PRODUCTION AND OPERATIONS 2023/2024

Short-Term Scheduling

Chapter 15

Based on Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.

- rankings
\qquad
Master in Finance Ranking 2020
- member

- ACCREDITATIONS AND PARTNERSHIPS

AACSB $\leadsto A M B A$ ABES (3) rics
晹选

Short-Term Scheduling

The objective of scheduling is to allocate and prioritize demand (generated by either forecasts or customer orders) to available facilities.

Importance of Short-Term Scheduling

Effective and efficient scheduling can be a competitive advantage

- Faster movement of goods through a facility means better use of assets and lower costs
- Additional capacity resulting from faster throughput improves customer service through faster delivery
- Good schedules result in more dependable deliveries

Scheduling Decisions

TABLE 15.1 Schedulin	Scheduling Decisions	
ORGANIZATION	MANAGERS SCHEDULE THE FOLLOWING	
Alaska Airlines	Maintenance of aircraft Departure timetables Flight crews, catering, gate, ticketing personnel	
Arnold Palmer Hospital	Operating room use Patient admissions Nursing, security, maintenance staffs Outpatient treatments	
University of Alabama	Classrooms and audiovisual equipment Student and instructor schedules Graduate and undergraduate courses	
Amway Center	Ushers, ticket takers, food servers, security personnel Delivery of fresh foods and meal preparation Orlando Magic games, concerts, arena football	
Lockheed Martin Factory	Production of goods Purchases of materials Workers	
Based on Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.		5

Scheduling Issues

- Scheduling deals with the timing of operations
- The task is the allocation and prioritization of demand
- Significant factors are

1) Forward or backward scheduling
2) Finite or infinite loading
3) The criteria for sequencing jobs

Scheduling Flow

Capacity Plan for New Facilities
Capacity Planning
(Long term; years) Changes in Facilities
Changes in Equipment
See Chapter 7 and Supplement 7
Figure 15.1

Master Schedule
(Intermediate term; weekly)
Material requirements plannin

(Intermediate term; quarterly or monthly)
Adjust capacity to the demand suggested by strategic plan

Aggregate Production Plan for All Bikes (Determine personnel or subcontracting necessary to match aggregate demand to existing facilities/capacity)

Month	1	2
Bike Production	800	850

Master Production Schedule for Bike Models
(Determine weekly capacity schedule)

Month 1				Month 2			
1	2	3	4	5	6	7	8
	200		200		200		200
100		100		150		100	
100		100		100		100	

Disaggregate the aggregate plan

Short Term Scheduling
(Short term; days, hours, minutes) Work center loading Job sequencing/dispatching See this chapter

tasks to specific people and machines

Assemble
Model 22 in work center 6

Forward and Backward Scheduling

- Forward scheduling starts as soon as the requirements are known
- Produces a feasible schedule though it may not meet due dates
- Frequently results in buildup of work-in-process (WIP) inventory

Hospitals, restaurants, etc.

Forward and Backward Scheduling

Backward scheduling begins with the due date and schedules the final operation first
Schedule is produced by working backwards though the processes

- Resources may not be available to accomplish the schedule

Catering, surgeries, etc.

Forward scheduling

Backward scheduling

- Forward scheduling begins as soon as production requirements are known
- Products are delivered as soon as possible
- Creates a feasible schedule, although it may not meet expected dates
- In most cases, it leads to an accumulation of stocks of products in the process of being manufactured
-Backward scheduling starts with a fixed deadline, scheduling the last task first
-Products are delivered when needed
- Sequencing is produced through retrospective work throughout the processes
- Resources may not be available to meet the schedule

Advantages

- High labor utilization - workers always start working to stay busy
- Flexíble - slack in the system allows work to be loaded

Advantages

Lower material costs - materials are only used when they have to be, thus delaying added value until the last moment

- Less exposed to risk in case of changes to the calendar by the client
- Tends to focus the operation on the delivery date to the customer

Based on Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.
$\underset{\text { ACCREDIEO }}{\text { AACSE }} \underset{\text { ACCREDIIED }}{\text { ssolinay }}$ A3ES
(
rics
 Alsmin

Finite and Infinite Loading

- Loading: Assigning jobs to work stations
- Finite loading assigns work up to the capacity of the work station
- All work gets done
- Due dates may be pushed out
- Infinite loading does not consider capacity
- All due dates are met
- Capacities may have to be adjusted

Short-term sequencing Finite Load vs Infinite Load
 Finite Load

Infinite Load

Adapted from Slack, N., Chambers, S., \& Johnston, R. (2013). Operations Management, Seventh edition, Prentice Hall. Based on Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.

- rankings

F FI $\underset{\text { Raster in Finance }}{\substack{\text { Mand } \\ \text { Ra20 }}}$ Ranking 2020

- member

- ACCREDITATIONS AND PARTNERSHIPS
 3ES ((1) rics巽 Anpot ot -为

Scheduling Criteria

Minimize completion time

Maximize utilization of facilities

Minimize work-inprocess (WIP) inventory

Minimize
customer
waiting time

- rankings

FT Master in Finance
Ranking 2020

- member

- ACCREDITATIONS AND PARTNERSHIPS
\triangle AACSB $\because A M B A$

边

Different Processes/Different Approaches

TABLE 15.2

Different Processes Suggest Different Approaches to Scheduling

Process-focused facilities (job shops)

- Scheduling to customer orders where changes in both volume and variety of jobs/clients/patients are frequent
- Schedules are often due-date focused, with loading refined by finite loading techniques
- Examples: foundries, machine shops, cabinet shops, print shops, many restaurants, and the fashion industry

Repetitive facilities (assembly lines)

- Schedule module production and product assembly based on frequent forecasts
- Finite loading with a focus on generating a forward-looking schedule
- JIT techniques are used to schedule components that feed the assembly line
- Examples: assembly lines for washing machines at Whirlpool and automobiles at Ford

HACse AMEA ABES (9) RICS R R

Misw

Different Processes/Different Approaches

TABLE 15.2

Different Processes Suggest Different Approaches to Scheduling

Product-focused facilities (continuous)

- Schedule high-volume finished products of limited variety to meet a reasonably stable demand within existing fixed capacity
- Finite loading with a focus on generating a forward-looking schedule that can meet known setup and run times for the limited range of products
- Examples: huge paper machines at International Paper, beer in a brewery at Anheuser-Busch, and potato chips at Frito-Lay

Scheduling Process-Focused Facilities

- Intermittent or job-shop facilities
- High-variety, low volume
- Production items differ considerably
- Schedule incoming orders without violating capacity constraints
-Scheduling can be complex

- ACCREDITATIONS AND PARTNERSHIPS

Lisbon School
of Economics \& Management Universidade de Lsboa

Loading Jobs

- Assign jobs so that costs, idle time, or completion time, are minimized
- Two forms of loading
- Capacity oriented
-Assigning specific jobs to work centers

Input-Output Control

- Input-output control is a technique that allows operations personnel to manage facility work flows.
- Identifies overloading (if the work is arriving faster than it is being processed, the facility is overloaded, and a backlog develops, causing crowding in the facility, and leading to inefficiencies and quality problems), and underloading (if the work is arriving at a slower rate than jobs are being performed, the facility is underloaded, and the work center may run out of work, resulting in idle capacity and wasted resources conditions).
- Prompts managerial action to resolve scheduling problems.
- Can be maintained using ConWIP (constant work-in-process) cards that control the scheduling of batches.

Based on Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.
ME

Input-Output Control Example

Figure 15.2

Welding Work Center (in standard hours)						
Week Ending $6 / 6$ $6 / 13$ $6 / 20$ $6 / 27$ $7 / 4$ $7 / 11$ Planned Input 280 280 280 280 280						
Actual Input	270	250	280	285	280	
Cumulative Deviation	-10	-40	-40	-35		

Planned Output	320	320	320	320		
Actual Output	270	270	270	270		
Cumulative Deviation	-50	-100	-150	-200		

Cumulative Change in Backlog	0	-20	-10	+5		

Based on Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc. Unversidade de Lesboa

FI Master in Finance Ranking 2020

- member

CREMD \qquad PRME Mostame
\qquad - हIII
 GRLI (G) RICS PN: $\begin{aligned} & \text { Project } \\ & \text { Managemert } \\ & \text { instutes }\end{aligned}$ ent
 Wisw

Input-Output Control Example

Figure 15.2

Based on Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.

FT Master in Finance Ranking 2020

- member

 GRLI能

Input-Output Control Example

Options available to operations personnel include:

- Correcting performances
- Increasing capacity
- Increasing or reducing input to the work center

Gantt Chart

- Load chart shows the loading and idle times of departments, machines, or facilities
- Displays relative workloads over time
- Schedule chart monitors jobs in process
- All Gantt charts need to be updated frequently to account for changes

- ACCREDITATIONS AND PARTNERSHIPS

Lisbon School
of Economics \& Management Universidade de Lesboa

Gantt Load Chart Example

Work Center	May	Monday	Tuesday	Wednesday	Thursday
Metalworks	Job 349			Friday	
Mechanical			Job 350		
Electronics	Job 408			Job 349	
Painting				Job 349	

Center not available

Based on Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.

- member

Gantt Load Chart Example

Assignment Method

- A special class of linear programming models that assigns tasks or jobs to resources
- Objective is to minimize cost or time
- Only one job (or worker) is assigned to one machine (or project)

- ACCREDITATIONS AND PARTNERSHIPS

Lisbon School
of Economics
\& Management O Management
Universidade de Lsboa

FT	$\begin{array}{l}\text { Master in Finance } \\ \text { Ranking } 2020\end{array}$

 (3) rics PR Reter o

Assignment Method

- Build a table of costs, or time, associated with particular assignments

	TYPESETTER		
	A	B	C
R-34	$\$ 11$	$\$ 14$	$\$ 6$
S-66	$\$ 8$	$\$ 10$	$\$ 11$
T-50	$\$ 9$	$\$ 12$	$\$ 7$

Based on Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.
 (3) rics PR Repter Eot 紋

Assignment Method

1. Create zero opportunity costs by repeatedly subtracting the lowest costs from each row and column.
2. Draw the minimum number of vertical and horizontal lines necessary to cover all the zeros in the table. If the number of lines equals either the number of rows or the number of columns, proceed to step 4. Otherwise proceed to step 3.

Assignment Method

3. Subtract the smallest number not covered by a line from all other uncovered numbers. Add the same number to any number at the intersection of two lines. Return to step 2.
4. Optimal assignments are at zero locations in the table. Select one, draw lines through the row and column involved, and continue to the next assignment.

- RANKINGS MEMBER

- ACCREDITATIONS AND PARTNERSHIPS
of Economics
\& Management Universidade de Lisboo

Ranking 2020 ois aid
$\boldsymbol{H}_{\text {AAcss }}$ AMBAA ABES (3) ric

PN Pryet

Assignment Method Example

Step 1a-Rows

Step 1b - Columns

Typesetter	A	B	C
Job			
R-34	$\$ 5$	$\$ 6$	$\$ 0$
S-66	$\$ 0$	$\$ 0$	$\$ 3$
T-50	$\$ 2$	$\$ 3$	$\$ 0$

Assignment Method Example

Step 2 - Lines

Typesetter Job	A	B	C
R-34	\$ 5	\$ 6	\$
S-66	¢	\$	
T-50	$\$ 2$		

Smallest uncovered number
Because only two lines are needed to cover all the zeros, the solution is not optimal
The smallest uncovered number is 2 so this is subtracted from all other uncovered numbers, and added to

Step 3 - Subtraction

Typesetter	A	B	C
Job			
R-34	$\$ 3$	$\$ 4$	$\$ 0$
S-66	$\$ 0$	$\$ 0$	$\$ 5$
T-50	$\$ 0$	$\$ 1$	$\$ 0$

3 ' $^{2}=\$ 5$

Assignment Method Example

Step 2 - Lines

Typesetter	A	B	C
Job			
R-34	$\$ 3$	$\$ 4$	$\$$
S-66	$\$($	$\$($	$\$$
T-50	$\$($	$\$$	$\$($

Because three lines are needed, the solution is optimal and assignments can be made.

Start by assigning job R-34 to worker C as this is the only possible assignment for worker C.

Step 4 - Assignments

Typesetter	A	B	C
Rob			
S-66	$\$ 3$	$\$ 4$	$\$ 0$
T-50	$\$ 0$	$\$ 0$	$\$ 5$

Job T-50 must go to worker A as worker
C is already assigned. This leaves S-66
for worker B.

Assignment Method Example

Costs

Typesetter	A	B	C
Job			
R-34	$\$ 11$	$\$ 14$	$\$ 6$
S-66	$\$ 8$	$\$ 10$	$\$ 7 \pi$
T-50	$\$ 9$	$\$ 12$	$\$ 7$

Assignments

Typesetter	A	B	C
Job			
R-34	$\$ 3$	$\$ 4$	$\$ 0$
S-66	$\$ 0$	$\$ 0$	$\$ 4$
T-50	$\$ 0$	$\$$	$\$ 0$

From the original cost table Minimum cost $=\$ 6+10+\$ 9=\$ 25$

Sequencing Jobs

Specifies the order in which jobs should be performed at work centers

Priority rules are used to dispatch or sequence jobs
FCFS: First come, first served
SPT: Shortest processing time

- EDD: Earliest due date

LPT: Longest processing time

Sequencing Example

Example 1：

Apply the four popular sequencing rules to these five jobs

Job	Job Work（Processing）Time （Days）	Job Due Date （Days）
A	6	8
B	2	6
C	8	18
D	3	15
E	9	23

Based on Power Point presentation（Heizer，Render \＆Munson，2020），Copyright © 2020，2017， 2014 Pearson Education，Inc． Univeriddade de Lisboo
－member
－ACCREDITATIONS AND PARTNERSHIPS
Ranking 2020
 （3）rics㱏 roject eg数臣

FCFS: Sequence A-B-C-D-E

Example 1 (cont.):

| Seq | Job Work
 quen ee | Processing)
 Time | Flow
 Time | Job Due
 Date |
| :---: | :---: | :---: | :---: | :---: | | Job
 Lateness |
| :---: |
| A |

Based on Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc. Universidade de Lisboa

- Member

- ACCREDITATIONS AND PARTNERSHIPS
 (PA Reme
 -

Performance Criteria

- Flow time - the time between the release of a job to a work center until the job is finished

Average completion time $=\frac{\text { Total flow time }}{\text { Number of jobs }}$
Utilization metric $=\frac{\text { Total job work (processing) time }}{\text { Total flow time }}$

$$
\begin{aligned}
& \begin{array}{c}
\text { Average number of } \\
\text { jobs in the system }
\end{array}=\frac{\text { Total flow time }}{\text { Total job work (processing) time }} \\
& \text { Average job lateness }=\frac{\text { Total late days }}{\text { Number of jobs }}
\end{aligned}
$$

Sequencing Criteria

1. Minimize completion time \rightarrow Average completion time
2. Maximize the utilization rate of facilities $\boldsymbol{\rightarrow}$ Utilization metric
3. Minimize stocks of work-in-progress (WIP) $\boldsymbol{\rightarrow}$ Average number of jobs in the system
4. Minimize waiting time $\boldsymbol{\rightarrow}$ Average job lateness

- ACCREDITATIONS AND PARTNERSHIPS

Ranking 2020 bis did

 (3) ric
 o

FCFS: Sequence A-B-C-D-E

Example 1 (cont.):

$$
\begin{aligned}
\text { Average completion time } & =\frac{\text { Sum of total flow time }}{\text { Number of jobs }}=77 / 5=15.4 \text { days } \\
\text { Utilization metric } & =\frac{\text { Total job work time }}{\text { Sum of total flow time }}=28 / 77=36.4 \%
\end{aligned} \begin{aligned}
& \begin{array}{l}
\text { Average number of } \\
\text { jobs in the system }
\end{array}=\frac{\text { Sum of total flow time }}{\text { Total job work time }}=77 / 28=2.75 \text { jobs } \\
& \text { Average job lateness }= \\
& \frac{\text { Total late days }}{\text { Number of jobs }}=11 / 5=2.2 \text { days }
\end{aligned}
$$

SPT: Sequence B-D-A-C-E

Example 1 (cont.):

Job Sequence	Job Work (Processing) T/me	Flow Time	Job Due Date	Job Lateness
B	2	2	6	0
D	3	5	15	0
A	6	11	8	3
C	8	19	18	1
E	9	28	23	5
	28	65		9

Of EFMD PRME Nomen GR
$\underset{\text { ACCREDITE }}{\substack{\text { ACCREDIIED }}}$ (3) rics P P tomet解

SPT: Sequence B-D-A-C-E

Example 1 (cont.):

$$
\begin{aligned}
& \text { Average completion time }=\begin{array}{c}
\frac{\text { Sum of total flow time }}{\text { Number of jobs }}=65 / 5=13 \text { days } \\
\text { Utilization metric }= \\
\begin{array}{l}
\text { Average number of } \\
\text { jobs in the system job work time }
\end{array}=\frac{\text { Sum of total flow time }}{\text { Sumal flow time }}=28 / 65=43.1 \% \\
\text { Total job work time }
\end{array}=65 / 28=2.32 \text { jobs } \\
& \text { Average job lateness }=\frac{\text { Total late days }}{\text { Number of jobs }}=9 / 5=1.8 \text { days }
\end{aligned}
$$ Universidade de Lsboa S (3) rics cs PR Pemat站閶

EDD: Sequence B-A-D-C-E

Example 1 (cont.):

Job Sequence	Job Work (Processing) Time	Flow Time	Jpb Due Date	Job Lateness
B	2	2	6	0
A	6	8	8	0
D	3	11	15	0
C	8	19	18	1
E	9	28	23	$\frac{5}{6}$
	28	68		6

- Member

- ACCREDITATIONS AND PARTNERSHIPS
 (3) rics啒 Pratem ot ant -閶

EDD: Sequence B-A-D-C-E

Example 1 (cont.):

$$
\begin{gathered}
\text { Average completion time }=\frac{\text { Sum of total flow time }}{\text { Number of jobs }}=68 / 5=13.6 \text { days } \\
\text { Utilization metric }=\frac{\text { Total job work time }}{\text { Sum of total flow time }}=28 / 68=41.2 \% \\
\begin{array}{l}
\text { Average number of } \\
\text { jobs in the system }
\end{array}=\frac{\text { Sum of total flow time }}{\text { Total job work time }}=68 / 28=2.43 \text { jobs } \\
\text { Average job lateness }=\frac{\text { Total late days }}{\text { Number of jobs }}=6 / 5=1.2 \text { days }
\end{gathered}
$$ Unversidade de Lisboa

\qquad (3) rics Pa peme ort antic

LPT: Sequence E-C-A-D-B

Based on Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.

- member
- ACCREDITATIONS AND PARTNERSHIPS
 (3) rics \qquad㱏等

LPT: Sequence E-C-A-D-B

Example 1 (cont.):

Average completion time $=$
Sum of total flow time Number of jobs$=103 / 5=20.6$ days
Average number of jobs in the system$=\frac{\text { Sum of total flow time }}{\text { Total job work time }}=103 / 28=3.68$ jobs time
Average job lateness $=$
$\frac{\text { Total late days }}{\text { Number of jobs }}=48 / 5=9.6$ days

- Member

FI Master in Finance
Ranking 2020

- accreditations and partnerships
 (3) rics cs
 a.閶

Summary of Rules

Example 1 (cont.):

Rule	Average Completion Time (Days)	Utilization Metric (\%)	Average Number of Jobs in System	Average Lateness (Days)
FCFS	15.4	36.4	2.75	2.2
SPT	13.0	43.1	2.32	1.8
EDD	13.6	41.2	2.43	1.2
LPT	20.6	27.2	3.68	9.6

Based on Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.

Lisbon School
of Economics \& Management Univerisdade de Lisboa

Comparison of Sequencing Rules

- No one sequencing rule excels on all criteria

1. SPT does well on minimizing flow time and number of jobs in the system

- But SPT moves long jobs to the end which may result in dissatisfied customers

2. FCFS does not do especially well (or poorly) on any criteria but is perceived as fair by customers
3. EDD minimizes maximum lateness

Critical Ratio (CR)

- An index number found by dividing the time remaining until the due date by the work time remaining on the job
- Jobs with low critical ratios are scheduled ahead of jobs with higher critical ratios
- Performs well on average job lateness criteria

$$
\mathrm{CR}=\frac{\text { Time remaining }}{\text { Workdays remaining }}=\frac{\text { Due date }- \text { Today's date }}{\text { Work (lead) time remaining }}
$$

Critical Ratio (CR) Example

Currently day 25

Job	Due Date	Workdays Remaining	Critical Ratio	Priority Order
A	30	4	$(30-25) / 4=\mathbf{1 . 2 5}$	3
B	28	5	$(28-25) / 5=\mathbf{0 . 6 0}$	1
C	27	2	$(27-25) / 2=1.00$	2

With CR <1, Job B is late. Job C is just on schedule, and Job A has some slack time.

Based on Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.
 (

电 19

Advantages of Critical Ratio (CR)

1. Helps determine the status of specific jobs
2. Establishes relative priorities among jobs on a common basis
3. Relates both stock and make-to-order jobs on a common basis
4. Adjusts priorities automatically for changes in both demand and job progress
5. Dynamically tracks job progress

- ACCREDITATIONS AND PARTNERSHIPS

Lisbon School \& Management Unversidade de Lebboe

Johnson's Rule

Sequencing NJobs on Two Machines/ workstations (n/2)

- Works with two or more jobs that pass through the same two machines or work centers
- Minimizes total production time and idle time

Johnson's Rule Steps

1. List all jobs and times for each work center
2. Choose the job with the shortest activity time. If that time is in the first work center, schedule the job first. If it is in the second work center, schedule the job last. Break ties arbitrarily.
3. Once a job is scheduled, it is eliminated from the list
4. Repeat steps 2 and 3 working toward the center of the sequence

Based on Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.

- rankings member

- ACCREDITATIONS AND PARTNERSHIPS

Lisbon School
of Economics
\& Management Universidade de Lisboa

Johnson＇s Rule Steps

Based on Power Point presentation（Heizer，Render \＆Munson，2020），Copyright © 2020，2017， 2014 Pearson Education，Inc．
－member
2f EFMD PR
 0

企 ES （3）rics cs胥 $=$ o閶

Johnson's Rule

Example 2:

Five jobs must be processed through two works centers (drill press and lathe), and the time (in hours) for processing each jobs is shown in the following table:

| | $\begin{array}{c}\text { Work Center 1 } \\ \text { (drill press) }\end{array}$ | | |
| :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Work Center 2

(lathe)\end{array}\right]\)

The manager wants to set the sequence to minimize the total time for the five jobs.

Johnson's Rule Example

Example 2 (cont.):

Based on Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.

Johnson's Rule Example

Example 2 (cont.):

Based on Power Point presentation (Heizer, Render \& Munson, 2020), Copyright © 2020, 2017, 2014 Pearson Education, Inc.

Lisbon School
Lisbon School
of Economics \& Management Universidade de Lisboa Master in Finance
Ranking 2020 Ranking 2020 (9) RIC $\underset{\text { PN }}{\substack{\text { Project } \\ \text { Msanagener } \\ \text { nstutute. }}}$
此运

Johnson's Rule Example

Example 2 (cont.):

Johnson's Rule Example

Example 2 (cont.):
The sequence that minimize the total time for the five jobs is: $\mathbf{B}-\mathbf{E}-\mathbf{D}-\mathbf{C}-\mathbf{A}$

The five jobs are completed in $\mathbf{3 5}$ hours.

路

Limitations of Rule-Based Dispatching Systems

1. Scheduling is dynamic and rules need to be revised to adjust to changes in orders, process, equipment, product mix, and so forth.
2. Rules do not look upstream or downstream. Idle resources, and bottleneck resources, in other departments may not be recognized.
3. Rules do not look beyond due dates.

- ACCREDITATIONS AND PARTNERSHIPS

FT Master in Finance $\begin{gathered}c e \\ \text { bit } \\ \text { bin } \\ \text { Rankin }\end{gathered}$
Aacse AMEA ABES
(i) rics

PR Preter
를 Wisw

OPEN MINDS.
GRAB
THEFUTURE.

