambda}{\mu}\right)^{n}\right]+\frac{(\lambda / \mu)^{S}}{S!} \times \frac{S \mu}{S \mu-\lambda}}(\mathrm{S} \mu>\lambda) \mathrm{Lq}=\frac{\lambda \times \mu \times\left(\frac{\lambda}{\mu}\right)^{\mathrm{S}}}{(\mathrm{~S}-1)!(\mathrm{S} \mu-\lambda)^{2}} \mathrm{P}_{0} & \rho=\frac{\lambda}{\mathrm{S} \mu} \\
\mathrm{P}_{\mathrm{n}}=\frac{\left(\frac{\lambda}{\mu}\right)^{\mathrm{n}}}{\mathrm{n}!} \mathrm{P}_{0}(\mathrm{n} \leq \mathrm{S}) & \mathrm{P}_{\mathrm{n}}=\frac{\left(\frac{\lambda}{\mu}\right)^{\mathrm{n}}}{\mathrm{~S}!\mathrm{S}^{\mathrm{n}-\mathrm{S}} \mathrm{P}_{0}(\mathrm{n}>\mathrm{S})}
\end{array}
$$

M/D/1

$L_{q}=\frac{\lambda^{2}}{2 \mu(\mu-\lambda)} ;$
$W_{q}=\frac{\lambda}{2 \mu(\mu-\lambda)} ;$
$\rho=\frac{\lambda}{\mu}$

Scheduling

$\mathrm{CR}=\frac{\text { Pr } \text { omise } \text { Date }- \text { Actual date }}{\text { Number of days of work }}$
Average conclusion time $=$
$\frac{\text { Sum of Flow Time }}{\text { Number of jobs }}$
Usage $=\frac{\text { Total work time }}{\text { Sum of flow time }}$
Average delay $=\frac{\text { Total time delay }}{\text { Number of jobs }}$

Average number of jobs in the
system $=\frac{\text { Sum of flow time }}{\text { Total time of work }}$

Process Statistical Control

$$
\begin{aligned}
& L S C_{\bar{X}}=\overline{\bar{X}}+A_{2} \times \bar{R} \\
& L I C_{\bar{X}}=\overline{\bar{X}}-A_{2} \times \bar{R} \\
& L C_{\bar{X}}=\overline{\bar{X}} \\
& \\
& L S C_{R}=D_{4} \times \bar{R} \\
& L I C_{R}=D_{3} \times \bar{R} \\
& L C_{R}=\bar{R} \\
& \hline
\end{aligned}
$$

$$
L S C_{c}=\bar{c}+3 \times \sqrt{\bar{c}}
$$

$$
L I C_{c}=\bar{c}-3 \times \sqrt{\bar{c}}
$$

$$
L C_{c}=\bar{c}
$$

$C_{p k}=\min \left(C_{p k i} ; C_{p k s}\right)$	$L S C_{p}=\bar{p}+3 \times \sqrt{\frac{\bar{p}(1-\bar{p})}{n}}$
$C_{p}=\frac{L S E-L I E}{6 \times \sigma}$	$L I C_{p}=\bar{p}-3 \times \sqrt{\frac{\bar{p}(1-\bar{p})}{n}}$
$C_{p k i}=\frac{\mu-L I E}{3 \times \sigma} e C_{p k s}=\frac{L S E-\mu}{3 \times \sigma}$	$L C_{p}=\bar{p}$

Capacity and Constraints Management

Capacity usage $=\frac{\text { Actual Output }}{\text { Capacity design }}$
Eficiency $=\frac{\text { Actual output }}{\text { Effective output }}$

Capacity $=\frac{1}{\text { Cycle time }}$

