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College Admissions Strategic Issues School Choice

Exercise

There are 3 firms f1, f2, f3 and 4 students i1, i2, i3, i4. The preferences
are as follows:
Ri1 : f1, f2, f3
Ri2 : f1, f2, f3
Ri3 : f2, f3, f1
Ri4 : f3, f2, f1
Rf1 : i4, i3, i2, i1
Rf2 : i3, i2, i1, i4
Rf3 : i1, i2, i3, i4

1. Compute µF and µI .
2. Are µF and µI Pareto efficient? What if only the welfare of

workers is considered?
3. Can you think of a sufficient condition for µF = µI?
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A college admissions problem (Gale and Shapley, 1962) is a
four-tuple (C, I,q,R) where C is a finite set of colleges, I is finite a set
of students, q = (qc)c∈C is a vector of college capacities, and
R = (Pl)l∈C∪I is a list of preferences.

Here Ri denotes the preferences of student i over C ∪ {∅}, Rc
denotes the preferences of college c over 2I , and Pc , Pi denote strict
preferences derived from Rc , Ri .
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College Admissions Strategic Issues School Choice

We assume that whether a student is acceptable for a college or not
does not depend on other students in her class.

And we assume that the relative desirability of students does not
depend on the composition of the class, which is known as
responsiveness (Roth, 1985).

Formally, college preferences Rc are responsive iff
• for any J ⊂ I with |J| < qc and any i ∈ I \ J,
(J ∪ {i})PcJ if and only if {i}Pc∅,

• for any J ⊂ I with |J| < qc and any i , j ∈ I \ J, (J ∪ {i})Pc(J ∪ {j})
if and only if {i}Pc{j}.
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Notions of a matching, individual rationality, and stability naturally
extend to college admissions.

A matching for college admissions is a correspondence
µ : C ∪ I → 2C∪I such that:

• µ(c) ⊆ I such that |µ(c)| ≤ qc for all c ∈ C,
• µ(i) ⊆ C such that |µ(i)| ≤ 1 for all i ∈ I, and
• i ∈ µ(c) if and only if µ(i) = {c} for all c ∈ C and i ∈ I.
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A matching µ is blocked by a college c ∈ C if there exists i ∈ µ(c)
such that ∅Pc i .

A matching µ is blocked by a student i ∈ I if ∅Piµ(i).

A matching is individually rational if it is not blocked by any college or
student.

A matching µ is blocked by a pair (c, i) ∈ C × I if

• cPiµ(i), and
• (a) either there exists j ∈ µ(c) such that {i}Pc{j}, or (b)
|µ(c)| < qc and {i}Pc∅.

Observe that this version of blocking by a pair is plausible only
under responsiveness. A matching is stable if it is not blocked by
any agent or pair.
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The deferred acceptance algorithm naturally extends to college
admissions.

College-Proposing Deferred Acceptance Algorithm

Step 1 Each college c proposes to its top qc acceptable students (and if
it has less acceptable choices than qc , then it proposes to all its
acceptable students). Each student rejects any unacceptable
proposals and, if more than one acceptable proposal is received,
she "holds" the most-preferred and rejects the rest.
In general, at

Step k Any college c who was rejected at step k − 1 by any student
proposes to its most-preferred qc acceptable students who have
not yet rejected it (and if among the remaining students there are
fewer than qc acceptable students, then it proposes to all). Each
students "holds" her most-preferred acceptable offer to date and
rejects the rest. The algorithm terminates when there are no
more rejections. Each student is matched with the college she
has been holding in the last step.
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Theorem
The student-proposing deferred acceptance algorithm gives a stable
matching for each marriage problem. Moreover, every student weakly
prefers this matching to any other stable matching.

Theorem
The college-proposing deferred acceptance algorithm gives a stable
matching for each college admissions problem.

Many results for marriage problems extend to college admissions
problems.



College Admissions Strategic Issues School Choice

Theorem
The student-proposing deferred acceptance algorithm gives a stable
matching for each marriage problem. Moreover, every student weakly
prefers this matching to any other stable matching.

Theorem
The college-proposing deferred acceptance algorithm gives a stable
matching for each college admissions problem.

Many results for marriage problems extend to college admissions
problems.



College Admissions Strategic Issues School Choice

Theorem
The student-proposing deferred acceptance algorithm gives a stable
matching for each marriage problem. Moreover, every student weakly
prefers this matching to any other stable matching.

Theorem
The college-proposing deferred acceptance algorithm gives a stable
matching for each college admissions problem.

Many results for marriage problems extend to college admissions
problems.



College Admissions Strategic Issues School Choice

The following "trick" is very useful to extend some of these. Given a
college admissions problem (C, I,q,R), construct a related marriage
problem as follows:

First "Divide" each college cl into qcl separate pieces c1
l , ..., c

qcl
l where

each piece has a capacity of one; and let each piece have the
same preferences over I as college c has. (Since college
preferences are responsive, Rc is consistent with a unique
ranking of students.)

C∗ : The resulting set of college "pieces" (or seats).
Second For any student i , extend her preferences to C∗ by replacing

each college cl in her original preferences Ri with the block
c1

l , ..., c
qc
l in that order.

So, in the related marriage problem, each seat of a college c is an
individual unit that has the same preferences with college c, and
students rank seats at different colleges as they rank the colleges
whereas they rank seats at the same college based on the index of
the seat.
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Given a matching for a college admissions problem, it is
straightforward to define a corresponding matching for its related
marriage problem: Given any college c, assign the students who
were assigned to c in the original problem one at a time to pieces of c
starting with lower index pieces.
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Lemma (Roth and Sotomayor 1989)
A matching of a college admissions problem is stable if and only if the
corresponding matching of its related marriage problem is stable.
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This lemma can be used to extend the following results for marriage
problems to college admissions:

1. There exists a student-optimal stable matching µI that every
student likes at least as well as any other stable matching.
Furthermore, the outcome of the student-proposing deferred
acceptance algorithm yields the student-optimal stable matching.

2. There exists a college-optimal stable matching µC that every
college likes at least as well as any other stable matching.
Furthermore, the outcome of the college-proposing deferred
acceptance algorithm yields the college-optimal stable matching.

3. The student-optimal stable matching is the worst stable matching
for each college. Similarly, the college-optimal stable matching is
the worst stable matching for each student.

4. The set of students filled and the set of positions filled is the
same at each stable matching.

5. The join as well as the meet of two stable matchings is each a
stable matching.

6. There is no individually rational matching µ′ where µ′(i)Piµ
I(i) for

all i ∈ I.
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There are also some new results for college admissions.

Theorem (Theorem 1 in Roth 1986)
Any college that does not fill all its positions at some stable matching
is assigned precisely the same set of students at every stable
matching.
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Theorem (Theorem 4 in Roth and Sotomayor 1989)
Let µ and µ′ be two stable matchings. For any college c,

• either {i}Pc{j} for all i ∈ µ(c) \ µ′(c) and j ∈ µ′(c) \ µ(c), or

• {j}Pc{i} for all i ∈ µ(c) \ µ′(c) and j ∈ µ′(c) \ µ(c).
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In contrast to the marriage problem, there can be an individually
rational matching in college admissions where each college receives
a strictly better assignment than under the college-optimal stable
matching.

There is an implicit competition between different seats of a college in
the sense that a college may lose a student in one of its seats in
order to get a more-preferred student for another seat.
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Example
There are 2 colleges c1, c2 with qc1 = 2,qc2 = 1, and 2 students i1, i2.
The preferences are as follows:
Ri1 : {c1}{c2}∅
Ri2 : {c2}{c1}∅
Rc1 : {i1, i2}{i2}{i1}∅
Rc2 : {i1}{i2}∅

Here both colleges strictly prefer µ to µC where:

µ = {(c1, i2), (c2, i1)}

µC = {(c1, i1), (c2, i2)}
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Any impossibility result obtained for a smaller class of problems
immediately extends to a larger class.
Therefore, the following two results are immediate.

Theorem (Theorem 3 in Roth 1982b)
There exists no mechanism that is stable and strategy-proof.

Theorem (Proposition 1 in Alcalde and Barbera 1994)
There exists no mechanism that is Pareto efficient, individually
rational, and strategy-proof.
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Theorem (Theorem 5 in Roth 1986)
Truth-telling is a weakly dominant strategy for all students under the
student-optimal stable mechanism.

For colleges, however, the situation is different. The following
example makes this point.
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Rc2 : {i1}{i2}∅

The only stable matching for this problem is: µC = {(c1, i1), (c2, i2)}.

If c1 submits the manipulated preferences R′c1
where only student i2 is

acceptable, for problem (R−c1 ,R
′
c1
) the only stable matching is

µC = {(c1, i2), (c2, i1)}.

Hence college c1 benefits by manipulating its preferences under any
stable mechanism (including the college-optimal stable mechanism).
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Theorem (Theorem 4 in Roth 1985)
There exists no stable mechanism where truth-telling is a weakly
dominant strategy for all colleges.
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Capacity Manipulation

Fix I, C and indicate each college admissions problem with a
preference profile-capacity vector pair.

A college c manipulates mechanism φ via capacities at problem
(R,q) if

φ[R,q−c ,qc′ ](c)Pcφ[R,q](c) for some qc′ < qc .

A mechanism is immune to manipulation via capacities if it can never
be manipulated via capacities.
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Example

There are 2 colleges c1, c2 with qc1 = 2,qc2 = 1, and 2 students i1, i2.

The preferences are as follows:

Ri1 : {c1}{c2}∅

Ri2 : {c2}{c1}∅

Rc1 : {i1, i2}{i2}{i1}∅

Rc2 : {i1}{i2}∅

Let q′c1
= 1 be a potential capacity manipulation by college c1. Then:

φC [R,q] = {(c1, i1), (c2, i2)},
φC [R,q′c1

,qc2 ] = {(c1, i2), (c2, i1)}.

Hence college c1 benefits by reducing the number of its positions
under φC .
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Theorem (Theorem 1 in Sonmez 1997)
Suppose there are at least 2 colleges and 3 students. Then there
exists no stable mechanism that is immune to manipulation via
capacities.
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If, however, colleges prefer larger groups of students to smaller
groups of students, then a positive result is obtained. College
preferences are strongly monotonic if

For any c ∈ C, for any J, J ′ ⊂ I, we have if |J ′| < |J| ≤ |qc |, then
JPcJ ′.

Theorem (Theorem 5 in Konishi and Unver 2006)
Suppose college preferences are strongly monotonic. Then the
student-optimal stable mechanism is immune to manipulation via
capacities.
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In the school choice problem schools are not strategic agents with
preferences over students; instead, school priorities are determined
by exogenous factors such as a student’s home address, which
schools her siblings are attending, whether her current school is a
feeder for another school, etc.

This modeling choice is quite realistic for a vast majority of practical
applications, although there are exceptions. For example in New York
City High School Match, some schools (potentially) strategically rank
students in preference order as part of the admissions process.

In a school choice problem, schools are simply objects to be
allocated and only student welfare matters.

Consequently, stability, a key notion in two-sided matching, does not
imply efficiency. Stability is no longer incompatible with
strategy-proofness.
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A school choice problem (Abdulkadiroglu and Sonmez, 2003) is a
five-tuple (I,S,q,RS,PI) where:

• I is a finite set of students,
• S is a finite set of schools,
• q = (qs)s∈S is a capacity profile for schools where qs is the

number of available seats at school s ∈ S,
• RS = (Rs)s∈S is a profile of weak priority relations for schools

where Rs is a complete, reflexive and transitive binary relation
over I ∪ ∅ for school s ∈ S, and

• PI = (Pi)i∈I is a profile of strict preference relations for students
where Pi is a complete, irreflexive, and transitive binary relation
over S ∪ {∅} for student i ∈ I.

For i ∈ I, let Ri be the symmetric extension of Pi . That is, for all
s, j ∈ S ∪ {∅}, if sRi j then sPi j or s = j .
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A matching of students to schools is a function µ : I ∪ S → 2I∪S such
that

1. µ(i) ⊂ S with |µ(i)| ≤ 1 for all i ∈ I; and
2. µ(s) ⊂ I with |µ(s)| ≤ qs for all s ∈ S; and
3. s ∈ µ(i) if and only if i ∈ µ(s) for all i ∈ I and s ∈ S.
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In the context of school choice, a matching µ is feasible if iRs∅ for all
i ∈ µ(s) and s ∈ S.

A matching is individually rational if no student prefers being
unmatched to his assignment, and it is non-wasteful if no student
prefers a school with one or more empty seats to his assignment.
A matching µ eliminates justified envy if no student i prefers the
assignment of another student j while at the same time having higher
priority at school µ(j).
A matching µ is stable if it is individually rational, non-wasteful, and
eliminates justified envy.
A stable matching is student-optimal if it is not Pareto dominated by
another stable matching.
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The main axioms, namely efficiency, stability, and strategy-proofness,
all have policy appeal in the context of school choice.

An efficient matching optimizes student welfare in the Pareto sense.
Stability eliminates justified envy and avoids wastefulness in the
sense of Balinski and Sonmez (1999).
A student-optimal stable matching optimizes student welfare subject
to a stability constraint.
Strategy-proofness simplifies the decision making for parents
regardless of how sophisticated these parents are, leveling the
playing field.
The so-called Boston mechanism, (Abdulkadiroglu and Sonmez,
2003) and was in use in Boston until 2005, has been adopted widely
by school districts in the U.S..
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The Boston Mechanism

1. For each school, a priority ordering is exogenously determined.
(In the case of Boston, priorities depend on home address,
whether student has a sibling already attending a school, and a
lottery number to break ties).

2. Each student submits a preference ranking of the schools.
3. Student assignment based on preferences and priorities:

Round 1 For each school, consider the students who have listed it as their
first choice and assign seats of the school to these students one at
a time following their priority order until either there are no seats left
or there is no student left who has listed it as her first choice. In
general at:

Round k Consider the remaining students. For each school with available
seats, consider the students who have listed it as their k th choice
and assign the remaining seats to these students one at a time
following their priority order until either there are no seats left or
there is no student left who has listed it as her k th choice.

At each round, every assignment is final and the algorithm terminates
when no more students are assigned.
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Example
There are three students {i1, i2, i3} and three schools {s1, s2, s3} each
with one seat. Preferences and school priorities are as follows:

Ri1 : {s2}{s1}{s3}

Ri2 : {s1}{s2}{s3}

Ri3 : {s1}{s2}{s3}

Rs1 : {i1}{i3}{i2}

Rs2 : {i2}{i1}{i3}

Rs3 : {i2}{i1}{i3}

The Boston mechanism produces: µ = {(i1, s2), (i2, s3), (i3, s1)}.
If i2 reports her preferences as s2P ′i2s1P ′i2s3 instead, the Boston
mechanism produces : µ = {(i1, s3), (i2, s2), (i3, s1)} and student i2
benefits from submitting a false preference list.
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Abdulkadiroglu and Sonmez (2003) offer two strategy-proof solutions
to the problem:

One based on Gale and Shapley’s student-proposing deferred
acceptance algorithm, which produces the student-optimal stable
matching - Gale-Shapley student-optimal stable mechanism (SOSM).

Another one inspired by Gale’s top trading cycles algorithm, which
produces an efficient matching - Top Trading Cycles mechanism
(TTC).
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Theorem (Theorems 1, 2 in Gale and Shapley 1962)
Given (PI ,PS), SOSM produces a matching that is stable at (PI ,PS),
which is also at least as good for every student as any other stable
matching at (PI ,PS).

Theorem (Theorem 9 in Dubins and Freedman 1981,
Theorem 5 Roth 1982)
Given fixed priorities PS, SOSM is strategy-proof.
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The outcome of SOSM is not necessarily efficient in the context of
school choice.

Ergin (2002) shows that the outcome of SOSM is Pareto efficient if
and only if school priorities satisfy a certain acyclicity condition.

This can be interpreted as a negative result for the efficiency of
SOSM, since school priorities are not likely to satisfy the acyclicity
condition in applications. In the context of school choice.

Abdulkadiroglu and Sonmez (2003) proposed the Top Trading Cycles,
a Pareto efficient mechanism.
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Top Trading Cycles

Students submit an ordered-choice list of schools.

Given (PI ,PS), in every round every student points to her
most-preferred school that still has available seats; every school s
with available seats points to the unmatched students that are ranked
highest in Ps.
At each round there exists at least one cycle where a cycle of
students and schools (i1, s1, ..., iK , sK ) is such that each element of
the sequence points to the next whereas the last element sK points to
the first element i1.
Then student ik is matched with school sk and the capacity of school
sk is decreased by 1 for every k = 1, ...,K . Every matching is final.
The algorithm terminates when no more students are assigned.
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Theorem (Propositions 3,4 in Abdulkadiroglu and Sonmez
2003)
TTC is strategy-proof and Pareto efficient.

Although TTC is Pareto efficient and SOSM is not, the two are not
Pareto ranked in general, as can be seen in the next example.
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Example

There are three students {i1, i2, i3} and three schools {s1, s2, s3} each
with one seat. Preferences and school priorities are as follows:
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The outcomes of the mechanisms are
µSOSM = {(i1, s2), (i2, s3), (i3, s1)} and µTTC = {(i1, s2), (i2, s1), (i3, s3)}.

Neither matching dominates the other.
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Despite the lack of a Pareto ranking between SOSM and TTC, there
exists a clear-cut comparison between dominant strategy equilibria of
SOSM and Nash of the Boston mechanism.

Theorem (Theorem 1 in Ergin and Sonmez 2006)
Given strict school priorities, the set of Nash equilibrium outcomes of
the Boston mechanism is equal to the set of stable matchings under
true preferences. Therefore, the dominant strategy equilibrium of
SOSM weakly Pareto dominates every Nash equilibrium outcome of
the Boston mechanism.
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