Inventory Management Exercises Solutions

IM_1

EOQ model
(a) $\quad Q^{*}=\sqrt{\frac{2 D S}{H}}=[(2 \times \mathrm{D} \times \mathrm{S}) / \mathrm{H}]^{1 / 2}=[(2 \times 20000 \times 90) / 2,4]^{1 / 2}=1224,7 \approx 1225$ liters
(b) $\quad \mathrm{TC}=(\mathrm{Q} / 2) \times \mathrm{H}+(\mathrm{D} / \mathrm{Q}) \times \mathrm{S}+\mathbf{P} \times \mathrm{D}=$ $1225 / 2 \times 2,4+20000 / 1225 \times 90+12 \times 20000=242939,30 € /$ year
(c) $\quad \mathrm{T}=\mathrm{Q} / \mathrm{D}=1225 / 20000=0,06125$ years $\approx 15,31$ days
(d) $\mathrm{N}=20000 / 1225 \approx 16,33$ orders or 17 orders
(e) $\quad \mathrm{Q}_{\mathrm{t}=25}=\mathrm{Q}^{\text {max. }}-(\mathrm{t}-\mathrm{T}) \times \mathrm{d}=1225-(25-15,31) \times 80=449,8$ liters
(f) EOQ model the EOQ was $\mathrm{Q}^{*}=1225$ liters. Now, we must analyze the costs for $\mathrm{Q}=1200$ liters and $\mathrm{Q}=$ 1300 liters, respectively, and choose the lowest of the two.

Cost $\mathrm{Q}=1200=1200 / 2 \times 2.4+20000 / 1200 \times 90=2940,00 € /$ year Cost $\mathrm{Q}=1300=1300 / 2 \times 2.4+20000 / 1300 \times 90=2944,62 € /$ year

The cost variation is:

$$
(2940,00-2939,39) / 2939,39 \times 100=0,0208 \% \rightarrow 2,08 \%
$$

Alternatively:

$$
\begin{aligned}
& \Delta \mathrm{C}=\mathrm{C} / \mathrm{C}_{0}=(\mathrm{D} / \mathrm{Q} \times \mathrm{S}+\mathrm{Q} / 2 \times \mathrm{H}) /\left(\mathrm{D} / \mathrm{Q}_{0} \times \mathrm{S}+\mathrm{Q}_{0} / 2 \times \mathrm{H}\right) \\
& =\left\{\left[\left(2 \mathrm{DS}+\mathrm{Q}^{2} \times \mathrm{H}\right) / 2 \mathrm{Q}\right]\right\} /\left\{\left[\left(2 \mathrm{DS}+\mathrm{Q}_{0}{ }^{2} \times \mathrm{H}\right) / 2 \mathrm{Q}_{0}{ }^{2}\right]\right\} \\
& =\left[\mathrm{Q}_{0} \times\left(2 \mathrm{DS} / \mathrm{H}+\mathrm{Q}^{2}\right)\right] /\left[\mathrm{Q} \times\left(2 \mathrm{DS} / \mathrm{H}+\mathrm{Q}_{0}{ }^{2}\right)\right] \\
& =\left[\mathrm{Q}_{0} \times\left(\mathrm{Q}_{0}{ }^{2}+\mathrm{Q}^{2}\right)\right] /\left[\mathrm{Q} \times\left(\mathrm{Q}_{0}{ }^{2}+\mathrm{Q}_{0}{ }^{2}\right)\right] \\
& =\left(\mathrm{Q}_{0}{ }^{2}+\mathrm{Q}^{2}\right) / 2 \mathrm{Q} \mathrm{Q}_{0} \\
& =1 / 2 \times\left(\mathrm{Q}_{0} / \mathrm{Q}+\mathrm{Q} / \mathrm{Q}_{0}\right)
\end{aligned}
$$

Solving for our values:
$\Delta \mathrm{C}=\mathrm{C} / \mathrm{C}_{0}=1 / 2 \times(1225 / 1200+1200 / 1225)=1,000213$, or a $0,213 \%$ cost increase.

IM_2

EOQ model
(a) $\quad Q^{*}=\sqrt{\frac{2 D S}{H}}=[(2 \times 72000 \times 10) / 1]^{1 / 2}=1200$ units
(b) Annual cost $=\mathrm{D} / \mathrm{Q} \times \mathrm{S}+\mathrm{Q} / 2 \times \mathrm{H}=$ $72000 / 1200 \times 10+1200 / 2 \times 1=1200,00 € /$ year
(c) $\mathrm{ROP}=\mathrm{LT} \times \mathrm{d}=4 \times 288=1152$ units
(d) $\quad \mathrm{CV}_{1000}$ units $=(72000 / 1000) \times 10+(1000 / 2) \times 1=1220,00 € /$ year \rightarrow Cheaper $\mathrm{CV}_{1500 \text { units }}=(72000 / 1500) \times 10+(1500 / 2) \times 1=1230,00 € /$ year

IM_3

Quantity discounts
$\mathrm{D}=86000$ bottles/year; $\mathrm{I}=0,3 \times \mathrm{P}$ euros/bottle/year; $\mathrm{S}=€ 10 /$ order

P	10	9,5	9	7
Q	≤ 500	$501-700$	$701-900$	>900

First, we calculate the Q^{*} for the lowest possible price, $€ 7.00$

EOQ $=\sqrt{\frac{2 D S}{H}}=\sqrt{\frac{2 \times 86000 \times 10}{0.3 \times 7}}=905,25$ bottles $=906$ bottles
Because $906>900$ units, this EOQ is feasible for the $€ 7,00$ price, therefore let's calculate the total cost for EOQ = 906 bottles.

P	Q^{*}	Q	Annual holding $\operatorname{cost}\left(H^{*} Q / 2\right)$	Annual ordering $\operatorname{cost}\left(D / Q^{*} S\right)$	Annual acquisition $\operatorname{cost}\left(P^{*} D\right)$	Annual Total Cost
7	906	906	949,23	951,30	602000,00	603900,53

IM 4

Quantity discounts
$\mathrm{D}=12000$ units/year; $\mathrm{I}=0,2 \times \mathrm{P}$ euros/unit/year; $\mathrm{S}=€ 30 /$ order

p	$€ 10$	$€ 9,5$	$€ 9,4$
Q	<2000	$2000 \leq \mathrm{Q}<6000$	$\mathrm{Q} \geq 6000$

First, we calculate the Q^{*} for the lowest possible price, $€ 9,40$.
EOQ $=\sqrt{\frac{2 D S}{H}}=\sqrt{\frac{2 \times 12000 \times 30}{0,2 \times 9,4}}=618,85$ units
Because $618,85<6000$, this EOQ is infeasible for the $€ 9,4$ price, therefore let's calculate the total cost for the smallest quantity that allows us to take advantage of the $€ 9,4$ price $\rightarrow 6000$.

Now we calculate the EOQ for the next price, $€ 9,50$.
EOQ $=\sqrt{\frac{2 D S}{H}}=\sqrt{\frac{2 \times 12000 \times 30}{0,2 \times 9,5}}=615,59$ units
Because $615,59<2000$, this EOQ is infeasible for the $€ 9,5$ price, therefore let's calculate the total cost for the smallest quantity that allows us to take advantage of the $€ 9,5$ price $\boldsymbol{\rightarrow} 2000$.

Now we calculate the EOQ for the next price, $€ 10,00$.
EOQ $=\sqrt{\frac{2 D S}{H}}=\sqrt{\frac{2 \times 12000 \times 30}{0,2 \times 10,0}}=600$ units
Because $600<2000$, this EOQ is feasible for the $€ 10,00$ price, therefore let's calculate the total cost for $\mathrm{EOQ}=600$ bottles.

			Annual olding cost $\left(H^{*} Q / 2\right)$	Annual ordering cost $\left(D / Q^{*} S\right)$	Annual acquisition cost $\left(P^{*} D\right)$	Annual Total Cost
9	Q^{*}	Q	5640	112800,00	118500,00	
9,4	618,85	6000	60	1900	114000,00	116080,00
9,5	615,59	2000	180	600	120000,00	121200,00
10,00	600	600	600			

(a) $Q^{*}=2000$ units for a total cost of $€ 116080,00 /$ year
(b) If $\mathrm{Q}=6000$
$(6000 / 2 \times 0,2 \times \mathbf{P})+(12000 / 6000 \times 30)+(\mathbf{P} \times 12000) \leq 116080,00$
$\mathbf{P} \leq 9,208 €$

IM_5

$\mathrm{D}_{\text {ARC }}=750$ units/year; $\rightarrow \mathrm{D}_{\mathrm{CZ}}=3 \times 750=2250$ units/year;
$\mathrm{I}=0,1 \times \mathrm{P} € / \mathrm{unit} /$ year; $\mathrm{S}=€ 200 /$ order .

P	$€ 25$	$€ 20$
Q	$\mathrm{Q}<1000$	$\mathrm{Q} \geq 1000$

First, we calculate the Q^{*} for the lowest possible price, $€ 20.00$
$\mathrm{EOQ}=\sqrt{\frac{2 D S}{H}}=\sqrt{\frac{2 \times 2250 \times 200}{0,1 \times 20}}=670,5$ units $=671$ units
Because $671<1000$ units, this EOQ is infeasible for the $€ 20,00$ price, therefore let's calculate the total cost for the smallest quantity that allows us to take advantage of the $€ 20,00$ price $\boldsymbol{\rightarrow} 1000$.
$\mathrm{TC}_{\mathrm{Q}=1000}=(1000 / 2) \times 2+2250 / 1000 \times 200+20 \times 2250=€ 46450,00 /$ year

Now we calculate the EOQ for the next price, $€ 25.00$.
EOQ $=\sqrt{\frac{2 D S}{H}}=\sqrt{\frac{2 \times 2250 \times 200}{0,1 \times 25}}=600$ units $=600$ units
Because $600<1000$, this EOQ is feasible for the $€ 25,00$ price, therefore let's calculate the total cost for $E O Q=600$ units.
$\mathrm{TC}_{\mathrm{Q}=600}=(600 / 2) \times 2+2250 / 600 \times 200+25 \times 2250=€ 57750,00 /$ year

The EOQ is 1000 units. The total annual cost associated with this is $€ 46450,00 /$ year.

IM_6

POQ model
(a) $\mathrm{Q}^{*}=\sqrt{(2 \times \mathrm{D} \times \mathrm{S}) /[\mathrm{H} \times(1-\mathrm{d} / \mathrm{p})]}$

$$
\begin{gathered}
=\{(2 \times 60000 \times 200) /[3,84 \times(1-240 / 320)]\}^{1 / 2}=5000 \text { lenses } \\
\mathrm{QEF}=\sqrt{\frac{2 \times 60000 \times 200}{3,84 \times\left(1-\frac{240}{320}\right)}}
\end{gathered}
$$

(b) $\mathrm{TC}=[\mathrm{Q} / 2 \times(1-\mathrm{d} / \mathrm{p})] \times \mathrm{H}+(\mathrm{D} / \mathrm{Q} \times \mathrm{S})+(\mathbf{P} \times \mathrm{D})$
(In this case, we have no production cost \mathbf{P}, so we compute the variables costs)
$=[5000 \times(1-240 / 320)] / 2 \times 3,84+60000 / 5000 \times 200=4800,00 € /$ year
(c) $\quad \mathrm{T}=5000 / 60000 \approx 0,0833$ years or 20,83 days
(d) $\mathrm{t}_{1}=\mathrm{Q} / \mathrm{p}=5000 / 320=15,625$ days
(e) $\mathrm{t}_{2}=\mathrm{T}-\mathrm{t}_{1}=5,205$ days
(f) $\quad \mathrm{I}^{\mathrm{Max}}=\mathrm{Q} \times(1-\mathrm{d} / \mathrm{p})=1250$ lenses
(g) $\mathrm{I}^{\text {Avg. }}=0,5 \times[\mathrm{Q} \times(1-\mathrm{d} / \mathrm{p})]=625$ lenses
(h) $\mathrm{I}_{\mathrm{t}=10}=10$ days $\times(320-240)=800$ lenses
(i) $\quad \mathrm{I}_{\text {máx }}-\mathrm{d} \times\left(\mathrm{T}-\mathrm{t}_{1}-\mathrm{t}\right)=1250-240 \times(5,205-3)=720,8$ lenses ≈ 720 lenses or $\mathrm{t} \times \mathrm{d}=3 \times 240=720$ lenses

IM_7

Quantity discounts (economies of scale)

$$
\begin{aligned}
& \text { If } \mathbf{P}=1500 € / \text { unit } \\
& Q^{*}=\sqrt{(2 \times \mathrm{D} \times \mathrm{S}) /[\mathrm{H} \times(1-\mathrm{d} / \mathrm{p})]} \\
& \mathrm{Q}_{\mathbf{P}=1500}=\{(2 \times 60000 \times 300) /[150 \times(1-60000 / 100000)]\}^{1 / 2} \approx 774,6 \text { units }
\end{aligned}
$$

$$
\text { POQ }=\sqrt{\frac{2 \times 60000 \times 300}{1500 \times\left(1-\frac{60000}{100000}\right)}}=774,6 \text { unidades }
$$

If $\mathbf{Q}=\mathbf{6 0 0}$ (lower $\mathbf{8 0 0}$ units)
$\mathrm{TC}=[600 \times(1-0,6)] / 2 \times 150+60000 / 600 \times 300+1500 \times 60000=90048000,00 € /$ year
Notice that $\mathrm{Q}=800$ is not defined for the $\mathbf{P}=1500 € /$ unit interval, so the total cost
calculation is not applicable in such case.

If $\mathbf{P}=1400 € /$ unit

$$
\mathrm{QP}=1400=\{(2 \times 60000 \times 300) /[140 \times(1-60000 / 100000)]\}^{1 / 2} \approx 801,7 \text { units }
$$

$$
\text { POQ }=\sqrt{\frac{2 \times 60000 \times 300}{1400 \times\left(1-\frac{60000}{100000}\right)}}=801,7 \text { unidades }
$$

$$
\begin{aligned}
& \text { If } \mathbf{Q}=\mathbf{8 0 0} \\
& \mathrm{TC}=[800 \times(1-0,6)] / 2 \times 140+60000 / 800 \times 300+1400 \times 60000=84044900,00 € / \text { year } \\
& \text { If } \mathbf{Q}=\mathbf{1 0 0 0} \\
& \mathrm{TC}=[1000 \times(1-0,6)] / 2 \times 140+60000 / 1000 \times 300+1400 \times 60000 \\
& =84046000,00 € / \text { year }
\end{aligned}
$$

The production order quantity is 800 units.

IM_8

(a1) $\mathrm{I}_{\max }=\mathrm{Q} \times(1-\mathrm{d} / \mathrm{p})=600 \times(1-150 / 200)=150$ units
(a2) Annual holding cost $=\mathrm{Q} / 2 \times(1-2 / \mathrm{p}) \times \mathrm{H}=150 / 2 \times 25 €=€ 1875,00 /$ year
(a3) $\mathrm{t}_{1}=\mathrm{Q} / \mathrm{p}=600 / 200=3$ weeks
(a4) We must first determine the cycle time: $\mathrm{T}=\mathrm{Q} / \mathrm{D}=600 / 7500=0,08$ years $=20$ days (250 work days/year)
$\mathrm{I}_{\mathrm{t}=18}=\mathrm{d} \times(\mathrm{T}-\mathrm{t})=150 / 5 \times(20-18)=60$ units
(b)

$$
\mathrm{POQ}=\sqrt{\frac{2 \times 7500 \times 250}{0,25 \times 100 \times\left(1-\frac{150}{200}\right)}}=774,6 \text { units } \approx 775 \text { units }
$$

The lot size should be increased from 600 units to 775 units.

IM_9

(a) $\mathrm{Q}^{*}=\sqrt{(2 \times \mathrm{D} \times \mathrm{S}) /(\mathrm{I} \times \mathrm{P})}$
$\mathrm{Q}^{*}=\sqrt{(2 \times 1250 \times 150) /(1)}=612,37 \rightarrow 613$ units
(b) $\quad \mathrm{SS}=Z \mathrm{x}\left(d \times \sigma_{L T}\right) \rightarrow 1,96 \mathrm{x}(25 \mathrm{x} 2)=98$ units
(c) Annual holding cost: $\left(\mathrm{Q}^{*} / 2+\mathrm{SS}\right) \times \mathrm{H}$

$$
(613 / 2+98) \times 1=€ 404,50
$$

(d) $\mathrm{ROP}=(\mathrm{d} \times \mathrm{LT})+Z \times \sigma_{d L T} \rightarrow 183=25 \times 4+Z \times 50$

$$
Z=1,66
$$

Service level is approximately $95,15 \%$

IM_10

$\mu_{\mathrm{d}}=140$ bottles/day
$\sigma_{\mathrm{d}}=10$ bottles/day
$\mu_{\mathrm{LT}}=6$ days
$\sigma_{\mathrm{LT}}=1$ day
$\mathrm{SS}=329$ bottles, $\mathrm{Q}=4375$ bottles, $\mathrm{H}=1,5 /$ bottles/year, $\mathrm{S}=50$ euros/order
a) $\mathrm{ROP}=\mu_{\mathrm{d}} \times \mu_{\mathrm{LT}}+\mathrm{SS}=140 \times 6+329=1169$ bottles
b) $\mathrm{SS}=\mathrm{Z}_{\alpha} \times \sigma_{\mathrm{dLT}}$
$\sigma_{\mathrm{dLT}}=\left(\mu_{\mathrm{d}}{ }^{2} \times \sigma_{\mathrm{LT}^{2}}{ }^{2}+\mu_{\mathrm{LT}} \times \sigma_{\mathrm{d}}{ }^{2}\right)^{1 / 2}=\left(140^{2} \times 1^{2}+6 \times 10^{2}\right)^{1 / 2}=142,13$ bottles
$\mathrm{Z}_{\alpha}=(329 / 142,13)=2,315 \approx 2,32 \rightarrow$ service level $\approx 98,99 \%$, percentile 99 .
c) Annual holding cost $=(\mathrm{Q} / 2+\mathrm{SS}) \times \mathrm{H}==(4375 / 2+329) \times 1,5=3774,75$ euros/year

IM_11

(a) $\quad \mathrm{t}_{1}=\mathrm{Q} / \mathrm{p} \rightarrow \mathrm{Q}=\mathrm{t}_{\mathrm{p}} \times \mathrm{p}=20 \times(100000 / 250$ dias $)=8000$ units
(b) $\quad \mathrm{N}=\mathrm{D} / \mathrm{Q}=(1200 \times 50) / 8000=7,5 \approx 8$ times
(c)
$\mathrm{T}=\frac{\mathrm{Q}}{\mathrm{D}} \Rightarrow \mathrm{T}=\frac{8000}{60000}=0,133$ years ou 33,33 days
$\mathrm{I}_{\text {máx }}=\mathrm{Q} \times\left(1-\frac{\mathrm{d}}{\mathrm{p}}\right)=8000 \times\left(1-\frac{240}{400}\right)$
$=3200$ units
$\mathrm{I}_{\text {máx }}-(\mathrm{T}-\mathrm{t})=3200-(30-20) \times 240$
$=800$ units
(d) $\mathrm{QEE}=\sqrt{\frac{2 D S}{H}}=\sqrt{\frac{2 \times 60000 \times 180}{3,75}}=2400$ units
(e) $\quad \mathrm{ROP}=\mathrm{d} \times \mu_{\mathrm{LT}}+\mathrm{SS}=240 \times 10+\left(\mathrm{z}_{0,025} \times \sigma_{\mathrm{dlt}}\right)=2400+\left[1,96 \times\left(240^{2} \times 2^{2}\right)^{1 / 2}\right]=$ $3340,8 \approx 3341$ units
(f) INTERNAL annual holding cost $=\mathrm{Q} / 2 \times(1-\mathrm{d} / \mathrm{p}) \times \mathrm{H}=8000 / 2 \times 0,4 \times(0,25 \times 18)=$ 7200€/year
TOPÁS annual holding cost $=(\mathrm{Q} / 2+\mathrm{SS}) \times \mathrm{H}=(2400 / 2+941) \times 3,75=8028,75 €$
The best option is to produce internally.

IM_12

$\mathrm{D}=90000$ units/year $\Rightarrow \mathrm{d}=1800$ units/week; $\mathrm{P}=€ 40 /$ unit $; \mathrm{S}=€ 1000 /$ setup cost
$\mathrm{p}=2500$ units/week; $\mathrm{H}=(20+5)$ euros/unit/year $=€ 25 /$ unit/year
a)
$\mathrm{POQ}=\sqrt{\frac{2 \times 90000 \times 1000}{25 \times\left(1-\frac{1800}{2500}\right)}}=5070,9$ ou 5071 units
b)

Imáx $=Q \times(1-d / p)=5071 \times(1-1800 / 2500)=1420$ units \Rightarrow Phase 1
$\mathrm{t} \times \mathrm{p}-\mathrm{t} \times \mathrm{d}=700$ units $\Leftrightarrow \mathrm{t} \times(\mathrm{p}-\mathrm{d})=700 \Leftrightarrow \mathrm{t}=700 /(2500-1800)=1$ week
c) Cost of a production run $=1000+5071 \times 40=€ 203840 /$ fabric

SH4 data:

$\mathrm{D}=90000 \times 2=180000$ units/year $\Rightarrow \mathrm{d}=3600$ units/week; $\mathrm{S}=€ 500 /$ order;
$\mathrm{P}=€ 6 /$ unit if $\mathrm{Q}<50000$ or $\mathrm{P}=€ 5 /$ unit if $\mathrm{Q} \geq 50000 ; \mathrm{H}=0,25 \times \mathrm{P}$ euros/unit/year

First, we calculate the Q^{*} for the lowest possible price, $€ 5,00$

EOQ $=\sqrt{\frac{2 D S}{H}}=\sqrt{\frac{2 \times 180000 \times 500}{0,25 \times 5}}=12000$ units
Because $12000<50000$, this EOQ is infeasible for the $€ 5,00$ price, therefore let's calculate the total cost for the smallest quantity that allows us to take advantage of the $€ 5,00$ price $\boldsymbol{\rightarrow} 50000$.

Now we calculate the EOQ for the next price, $€ 6,00$.
EOQ $=\sqrt{\frac{2 D S}{H}}=\sqrt{\frac{2 \times 180000 \times 500}{0,25 \times 6}}=10954,45$ units $==>10955$ units
Because $10955<50000$, this EOQ is feasible for the $€ 6,00$ price, therefore let's calculate the total cost for $\mathrm{EOQ}=10955$ units.

			Annual holding cost $\left(H^{*} Q / 2\right)$	Annual ordering cost $\left(D / Q^{*} S\right)$	Annual acquisition cost $\left(P^{*} D\right)$	Annual Total Cost
5,0	Q^{*}	Q	12000	50000	31250,00	1800,00
900000,00	933050,00					
6,0	10955	10955	8216,25	8215,43	1080000,00	1096431,68

d1) The economic order quantity is 50000 units, because it has the lowest total annual cost, €933050,00.
$D=90000 \times 2=180000$ units/year $\Rightarrow d=3600$ units/week $\Rightarrow d=720$ units/day
$\mathrm{P}=€ 7,00 /$ unit; $\mathrm{S}=€ 100,00 /$ order; $\mathrm{H}=0,25 \times \mathrm{P}$ euros/unit/year;
$\mu_{\mathrm{LT}}=3$ days and $\sigma_{\mathrm{LT}}=2$ days; $\mathrm{Z}_{\alpha}=\mathrm{Z}_{0,02}=2,054 ; \mathrm{Q}=6000$ units.
d2) $\mathbf{R O P}=\mathrm{d} \times \mu_{\mathrm{LT}}+\mathrm{SS}=720 \times 3+2958=\mathbf{5 1 1 8}$ units
$\mathrm{SS}=\mathrm{Z}_{\alpha} \times \sigma_{\mathrm{dLT}}=2,054 \times 1440=2957,76 \approx 2958$ units
$\sigma_{\mathrm{dLT}}=\mathrm{d} \times \sigma_{\mathrm{LT}}=720 \times 2=1440$ units
d3) Annual holding cost $=\left(\frac{Q}{2}+S S\right) \times H=\left(\frac{6000}{2}+2958\right) \times(0,25 \times 7)=€ 10426,50 /$ year

IM_13

$D=40000$ units/year $\Rightarrow d=160$ units/day; $p=60000$ units/year $\Rightarrow p=240$ units/day $\mathrm{P}=15 € /$ unit $; \mathrm{H}=€ 10 /$ unit/year; $\mathrm{S}=€ 300 /$ setup cost; $\mathrm{T}=15$ days
a) $\mathrm{T}=\mathrm{Q} / \mathrm{D} \leftrightarrow 15$ days $=\mathrm{Q} / 160$ units/day $\Rightarrow \mathrm{Q}=2400$ units
b) Units stored per day $=(240 \times 1)-(160 \times 1)=80$ units/day

POQ $=\sqrt{\frac{2 \times 40000 \times 300}{10 \times\left(1-\frac{160}{240}\right)}}=2683,28$ unidades ou 2683 unidades
The lot size used is not the one that allows minimizing the total costs
d)
d1) $D_{\text {Bot. }}=2 \times 40000=80000$ units $/$ year $\Rightarrow d=320$ units/day; $\mathbf{P}_{\text {Bot }}=4 € /$ unit; $H_{\text {Bot }}=0,5 \times 4=$ $€ 2 /$ unit/year; $\mathrm{S}_{\text {Bot }}=€ 50 /$ order; LT \sim Norm. ($\mu_{\mathrm{LT}}=3$ days; $\sigma_{\mathrm{LT}}=1$ day); ROP $=1617$ units
$\mathrm{ROP}=\mu_{\mathrm{LT}} \times \mathrm{d}+\mathrm{Z}_{\alpha} \times \sigma_{\mathrm{DLT}} \Leftrightarrow 1617=3 \times 3200+\mathrm{Z}_{\alpha} \times(320 \times 1)$
$Z_{\alpha}=2.053 \rightarrow \alpha \approx 0.02 \Rightarrow$ Stockout probability 2%
$\mathrm{SS}=1617-3 \times 320=657$ units
d2) $\mathrm{N}=\mathrm{D} / \mathrm{Q}=80000 / 2000=40$ orders

$$
\mathrm{Q}^{*}=\sqrt{(2 \times \mathrm{D} \times \mathrm{S}) / \mathrm{H}}=\sqrt{(2 \times 80000 \times 50) / 2}=2000 \text { units }
$$

d3)
$\mathrm{SS}=1617-3 \times 320=657$ units
Annual total cost $=(\mathrm{Q} / 2+\mathrm{SS}) \times \mathrm{H}+\mathrm{D} / \mathrm{Q} \times \mathrm{S}+\mathbf{P} \times \mathrm{D}=$
$=(2000 / 2+657) \times 2+40 \times 50+4 \times 80000=€ 325314 /$ year

IM_14

a) $\mathrm{N}=(\mathrm{D} / \mathrm{Q})=12500 / 600=20,8 \approx 21$ production runs
b) Annual holding cost $=(\mathrm{Q} / 2) \times(1-\mathrm{d} / \mathrm{P}) \times \mathrm{H}=(600 / 2) \times(1-50 / 100) \times 9=€ 1350,00 /$ year
c) $\mathrm{T}=600 / 50=12$ days $\mathrm{t}=600 / 100=6$ days

Stock $=$ Imá $-2 \times d=300-100=200$ units or
$(12-8) \times \mathrm{d}=200$ units
d)
d1) $\mathrm{SS}=\mathrm{Z}_{\alpha} \times \sigma_{\mathrm{dLT}}$
$\alpha=0,025 \Rightarrow Z_{0,025}=500 \times 1,96=980$ units
$\sigma_{\mathrm{dLT}}=\mathrm{d} \times \sigma_{\mathrm{LT}}=250 \times 2=500$
d2)
Sometal
$\mathrm{Q}=764 \Rightarrow \mathrm{Ct}=(764 / 2) \times 0,2 \times 15+(12500 / 764) \times 70+12500 \times 15=189791,3$ euros/year

METALIC

$\mathrm{Q}=791 \Rightarrow \mathrm{Ct}=((791 / 2)+980) \times 0,2 \times 10+(12500 / 791) \times 50+12500 \times 10=1128541,1$ euros/year

The supplier is METALIC.

MULTIPLE CHOICE QUESTIONS

1. Daily demand for the product PERFUMAIS from D. Maria's shop is equal to 60 . The cost of each order is 62.5 euros and D. Maria estimates the yearly holding cost to be of 3 euros per unit. Which of the following is the economic order quantity?

1		1560 units
2	X	791 units
3		50 units
4		300 units

2. According to the EOQ model, if the ordered quantity is 1400 units and the time between orders is 7 weeks, the stored quantity 4 weeks after the reception of the previous order is:

1	X	600 units
2		200 units
3		400 units
4		800 units

3. The company MO.CA produces cardboard furniture and appliances, such as the cardboard tree NATAL.CA, with annual demand of 1500 units. Currently the production capacity is of 10 units per day. Start-up cost of production is 120 euros and the yearly holding cost is of 30 euros. At present, MO.CA is producing batches of 150 units of NATAL.CA.

What is the annual holding cost associated with the batch size defined by the company?

1		1038 euros/year
2		2250 euros/year
3		2595 euros/year
4	X	900 euros/year

What is the production time in each production run?

1	X	3 weeks
2		15 weeks
3		5 weeks
4		22 weeks

4. The reputed Pharaoh's cigar factory consumes 1300 tobacco crates per year. The yearly holding cost per crate is of 3 euros. The lead time for the supplier of this type of tobacco is normally distributed with mean equal to 10 weeks and standard deviation of 5 weeks. Currently Mr Partágas, the factory director, is ordering batches of 500 crates. The factory operates 52 weeks per year.

Assuming the factory director wishes to maintain a stock out probability less than or equal to 2.5%, what level of safety stock do you recommend?	
1	

$\|$Assuming the firm works with a safety stock of 750 boxes, what should the reorder point be?					
1	$	\quad	$	800 crates	
:---	:---				
2					
3					
4	X				

If the company works with a safety stock of 750 crates, what should the annual holding cost associated with this policy be?

1	X	3000 euros
2		1875 euros
3		1125 euros
4		2250 euros

5. Weekly demand for wholegrain flour at GOODBUY supermarket follows a Normal distribution with mean of 60 packages and standard deviation of 10 packages. The yearly holding cost of each package is 2 euros. The lead time is 8 weeks. Currently the supermarket owner orders batches of 500 packages.

Assuming the GOODBUY supermarket owner follows a safety stock of 70 packages, what is the service level provided to the customers?

1	x	99.32%
2		95.0%
3		81.06%
4		85%

Assuming the GOODBUY supermarket owner follows a safety stock of 70 packages, what is the yearly holding cost associated with this inventory policy?

1	x	640 euros/year
2		500 euros/ year
3		1140 euros/ year
4		140 euros/ year

6. Annual demand for TVPLUS television sets at ELECTRICA store is of 10000 units. The order cost is of 30 euros and the weekly holding cost per unit is 0.50 euros. How many orders should ELECTRICA make in a year?

1	x	65 orders
2		9 orders
3		10 orders
4		24 orders

7. Weekly demand for tea bags at Mrs Amélia's tea store equals 125 bags. Ordering costs are 10 euros and Mrs Amélia estimates the yearly holding cost per tea bag to be of 0.50 euros.

Calculate the periodicity between tea bag orders.		
1	x	20 days
2		12.5 days
3		10 days
4		25 days

If the lead-time is 4 days, which of the following is the re-order point?		
1	X	100 units
2		20 days
3		500 units
4		2500 unidades

