

LISBOA UNIVERSIDADE DE LISBOA

IT INFRASTRUCTURE

Prof. Carlos J. Costa, PhD

- Students will be able to:
 - Describe and analyze IT in the context of society and organizations
 - Propose, select, choose and build solutions of IT infrastructure and IT applications
 - Reflect and evaluate IT management and development

Learning Goals

Table of Contents

- 1. Overview of IT infrastructure
- 2. Data Management and Business Intelligence
- 3. Telecommunications
- 4. Securing Information Systems

IT Infrastructure

IT Infrastructure and Emerging Technologies

Set of physical devices and software required to operate an enterprise

Set of firm-wide services including: Computing platforms providing computing services Physical facilities management services IT management, education, and other services

"Service platform" perspective More accurate view of value of investments

Copyright © 2020 by Pearson Education, Inc.

• What is IT infrastructure, and what are the stages and drivers of IT infrastructure evolution?

Components of IT infrastructure

Current trends in computer hardware platforms

- The mobile digital platform
- Consumerization of IT and BYOD (bring your own device)
- Quantum computing
- Virtualization
- Cloud computing (SAAS, PAAS, IAAS)

- Edge computing
- Green computing (Green IT)
- Mataverse

Types of cloud (Pearlson & Saunders, 2009)

Type of Cloud	Description	Managed By	Uses	
Public cloud	Third-party service offering computing,	Third-party service providers	Companies without major privacy concerns	
	storage, and software services to multiple customers and that is available to the public		Companies seeking pay-as-you- go IT services	
			Companies lacking IT resources and expertise	
Private cloud	Cloud infrastructure operated solely for a single organization and hosted either internally or externally	In-house IT or private third-party host	Companies with stringent privacy and security requirements Companies that must have control over data sovereignty	
Hybrid cloud	Combination of private and public cloud services that remain separate entities	In-house IT, private host, third-party providers	Companies requiring some in-house control of IT that are also willing to assign part of their IT infrastructures to a public cloud	

Cloud Computing

https://youtu.be/36zducUX16w https://youtu.be/whkyRvugqIM

Current computer software platforms and trends

- Linux and opensource software
- Software for the web: NodeJS, Python, PHP, Java HTML, and HTML5
- Web services and service-oriented architecture
- Software outsourcing

Competitive Force Model for IT Infrastructure

Maintenance Cost

Downtime

Warranty

gradability

Total Cost Ownership (TCO)

Total cost of ownership (TCO)- help CIO to know all the costs (direct/indirect) when deciding to purchase/development (Gartner Group, 1986)

main cost categories:

- Direct costs: SW Licence (proprietary systems / premium versions FOSS); deployment costs, training costs, technical support services costs
- Indirect costs: hardware upgrades, digital preservation (data information)
- **Hidden Costs:** cost derive from diminish of production, because of reactions against change, time for more training, lock-in
- Fixed Costs: licence fees, technical support
- Variable Costs: upgrades, electricity, digital space, training hours, among others.

TCO- Elements

- Desktop environment
- Human Resources
- Help-desk/ support
- Productivity loss
- Training
- Software (upgrades)
- Integration with other platforms
- Network security
- Operating systems Upgrades
- Applications Upgrades
- Server costs
- Backups
- Storage

- Digital preservation
- Memory
- Energy
- Reposition

https://www.citrix.com/products/xendesktop/tech-info/savings-calculator.html

Example: TCO calculator

AWS Total Cost of Ownership (T	CO) Calculator Basic
	tions in an on-premises or colocation environment to AWS. Describe your on-premises with AWS.You can switch between the basic and advanced views to provide additional
Select Currency	United States Dollar 🗘
What type of environment are you comparing against?	On-Premises On-Premises
Which AWS region is ideal for your geo requirements?	US East (N. Virginia)
Servers Are you comparing physical servers or virtual machines? Provide your configuration details:	Physical Servers
App. Name <i>i</i> Number <i>i</i> CPU <i>i</i> Memory(GB) <i>i</i> Hy	lypervisor <i>i</i> Guest OS <i>i</i>
1 - 10000 1 - 32 1 - 256	VMware \$

https://calculator.aws/

Example: TCO calculator

http://www.softwareadvice.com/tco/

Capital Budgeting | Investment Appraisal

- Present Value = Valor atual
 - value = valor atual

$$V_0 = V_t \left(1+i\right)^{-t}$$

- Cash-Flow
- NPV (Net Present Value) = VAL (Valor Atualizado Liquido)
- Pay Back Period
- IRR (Internal Rate of Return) = TIR (Taxa Interna de Rentabilidade) (VAL=0)
- CAPEX (Capital Expense)
- OPEX (Operating Expense)
- TCO (Total Cost Ownership)

Example

Decision of buying a certain technology license:

an an

46%

sucial ia

Teamwork

- Total inicial investment– 40 000€
- Anual sales 70 000€
- Estimated HR 29 000€
- Rental expenses 6 500€
- Depreciation 38 000€ (Rate 20%)
- Interest rate 35%
- Capital rate 7% per year

Example

	1				
Description	0	Year 1	Year 2	Year 3	Year 4 🧲
Investment	40 000.00	-	-	-	
Sales	-	70 000.00	70 000.00	70 000.00	70 000.00
HR	-	29 000.00	29 000.00	29 000.00	29 000.00
Rental	-	6 500.00	6 500.00	6 500.00	6 500.00
Depreciations	-	7 600.00	7 600.00	7 600.00	7 600.00
Earning before interest (EBITA)	-	26 900.00	26 900.00	26 900.00	26 900.00
Taxes	-	9 415.00	9 415.00	9 415.00	9 415 00
Cash-Flow (1)	40 000.00	25 085.00	25 085.00	25 085.00	25.080.00
Current Cash-Flow (2)	40 000.00	23 443.93	21 910.21	20 476.83	19 187 28

15

ORK

al 20

social ia

(1) Cash-Flow = Sales – (HR + Rental + Interest)

(2) Current Cash-Flow = Cash-Flow, "i" Rate, "n" years $(1 + i)^{-n}$

Data Management & Business Intelligence

Problems of managing data resources in a traditional file environment

Database Management System (DBMS)

- Database
 - Serves many applications by centralizing data and controlling redundant data
- Database management system (DB MS)
 - Interfaces between applications and physical data files
 - Separates logical and physical views of data
 - Solves problems of traditional file environment

How DBMS solves the problems of traditional file environment

- Controls redundancy
- Eliminates inconsistency
- Uncouples programs and data
- Enables organization to centrally manage data and data security

Relational Model

- Structured query language (SQL) is a programming language for storing and processing information in a relational database.
- Create Table
 - CREATE TABLE Employee(Empld int, LastName var char(255), FirstName varchar(255), Address varch ar(255), City varchar(255));
- Insert
 - INSERT INTO Employee (Empld,LastName,FirstNa me,ADDRESS,City)
 VALUES (1, 'XYZ', 'ABC', 'India', 'Mumbai');
- Select
 - Select Empld, LastName from Employee;
 - Select * from Employee;
- Update
 - UPDATE Employee SET FirstName= 'KS', City= 'Pun e' WHERE Empld= 1;
 - Delete
 - DELETE FROM Employee WHERE Empld=1;

SLECT
OrderH.invoiceNo, OrderH.invoiceOne O
OrderD.itemCode, I.itemName, OrderO
FROM
OrderHeader AS OrderH
INNER JOIN Customer AS Cust O
INNER JOIN OrderDetail AS OrderO
INNER JOIN ORDER JOIN ORDER

Type of Database

- Relational DB (SQL-based)
 - Oracle, SQL Server, PostgreSQL, MySQL
- DB (NoSQL Not Only SQL)
 - MongoDB, Cassandra, Amazon DynamoDB
- Cloud DB
 - Amazon AWS, Microsoft Azure, Google Cloud SQL

Database

- https://www.youtube.com/watch?v=TmpU5r1BKHg&t=1s
- <u>https://www.youtube.com/watch?v=W6XFNMQyuU0&t=204s</u>
- https://www.youtube.com/watch?v=Zk7P5JnJL_c&t=200s
- <u>https://www.youtube.com/watch?v=wOCOzzgwpcl</u>

- Is a decentralized and distributed ledger technology that has gained prominence due to its application in cryptocurrencies like Bitcoin
- Distributed and decentralized Database.
- Guarantees the security of a record of data and generates trust without the need for a trusted third party
 A blockchain collects information together in groups, known as <u>blocks</u>, that hold sets of information.
- All transactions within the blocks are validated and agreed upon by a consensus mechanism, ensuring that each transaction is true and correct.
- The goal of blockchain is to allow digital information to be recorded and distributed, but not edited, deleted or destroyed.
- Bitcoin built on blockchain.

Blockchain

- NFT
 - non-fungible token
 - unique digital identifier
 - is recorded on a blockchain
 - is used to certify ownership and authenticity.
- Web3
 - concept for an updated version of the World Wide Web
 - integrates principles like
 - decentralization,
 - blockchain technology,
 - economy driven by tokens

https://www.youtube.com/watch?v=SSo_ElwHSd4&t=4s

- <u>https://andersbrownworth.com/blockchain/</u>
- <u>https://www.youtube.com/watch?v=WEsO8OuAnjE</u>
- <u>https://www.youtube.com/watch?v=EucwiDsfilg&t=2s</u>

Discussion: Impact of Cryptos on Society and Environment

- Transparency
- Supply chain management
- Digital identity
- Personal data protection
- Legitimacy and regulation
- Trust
- Energy consumption
- CO2 emission

- Three V of Big Data
 - Volume
 - The amount of data matters. With big data, you'll have to process high volumes of low-density, unstructured data.

Big Data

- Velocity
 - Velocity is the fast rate at which data is received and (perhaps) acted on.
- Variety
 - Variety refers to the many types of data that are available.

Big data use cases

How data science and analytics can contribute to sustainable development

• NO POVERTY Spending patterns on mobile phone services can provide proxy indicators of income levels

2 ZERO HUNGER Crowdsourcing or tracking of food prices listed online can help monitor food security in near real-time

3 GOOD HEALTH AND WELL-BEING

Mapping the movement of mobile phone users can help predict the spread of infectious diseases

4 QUALITY EDUCATION

Citizen reporting can reveal reasons for student drop-out rates

GENDER EQUALITY

Analysis of financial transactions can reveal the spending patterns and different impacts of economic shocks on men and women

6 CLEAN WATER AND SANITATION Sensors connected to water pumps can track access to clean water

AFFORDABLE AND CLEAN ENERGY

Smart metering allows utility companies to increase or restrict the flow of electricity, gas or water to reduce waste and ensure adequate supply at peak periods

8 DECENT WORK AND ECONOMIC GROWTH

Patterns in global postal traffic can provide indicators such as economic growth, remittances, trade and GDP

INDUSTRY, INNOVATION AND INFRASTRUCTURE

Data from GPS devices can be used for traffic control and to improve public transport

10 REDUCED INEQUALITY

Speech-to-text analytics on local radio content can reveal discrimination concerns and support policy response

1 SUSTAINABLE CITIES AND COMMUNITIES

Satellite remote sensing can track encroachment on public land or spaces such as parks and forests

RESPONSIBLE CONSUMPTION AND PRODUCTION

Online search patterns or e-commerce transactions can reveal the pace of transition to energy efficient products

13 CLIMATE ACTION

Combining satellite imagery, crowd-sourced witness accounts and open data can help track deforestation

1 LIFE BELOW WATER

Maritime vessel tracking data can reveal illegal, unregulated and unreported fishing activities

LIFE ON LAND

Social media monitoring can support disaster management with real-time information on victim location, effects and strength of forest fires or haze

PEACE, JUSTICE AND STRONG INSTITUTIONS

Sentiment analysis of social media can reveal public opinion on effective governance, public service delivery or human rights

PARTNERSHIPS FOR THE GOALS

Partnerships to enable the combining of statistics, mobile and internet data can provide a better and realtime understanding of today's hyper-connected world

www.unglobalpulse.org

Goal is to deliver accurate real-time information to decision makers

- Main analytic functionalities of BI systems
- Production reports
- Parameterized reports
- Dashboards/scorecards
- Ad hoc query/search/report creation
- Drill down
- Forecasts, scenarios, models
- Example: A company that wants to better manage its supply chain needs BI capabilities to determine where delays are happening and where variabilities exist within the shipping process

Business Intelligence (BI)

Descriptive analytics

tracks key performance indicators (KPIs) to understand the present state of a business. Predictive analytics analyzes trend data to assess the likelihood of future outcomes.

Prescriptive analytics

uses past performance to generate recommendations about how to handle similar situations in the future.

Business Analytics (BA)

- Using data analysis techniques to get insights about what will probably happen in the future?
- Predictive analysis
- Define trends and patterns
- Example: Improving Productivity and Collaboration, forecast demands

Analytics tools

- OLAP
- Data Mining
- Text Mining
- Web Mining

Data Governance, data administration, and data quality

- Firm's rules, procedures, roles for sharing, managing, standardizing data
- Data administration
 - Establishes policies and procedures to manage data
- Data governance
 - Deals with policies and processes for managing availability, usability, integrity, and security of data, especially regarding government regulations
- Database administration
 - Creating and maintaining database

Telecommunications

Main components of network

Main components of telecommunications

Different types of networks

How do the Internet and Internet technology work, and how do they support communication and e-business?

Internet Root Domai

principal technologies and standards for wireless networking, communication, and Internet access

- Cellular Systems
- Wireless Computer Networks and Internet Access Bluetooth (IEEE 802.15), Wi-Fi (IEEE 802.11), WiMax (IEEE 802.16)
- Radio Frequency Identification (RFID)

Base station

• Wireless Sensor Networks (WSN)

Securing Information Systems

Cyber Security

- Cybersecurity is the practice of protecting systems, networks, and programs from digital attacks.
 - Critical infrastructure cyber security
 - Network security
 - Cloud security
 - IoT (Internet of Things) security
 - Application security

- Malware, such as ransomware, botnet software, RATs (remote access Trojans), rootkits and bootkits, spyware, Trojans, viruses and worms.
- Backdoors, which allow remote access.
- Formjacking, which inserts malicious code into online forms.
- Cryptojacking, which installs illicit cryptocurrency mining software.
- **DDoS (distributed denial-of-service) attacks**, which flood servers, systems and networks with traffic to knock them offline.
- DNS (domain name system) poisoning attacks, which compromise the DNS to redirect traffic to malicious sites.

What is the business value of security and control?

- Failed computer systems can lead to significant or total loss of business function
- Firms now are more vulnerable than ever
 - Confidential personal and financial data
 - Trade secrets, new products, strategies
- A security breach may cut into a firm's market value almost immediately
- Inadequate security and controls also bring forth issues of liability

What are the components of an organizational framework for security and control?

- IS controls may be automated or manual
- General controls
 - Govern design, security, and use of computer programs and security of data files in general throughout organization
 - Software controls, hardware controls, computer operations controls, data security controls, system development controls, administrative controls,
- Application controls
 - Controls unique to each computerized application
 - Input controls, processing controls, output controls

What are the most important tools and technologies for safeguarding information resources?

- Identity management software
 - Automates keeping track of all users and privileges
 - Authenticates users, protecting identities, controlling access
- Authentication
 - Password systems
 - Tokens
 - Smart cards
 - Biometric authentication
 - Two-factor authentication
- Firewall
 - Combination of hardware and software that prevents unauthorized users from accessing private networks
 - Packet filtering
 - Stateful inspection
 - Network address translation (NAT)
 - Application proxy filtering

Discussion

- Facebook Case study
- Metaverse
- Augmented Reality
- Virtual Reality

Cyber Security

- <u>https://www.youtube.com/watch?v=NR8QID3bFqw&t=2s</u>
- <u>https://www.youtube.com/watch?v=__EECGrqDeE</u>
- <u>https://www.youtube.com/watch?v=_Lx5VmAdZSI</u>

Next Session

- IT in Business and Society
- IT Infrastructure
- Key Systems Applications
- Build and Manage Systems

