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The identification of the factors that determine the time series and cross section

behaviour of the term structure of interest rates is a relevant issue, namely for

assessing the impact of economic policy measures or for hedging purposes (see, for

instance, Fleming and Remolona (1999) and Bliss (1997)).

Most papers have focused on the U.S. term structure. The pronounced hump-

shape of the US yield curve and the empirical work pioneered by Litterman and

Scheinkman (1991), as underlined in the previous chapter, have led to the conclusion

that three factors are required to explain the movements of the whole term structure

of interest rates.

Moreover, given the stochastic properties of interest rates volatility, Gaussian

models are often rejected, as they are based on the assumption of constant volatility.

Therefore, several recent papers have used 3-factor models with stochastic volatility in

order to model the term structure of interest rates (see, for instance, Balduzzi HW� DO�

(1996) and Gong and Remolona (1997a)).

However, it was also referred that stochastic volatility models pose

admissibility problems. Besides, some term structures may have properties

identifiable with less complex models. For instance, according to Buhler HW�DO�� (1999),

principal component analysis reveal that two factors explain more than 95 percent of

the variation in the German term structure of interest rates consistently during 1970 to

1999. Therefore, the initial step in modelling the term structure of interest rates will

consist in assessing the adequacy of Gaussian models to the German term structure of

interest rates. These models overcome the empirical problems posed by stochastic
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volatility models and are capable of reproducing a wide variety of shapes of the yield

curve, though they face some shortcomings regarding the limiting properties of the

instantaneous forward rate.1

As the data revealed supportive of the constant volatility assumption, a two-

latent factor Gaussian model is fitted. The model specification implies that the short-

term interest rate is the sum of a constant with the two latent factors. This hypothesis

is consistent with the idea that the Bundesbank followed a type of Taylor rule in

setting official interest rates as recently documented by Clarida HW� DO. (1998) and

Clarida and Gertler (1997). In accordance with such a rule the short-term interest rate

was adjusted in response to the deviation of inflation and output from their targets.

The model is also consistent with the idea that nominal interest rates can be

(approximately) decomposed into two components: the expected rate of inflation and

the expected real interest rate (Fisher hypothesis) or, in the C-CAPM model, the

expected growth rate of consumption. A three-latent factor Gaussian model is also

estimated in order to capture other potential influences in the evolution of the

German yield curve, like for example, external factors.

Both two and three-factor models fit quite well the yield and the volatility

curve, also providing reasonable estimates for the one-period forward and term

premium curves. However, two periods of poorer model performance are identified,

both related to world wide gyrations in bond markets - Spring 1994 and 1998 - which

were characterised by sharp changes in long-term interest rates while short-term rates

remained stable. Thus, it seems that the third factor fails to capture the potential

external influences on German interest rates. Given that both models are nested, a

Chi-square test is performed and the two-factor model is not rejected.

                                                
1 See, e.g., Campbell HW�DO. (1997), pp. 433, on the limitations of a one-factor homoskedastic model.
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As Backus HW� DO� (1997) mention, the major outstanding issue is the economic

interpretation of the interest rate behaviour approximated with affine models in terms

of its monetary and real economic factors.2 In this chapter, the subject is assessed in

three different ways: the first two are based on the explicit identification of one of the

factors with the inflation rate and relating the other factor to the H[�DQWH real interest

rate, in line with Zin (1997). The third way chosen to analyse the identification issue

was based on econometric evidence about the leading indicator properties of one

factor for inflation developments in Germany.

Within this framework, a first exercise consisted in identifying one factor with

the inflation rate process, modelled as an AR(1) process, following Fung HW�DO. (1999).3

The second factor is left unconstrained and should reflect the “real” determinants of

the term structure of interest rates, such as the output gap or the real interest rate.

A second exercise performed is based on the assumption that the inflation is

given by two factors, being one of them a common factor with the term structure.4 As

it can be shown, this assumption provides the general case of a joint model developed

in Fung HW�DO. (1999), where the factor loadings are not restricted to the values of the

parameters of the interest rate loadings.

The second factor of the term structure is left unconstrained and should reflect

the “real” determinants of the term structure of interest rates, such as the output gap

or the real interest rate, while the second factor of the inflation shall reflect the non-

core inflation moves.

                                                
2 This is also the major theoretical drawback in arbitrage pricing theory (APT) developed by Ross
(1976).
3 In Remolona et al. (1998), inflation-indexed bonds issued by the UK Government are used for this
purpose. However, these securities do not exist in Germany. Possible alternatives include the
specification of the inflation as an observable factor or regression analysis between the latent factors
and the observable variables to which they are supposedly related.
4 This joint factor can be taken as a proxy for the core inflation.
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The behaviour of the two-factor model is also good when the inflation rate is

explicitly included, though the estimates for the term premium are higher than in the

non-identified models. The two-factor model is also applied to a longer database but

comprising only interest rates from one-year to ten-year maturity. The results

obtained are similar to the previous ones.

The conclusions obtained are in accordance with previous empirical findings

on the relationship between the term structure, on one side, and future inflation and

real interest rates, on the other side.

A joint 2-factor Gaussian model for the German and French term structures of

interest rates is subsequently presented and developed. This model differs from the

one presented in Fung HW�DO. (1999), as the latter considers stochastic volatilities for the

US and Canada term structures. The results obtained suggest that the assumption of a

common factor for the whole period considered and/or the assumption of constant

volatility of the French term structure is not adequate.

Assuming only latent factors, the Kalman Filter was used to estimate them and

a maximum likelihood procedure to estimate the time-constant parameters, following

the pioneer work by Chen and Scott (1993a and 1993b).

The chapter is structured as follows. In the next section the two-factor model to

be estimated is fully specified. The third section focuses on the identification of the

factors. The fourth section concerns the joint model for the German and French term

structures. The econometric methodology is presented in the fifth section. The data

and the estimation results are included in the sixth section. The main conclusions are

stated at the end.
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���� 7KH�WZR�IDFWRU�*DXVVLDQ�PRGHO

The two-factor Gaussian or constant volatility model is a generalisation of the

Vasicek (1977) one-factor model and a particular case of the DK model. Following

equation (2.19), the pricing kernel in a two- or a three-factor Gaussian model may be

written as:5
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with N = 2 or 3. The factors are assumed to follow a first-order autoregressive process,

with zero mean:6

(3.2) ] ]
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In this model, from (2.21), the logs of bond prices are written as:
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Within the DK framework, this model is thus characterised as in Table 3.1.
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5 As it will be seen later, this specification was chosen in order to write the short-term interest rate as
the sum of a constant (δ) with the factors.
6 This corresponds to considering the differences between the “true” factors and their means.
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According to (2.22), (2.23) and (3.1), the recursive restrictions are:

(3.4) $ $ %
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(3.5) % %
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As it is seen from equation (3.1), in a homoskedastic model, the element on the

RHS of (2.19) related to the risk is zero. Thus, there are no interactions between the

risk and the factors influencing the term structure.

Therefore, yields are defined as:
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Given the common normalisation S
RW

= 0 , $ % %0 10 20 0= = = , the short term

interest rate is:
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As referred in Campbell HW� DO. (1997) in a one-factor homoskedastic model

setting, the %L,Q coefficients measure the sensitivity of the log of bond prices to changes

in short-term interest rate.7 This model has the appealing feature of the short-term

being the sum of two factors plus a constant. Our conjecture is that one factor is

                                                
7 This is different from duration, as it does not correspond to the impact on bond prices of changes in
the respective yields, but instead in the short rate.
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related to inflation expectations and that the other factor reflects the H[�DQWH� real

interest rate.8

In this model, the one-period forward rate in (2.30), (2.37) or (2.39) is given by:
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The specification of the forward-rate curve in this model accommodates very

different shapes. However, as referred in the previous chaper, the limiting forward

rate cannot be simultaneously finite and time-varying. In fact, if ϕL<1,� the limiting

value will not depend on the factors, corresponding to the following expression:
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If ϕ
L

= 1, the limiting value of the instantaneous forward becomes time-varying

but assumes infinite values. Effectively, according to (2.38), 
1
1

−
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Q  in this case.

Thus, the expression for the instantaneous forward will be:
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Accordingly, if λL <0, the forward may start by increasing, but in longer terms it

will decrease infinitely. The volatility curve in (2.28) corresponds in this model to:

                                                
8 This conjecture is in line with the assertion in Zin (1997).
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and the conditional volatility of the one-period forward rate from equation (3.8):
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Notice that, as the factors have constant volatility, given by9DU ]
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22 7 σ , the

volatility of yields depends neither on the level of the factors, nor on the level of the

short-rate.

The term premium equation (2.31) resulting from this model is equal to:
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The term premium may also be written as in (2.35). In a Gaussian model, the

conditional variances in this equation are constant and correspond to % 9DU ]
L Q W L W, ,

2
1+2 7 .

Consequently, equation (2.35) is equivalent to:
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According to equations (3.1) and (3.2), the first term on the right hand side of

(3.14) is −
=
∑ λ σ

L L L Q

L

N

%2

1
, , while the second term is − =

∑ %
L Q

L

N

L,
2

1

2

2

σ
. Thus, equation (3.14)

corresponds to (3.13).9

In line with the description in the previous chapter for the general DK model,

the first component of (3.13) is a pure risk premium, being λ
L
 the market prices of

risks, and the second component is a Jensen’s inequality term. In this model,

following equations (3.8) and (3.13), the instantaneous forward corresponds to the

sum of the term premium with a constant and with the factors weighted by the auto-

regressive parameters of the factors.

Once again, the limiting cases are worth noting. When ϕL�< 1, the limiting value

of the risk premium differs from the forward only in δ. Then, within this constant

volatility model and in this particular case, the expected short-term rate for a very

distant settlement date is δ, i.e., the average short-term interest rate. When ϕL�= 1, the

instantaneous forward differs from the risk premium in the sum of δ with the factors,

but on average the difference is still δ.

In order to assess the adequacy of the model, forward regressions as in (2.42)

will be estimated. It can be shown that, in the two-factor Gaussian model under

analysis, the forward regression coefficient in (2.47) must be equal to one in all

maturities.

                                                
9 This can be easily demonstrated by comparing the terms in the last brackets of the numerator and the
denominator of (2.47):
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Contrary to the pioneer interest rate models, such as Cox HW�DO. (1985a), where

the short-term interest influenced the whole term structure, the latent factor models

do not use explicit determinants of the yield curve. Therefore, as referred in Backus HW

DO� (1997), the major outstanding issue in this context is the economic interpretation of

the interest rate behaviour approximated with affine models, in terms of its monetary

and real economic factors. Our conjecture is that two factors seem to drive the German

term structure of interest rates: one factor related to the H[�DQWH real interest rate and a

second factor linked to inflation expectations.

As previously stated, the identification will thus be assessed in three different

ways, being the first based on the model developed in Fung HW� DO. (1999). As it is

supposed that one of the latent factors is related to inflation, one factor is identified

with that variable, which is assumed to be an AR(1) process. The inflation, denoted by

πW, will thus be defined as:10

 (3.15) ( ) ( )π π ρ π π
W W W

X
+ +
- = - +1 1

where π  is the unconditional mean of the inflation rate and ρ is a parameter that

measures the rate of mean-reversion. Considering that the short-term interest rate in

(3.7) is a risk-free rate, as there are no expectation revisions in a one period

investment, the hypothesis is that it is the sum of the short-term real interest rate (U1,W)

with the one-period inflation rate expectation:

                                                
10 Inflation is measured as the annual change in the log CPI. This measure is preferred because the
quarter-on-quarter annualised change in the log CPI is extremely volatile with often negative readings.
Our measure should be interpreted as capturing the underlying or smoothed one-period inflation rate.
Inflation is measured as year-on-year changes in the CPI in deviations from its mean, due to the
definition of the factors as having zero mean.
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 (3.16) \ U U (
W W W W1 1 1, ,( )- = - + -

+
δ π π1 6

where the long-run mean of the short-term interest rate is equal to the sum of the

unconditional means of the real interest rate and inflation rate (δ π= +U ). The

component of the short-term rate related to the second factor may be considered as

the one-period inflation expectation:

(3.17) ] (
W W W W W2 1, ( ) ~= - = - =

+
π π ρ π π ρπ1 6

where ~π
W
 denotes deviation of inflation from the steady-state value.

From (3.15) and (3.17) the value of the second factor in W+1 is:

(3.18) ] ( X ] X
W W W W W W W W2 1 1 2 1 1 2 1, ,
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+ + + + + +
= = = + = +π ρπ ρ ρπ ρ ρ1 6 1 6

Comparing equations (3.2) and (3.18), we have the following identification

between the parameters of the second factor and the inflation processes:

(3.19) 
ρ ϕ
ρ σ ε

=
=+ +

2

1 2 2 1X
W W,

Using equations (3.17) to (3.19), the following relationship between the

inflation and the second factor is obtained:

(3.20) ~
,π

ϕW W
]= 1

2
2

Using this identification method of the term structure, H[-DQWH real interest rates

can be derived. Following Remolona HW�DO. (1998), one can extract the expected average
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one-period inflation from W to W+Q as the difference between the nominal and the real

yields on zero-coupon bonds with term to maturity equal to Q, less the inflation risk

premium.

In fact, from (3.16) one can define the expected average one-period inflation

from W to W+Q as the difference between the expected average short-term nominal

interest rate and the expected average short-term real interest rate:

(3.21) 
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In Remolona HW� DO. (1998), nominal and indexed-bonds are used in order to

estimate the expected inflation rate. In our case, as there are no indexed bonds, the

exercise is done in the opposite way, i.e., the inflation is estimated by the model, using

only information on nominal yield and inflation itself. Afterwards, estimates for the

H[-DQWH real interest rates will be obtained from inflation and nominal interest rate

estimates.

The left-hand side of (3.21) is given by:
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The elements on the RHS of (3.21) are given by the identity between the Q-term

nominal and real interest rates, on one hand, and the sum of the expected average

nominal and real short-term interest rates with the respective one-period term

premiums, on the other hand:
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where L1,W
5 and L1,W

1 are respectively the one-period real and nominal term premiums

with one period to maturity. The difference between these premiums corresponds to

the one-period inflation risk premium:

(3.25) L L L1 1 1, , ,W W
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Inserting equations (3.23) to (3.25) in (3.21), we obtain the following expression

for real interest rates:
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In Remolona HW�DO. (1998), the inflation-risk premium in (3.26) is estimated as the

difference between the nominal and the real term premiums implicit in nominal and

indexed bonds. In our case the real interest rate is calculated from (3.26) were the

inflation risk premium is identified with the contribution of the second factor to the

term premium derived from (3.13). Thus
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The major drawback of this technique is that it implies the second factor to

explain simultaneously the inflation as well as the long term rates, which in some

periods may evidence significantly different volatilities. Consequently, during the

periods of higher volatility of the long-term rates, the estimated inflation tends to

present a more irregular behaviour than the true inflation.

Secondly, the procedure sketched above is based on the assumption in (3.15),

which is not necessarily the optimal model for forecasting inflation. In fact, this model

is too simple concerning its lag structure and also does not allow for the inclusion of

other macro-economic information that market participants may use to form their

expectations of inflation.11 For example, information about developments in monetary

aggregates, commodity prices, exchange rates, wages and unit labour costs, etc, may

be used by market participants to forecast inflation and, thus, may be reflected in the

bond pricing process. However, a more complex model would certainly not allow a

simple identification of the factor.

One way to overcome these problems is by using a joint model for the term

structure and the inflation, where the latter still shares a common factor with the

interest rates but is also determined by a second specific factor:12

Inflation is modelled as a function of two factors:

(3.28) π π π πW
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 and

                                                
11 A more general ARMA model would perhaps be necessary to model the dynamics of inflation.
Nevertheless, given that ϕ2 is close to 1, equation (3.20) implies a loss of leading indicator properties of
the second factor regarding inflation.
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(3.29) ] ]
W W W1 1 1 1 1 1 1π π π π πϕ σ ε, , ,+ += +

Comparing to the model developed in Fung HW�DO. (1999), this model offers the

advantage of not restricting the factor loadings to the values of the parameters of the

term structure loadings, as well as to provide an additional factor to explain the

inflation moves. Therefore, the second term structure factor does not have to be liable

simultaneously for the long-term interest rates and the inflation, avoiding more

volatile estimates for the inflation in periods of higher volatility of the long-term rates.

In order to overcome the problems detected in the first identification model,

the leading indicator properties of ]
W2  for inflation were also analysed, by setting up a

VAR model with�S�lags (see Hamilton (1994a), chapter 11):

(3.30) 1 1 ...
W W S W S W
[ $ [ $ [ Xµ− −= + + + +

where 
W
[  is (��x 1) and each of the $L is a (��x �) matrix of parameters with generic

element denoted DNM

L  and X ,1
W

~ ( , )0 S . The vector 
W
[  is defined as 

2

W

W

W

[
]

π 
=  

 
.

Testing whether ]
W2  has leading indicator properties for inflation corresponds to

testing the hypothesis 1
0 12 12: ... 0S+ D D= = = . This is a test for Granger causality, i.e., a

test of whether past values of the factor along with past values of inflation better

“explain” inflation than past values of inflation alone. This of course does not imply

that bond yields cause inflation. Instead it means that ]
W2  is possibly reflecting bond

market’s expectations as to where inflation might be headed.

                                                                                                                                                         
12 In this case, the loading of the second factor in the inflation equation is independent from the loading
in term structure equations, as it is not assumed any explicit relationship between the yields and the
inflation and, consequently, there are no recursive restrictions between the yields and the inflation.
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In assessing the leading indicator properties of ]
W2 , the Granger causality test

can be supplemented with an impulse-response analysis. The vector 0$( )�

representation of the VAR is given by:

(3.31) 1 1 2 2 ...
W W W W
[ X X Xµ − −= + + Ψ + Ψ +

The matrix Y
V
 will then correspond to:

(3.32) W V

V

W

[
X

+∂ = Ψ
′∂

;

that is, the row L, column M element of Y
V
 identifies the consequences of a one-unit

increase in the Mth variable’s innovation at date W (XMW) for the value of the L-th variable

at time W�V ([L�W�V), holding all other innovations at all dates constant. A plot of row L,

column M element of Y
V
( ,L W V

MW

[

X
+∂

∂
), as a function of V�is the impulse-response function. It

describes the response of ([L�W�V) to a one-time impulse in [M�W, with all other variables

dated W or earlier held constant. Supposing that the date W value of the first variable in

the autoregression ]
W2  is higher than expected, so that X��W is positive, then we have:13

(3.33) , 2 1 2 ,

2 1

ˆ ( | , , ,..., )
L W V W W W W S L W V

W W

( [ ] [ [ [ [

] X
+ − − − +′ ′ ′∂ ∂

=
∂ ∂

                                                
13 We use a Cholesky decomposition of the variance-covariance of the innovations to identify the
shocks. We order inflation first in the VAR to reflect the idea that whereas inflation does not respond,
contemporaneously, to shocks to expectations, these may be affected by contemporaneous information
on inflation.
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Thus if ]
W2  is a leading indicator of inflation, a revision in market expectations

of inflation , 2 1
ˆ ( | , ,..., )

L W V W W W S
( [ ] [ [+ − −′ ′∂  should be captured by the marginal impact of a

shock to the innovation process in the equation for ]
W2 .

����� $�WZR�FRXQWULHV�*DXVVLDQ�PRGHO

The prospects about the European Monetary Union closed the gaps between

the short-term interest rates of the participating countries. However, the long-term

interest rates were not equalised, due to different fiscal, liquidity and rating features.

Consequently, it is important to explain how these spreads are formed, namely

between the core countries of the Euro area. In this section, the focus will be on the

spreads between Germany and France.

A first attempt to model jointly the term structures of two countries is found in

Fung HW� DO. (1999), where a two-factor stochastic volatility model is used to estimate

simultaneously the U.S. and the Canadian term structures. In this case, it was

assumed that both countries share a common factor related to the real interest rate,

following the close trade relationship between those countries. As each country

pursued its own monetary policy, it was assumed that the U.S. and the Canadian term

structures also depended on a specific factor, related to the inflation expectations and,

accordingly, to the monetary policy.

In the Euro area, the opposite happens, i.e., there is a common monetary policy

and real interest rates differ among the eleven countries. It is also arguable that, before

the Euro launch, ERM-EMS participants followed German monetary policy.

Consequently, the model used in this section assumes a common factor related to the

inflation expectations and a specific factor that is supposed to be related to the real

interest rate. Additionally, it was assumed that the common inflation factor

corresponded to the German factor, due to the anchor role performed by the German
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economy and the Bundesbank among national European central banks, before the

Euro launch.

Considering the results obtained in the previous section and the similarities

between the term structures of Germany and France, both factors were assumed to

have constant volatility. Thus, the German interest rates will be modelled as in the

previous section, while the French interest rates were assumed to be a function of a

specific real factor and a common nominal factor. Accordingly, the sdf for France is

written as:

(3.34) − = + + + + + ++ + +P ] ]
W L W W W

LW
1

1
1 1 1

2
2

2
2

2 2 2 1

2

2

2 2
* *

*
* * * * *δ λ σ λ σ ε λ σ λ σ ε

The specific factor of the French term structure is assumed to follow a first-

order autoregressive order, with zero mean, as previously stated for Germany.

Correspondingly, the logs of bond prices will be:

(3.35) − = + +S $ % ] % ]
Q W Q Q W Q W,
* *

,
* *

,1 1 2 2

where the specific factor follows

(3.36) ] ]
W W W1 1 1 1 1 1 1,

* * * *
,

*
+ += +ϕ σ ε

and the yield curve will correspond to:

(3.37) \
Q

$ % ] % ]
Q W Q Q W Q W,
* *

,
* *

,= + +1
1 1 2 22 7
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���� (FRQRPHWULF�PHWKRGRORJ\

As the factors that determine the dynamics of the yield curve are non-

observable and the parameters are unknown, a Kalman filter and a maximum

likelihood procedure were chosen for the estimation of the model.14 In a brief

description, the Kalman Filter is an algorithm that computes the optimal estimate for

the state variables at a moment W using the information available up to W-1.15 The

starting point for the derivation of the Kalman filter is to write the model in state-

space form, which includes an observation or measurement equation and a state or

transition equation, respectively:

(3.38) < $ ; + = Z
W

U
U Q

W

Q
U N

W

N

W

U× × × × × ×
= ⋅ + ⋅ +

1 1 1 10 5 0 5 0 5 0 5 0 5 0 5

(3.38a) = & ) = * Y
W

N
N N N

W

N

W

N× × × −
× ×

= + ⋅ +
1 1 1

1 10 5 0 5 0 5 0 5 0 5

where U is the number of variables to estimate, Q� is the number of observable

exogenous variables and N is the number of non-observable or latent exogenous

variables (the factors). Z
W
 and Y

W
 are i.i.d. residuals, distributed as Z 1 5

W
~ ,00 5  and

Y 1 4
W

~ ,00 5 .

The variance matrices are written as:

(3.39) 5 ( Z Z
U U

W W×
=0 5 1 6’

(3.40) 4 ( Y Y
N N

W W

×
+ +=

1 6
1 61 1’

                                                
14 The maximum likelihood procedure is usually adopted when the parameters are unknown.
15 For further details see, for instance, Hamilton (1994a), chapter 13, Hamilton (1994b) or Harvey (1990).
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According to equation (3.6), the measurement or observation equation in our

one-country non-identified model may be written as:

(3.41)
\

\

D

D

E E

E E

]
]
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where \1,W, … , \O,W are the O zero-coupon yields at time W with maturities M = 1, … , X

periods and Z1,W, … ,ZO,W are the normally distributed i.i.d. errors, with null mean and

standard-deviation equal to H
M

2 , of the measurement equation for each interest rate

considered, D $ M
M M

= , E % M
M M1 1, ,= , E % M

M M2 2, ,= .

Following equation (3.2), the transition or state equation is:

(3.42)
]
]

]
]

Y
Y

W

W

W

W

W

W

1 1

2 1

1

2

1

2

1

2

1 1

2 1

0
0

0
0

,

,

,

,

,

,

+

+

+

+

�
! 

"
$# =

�
! 

"
$#
�
! 

"
$# +

�
! 

"
$#
�
! 

"
$#

ϕ
ϕ

σ
σ

being Y
W1 1, +  and Y

W2 1, +  orthogonal shocks with null mean and variances equal to σ 1
2

and σ 2
2 , respectively. As in the estimation of the models the information on the

homoskedasticity of yields is exploited, in line with equation (3.11), the observation

equation may be rewritten as follows:

(3.43)
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where D
Q

% %O M W M M+ = +, , ,

1
2 1

2
1
2

2
2

2
2σ σ3 8  and 2O is the number of variables to estimate (U in

(3.38)). In this way we adjust simultaneously the yield curve and the volatility curve,

avoiding implausible estimates for the latter.

In our model $ is a column vector�with elements D
M W, for the first O� rows and

1
2 1

2
1
2

2
2

2
2

Q
% %

M M, ,σ σ+3 8  for the next O rows; ;
W
 is a 2O-dimension column vector of one’s

(Q = 1 ), &� is a column vector of zeros and ) is a N N× diagonal matrix, with typical

element )
LL L

= ϕ  ( N = 2 ).

When the link between the second factor and the inflation is considered in line

with (3.20), the observation equation becomes:

(3.44)
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Conversely, when the inflation is modelled as motivated by two factors, as in

(3.28), the observation equations is:

(3.45)
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In this case, the transition equations become:

(3.46)
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Finally, for the two-country model the observation equation is written as:

(3.47)
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The estimation departs from assuming that the starting value of the state vector

6 is obtained from a normal distribution with mean 
s
=

R
and variance 30. $=

R
 can be

seen as a guess concerning the value of = using all information available up to and

including W = 0. As the residuals are orthogonal to the state variables, 
s
=

R
cannot be

obtained using the data and the model. 30 is the uncertainty about the prior on the

values of the state variables.
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Using 
s
=

R
and 30 and following (3.16), the optimal estimator for =1 will be given

by:

(3.48) $ $
|= & )=1 0 0= +

Consequently, the variance matrix of the estimation error of the state vector

will correspond to:

(3.49)

3 ( = = 6 =

( & )= *Y & )= & )= *Y & )=

( )Y *Y Y ) Y *

( )Y Y ) ( *Y Y *

)3 ) *4 *

1 0 1 1 0 1 1 0

0 1 0 0 1 0

0 1 0 1

0 0 1 1

1 0 1

| | |

|

$ $ ’

’

’ ’ ’ ’

’ ’ ’ ’

’ ’

= − −

= + + − − + + − −

= + +

= +
= +

4 94 9
1 61 6
1 61 6
1 6 1 6

Given that YHF $%& & $ YHF %1 6 1 6 1 6= ⊗ ⋅’ , 31|0  may be obtained from:

(3.50)

YHF 3 YHF )3 ) YHF *4 *

) ) YHF 3 * * YHF 4

, ) ) * * YHF 4
Q Q

1 0 1 0 1

1 0 1

1

12 2

| |

|

’ ’3 8 3 8 1 6
0 5 3 8 0 5 1 6

0 5 0 5 1 6
4 9

= +

= ⊗ ⋅ + ⊗ ⋅

= − ⊗�
! 

"
$# ⊗ ⋅

×

−

Generalising equations (3.48) and (3.49), we have the following prediction

equations:

(3.51) $ $
|= & )=
W W W− −= +1 1

(3.52) 3 )3 ) *4*
W W W W W| | ’ ’− −= +1 1
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As ZW is independent from ;W and from all the prior information on \ and [

(denoted by ζ
W −1), we can obtain the forecast of \W conditional on ;W and ζ

W −1  directly

from (3.38):

(3.53) ( \ ; $; +=
W W W W W W
| , $

|ζ − −= +1 11 6

Therefore, from (3.38) and (3.53), we have the following expression for the

forecasting error:

(3.54) < ( < ; $; += Z $; += + = = Z
W W W W W W W W W W W W W W

− = + + − + = − +− − −| , $ $
| |ζ 1 1 11 6 1 6 4 9 4 9

Given that ZW is also independent from =W and $
|=
W W−1 and considering (3.54), the

conditional variance-covariance matrix of the estimation error of the observation

vector will be:

(3.55)

( < ( < ; < ( < ; ( + = = Z + = = Z

+( = = = = + ( Z Z

+3 + 5

W W W W W W W W W W W W W W W W

W W W W W W W W

W W

− − = − + − +

= − − +

= +

− − − −

− −

−

| , | , ’ $ $ ’

$ $ ’ ’ ’

’

| |

| |

|

ζ ζ1 1 1 1

1 1

1

1 6 1 6= B 4 9 4 9J L
4 94 9 1 6

In order to characterise the distribution of the observation and state vectors, it

is also required to compute the conditional covariance between both forecasting

errors. From (3.54) we get:

(3.56)

( < ( < ; = ( = ; ( + = = Z = =

+( = = = =

+3

W W W W W W W W W W W W W W W

W W W W W W

W W

− − = − + −

= − −

=

− − − −

− −

−

| , | , ’ $ $ ’

$ $ ’

| |

| |

|

ζ ζ1 1 1 1

1 1

1

1 6 1 6= B 4 9J L
4 94 9
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Therefore, using (3.53), (3.55) and (3.56), the conditional distribution of the

vector < =
W W
,1 6  is:

(3.57)
< ;
= ;

1
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=
+3 + 5 +3

3 + 3
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According to a well-known result,16 if ;1�and ;2 have a joint normal conditional

distribution characterised by

(3.58)
;

;
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then the distribution of ; ;2 1|  is 1 P, Σ1 6 , being

(3.59) P ;= + −−µ µ2 21 11
1

1 1Ω Ω 1 6
(3.60) Σ Ω Ω Ω Ω= − −

22 21 11
1

12

Equations (3.59) and (3.60) correspond to the optimal forecast of ; 2  given ;1

and to the mean square error of this forecast respectively. Consequently, following

(3.57), the distribution of =W given <W, ;W and ζ
W −1  is 1 = 3

W W W W

$ ,| |4 9 , where $
|=
W W

and 3
W W|  are

respectively the optimal forecast of =W given 3W|W and the mean square error of this

forecast, corresponding (using (3.59) and (3.60)) to the following updating equations

of the Kalman Filter:

(3.61) $ $ ’ ’| | | | |= = 3 + +3 + 5 < $; +
W W W W W W W W W W W W

= + + − +− − −

−

−1 1 1

1

13 8 3 8
(3.62) 3 3 3 + +3 + 5 +3

W W W W W W W W W W| | | | |’ ’= − +− − −

−

−1 1 1

1

13 8
                                                
16 See, e.g., Mood HW�DO. (1986), pp. 167-168.
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After estimating $
|6

W W
 and 3

W W| , we can proceed with the estimation of $
|6

W W+1  and

3
W W+1| . Considering (3.51) and (3.52), we obtain:

(3.63)
$ $ $ ’ ’

$ ’ ’

| | | | | |

| | | |

= & )= & ) = 3 + +3 + 5 < $; +

& )= )3 + +3 + 5 < $; +

W W W W W W W W W W W W W W

W W W W W W W W W W

+ − − −

−

−

− − −

−

−

= + = + + + − +

= + + + − +

1 1 1 1

1

1

1 1 1

1

1

3 8 3 8J L
3 8 3 8

(3.64)

3 )3 ) *4*

) 3 3 + +3 + 5 +3 ) *4*

)3 ) )3 + +3 + 5 +3 ) *4*

W W W W W

W W W W W W W W W

W W W W W W W W W

+

− − −

−

−

− − −

−

−

= +

= − + +

= − + +

1

1 1 1

1

1

1 1 1

1

1

| |

| | | |

| | | |

’ ’

’ ’ ’ ’

’ ’ ’ ’ ’

3 8
3 8

The matrix )3 + +3 + 5
W W W W| |’ ’− −

−
+1 1

13 8  is usually known as the gain matrix, since it

determines the update in $ |=
W W+1  due to the estimation error of <

W
. The equation (3.64) is

known as a Ricatti equation. Concluding, the Kalman Filter may be applied after

specifying starting values for $
|=1 0  and 31|0  using equations (3.53), (3.55), (3.61), (3.62)

and iterating on equations (3.63) and (3.64).

The parameters are estimated using a maximum likelihood procedure. The log-

likelihood function corresponds to:

(3.65) log log |/ < I < ,
7 W W

W

7

1 6 1 6= −
=
∑ 1

1

being
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(3.66)
I < , +3 + 5

< $ += +3 + 5 \ $ +=

W W W W

W W W W W W W W

| ’

exp $ ’ ’ $

|

| | |

−
−

−

−

− −

−

−

= + ⋅

− − − + − −�
! 

"
$#

1
1 2

1

1 2

1 1

1

1

2

1

2

1 6 0 5
4 9 3 8 4 9

π

for W = 1, …, 7.

In order to make inference about the statistical significance of the variables, the

standard-errors of the parameters were computed using the method described in

Hamilton (1994a), pp. 389.

Concluding, the estimation procedure may be resumed as in figure 3.1:17

                                                
17 This figure is based on the flowchart in Kim and Nelson (1999), pp.26.
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)LJXUH�������.DOPDQ�ILOWHU�DOJRULWKP�ZLWK�XQNQRZQ�SDUDPHWHUV

(if there are
(if all iterations iterations to be done)
 are done)

(if the maximum hasn’t
(if the maximum for the been obtained)
 sum has been obtained)

Starting values for the state vector S

Sum of the values of the

Forecasting error of Y (3.54)

Updating S (3.61) and P (3.62)

errors of both equations (3.56)
Conditional covariance between the

function (3.66)

Forecasting the new values for
S (3.63) and P (3.64)

END

matrices (A, H, C, F, R, Q) 
Starting values for the parameter

log-likelihood function (3.65)

New value for Y (3.53)

 (3.48) and for P1|0 (3.49)
New value for S|0

Value of the log-likelihood

error of the observation equation (3.55)
Variance matrix of the estimation
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���� 'DWD�DQG�HVWLPDWLRQ�UHVXOWV

The data used for the German term structure consist in two databases. The first

comprises monthly averages of nine daily spot rates for maturities of 1 and 3 months

and 1, 2, 3, 4, 5, 7 and 10 years, between January 1986 and December 1998.18 These

spot rates were estimated from euro-mark short-term interest rates, obtained from

Datastream, and par yields of German government bonds, obtained from J.P. Morgan,

using the Nelson and Siegel (1987) and Svensson (1994) smoothing techniques. One-

period forward rates were calculated for this sample, which allowed the forward

regressions to be performed.19

The second database for Germany covers a longer period, between September

1972 and December 1998.20 However this sample includes only spot rates for annual

maturities between 1 and 10 years, excluding the 9-year maturity. The inflation rate

was computed as the difference to the mean of the yearly inflation rate, obtained from

Datastream.21 The data regarding the French term structure consists in spot rates

computed from par yields supplied by J.P. Morgan, for 1, 3, 5 and 10-year maturities.

The Kalman filtering and maximum likelihood estimation was carried out

using a Matlab code.22 Besides the recursive restrictions, the parameters were

estimated subject to the usual signal restrictions.

                                                
18 Therefore, the parameter O in the state-space model is equal to 9 and there are 18 equations in the
measurement equation.
19 The research assistance of Fátima Silva, from the Research Department of the Banco de Portugal, on
this issue is acknowledged.
20 We are grateful to Manfred Kremer, from the Research Department of the Bundesbank, for providing
the data.
21 Given that this database does not include information on the money market rates, the 3-factor model
was not estimated.
22 The matlab codes were written upon codes made available by Mike Wickens and Eli Remolona.
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Before the estimation results, it is worthwhile to present the most significant

stylised facts concerning the data. The properties of the German yield curve are

summarised in Tables 3.2 and 3.3. A number of features are worth noting. Firstly,

between 1986 and 1998, the term structure is negatively slopped at the short end, in

contrast with the more familiar concave appearance observed for the USA market

(see, Backus� HW� DO� (1997)). Secondly, yields are very persistent, with monthly

autocorrelations above 0.98 for all maturities.23 Thirdly, yields are highly correlated

along the curve, but correlation is not equal to one, with lower correlations obtained

for the ends of the yield curve. This suggests that non-parallel shifts of the yield curve

are important. Therefore, one-factor models seem to be insufficient to explain the

German term structure of interest rates. Lastly, as expected, the volatility curve of the

yields is downward sloping.

7DEOH�������3URSHUWLHV�RI�*HUPDQ�*RYHUQPHQW�%RQG�<LHOGV�LQ����������

0DWXULW\ 1 3 12 24 36 48 60 84 120
0HDQ 5.732 5.715 5.681 5.823 6.020 6.203 6.359 6.587 6.793
6W�'HY� 2.267 2.224 2.087 1.882 1.686 1.524 1.398 1.228 1.095
6NHZ� 0.450 0.449 0.490 0.522 0.519 0.487 0.432 0.282 0.049
.XUW� -1.258 -1.267 -1.139 -1.051 -0.975 -0.871 -0.737 -0.426 0.001
$XWRFRUUHO� 0.991 0.992 0.991 0.990 0.989 0.989 0.988 0.987 0.983
1RUPDOLW\�7HVWV

0DWXULW\ 1 3 12 24 36 48 60 84 120
F���� 15.5558 15.6717 14.6832 14.2669 13.1898 11.1065 8.3923 3.2515 0.0627
3�;![� 0.0004 0.0004 0.0006 0.0008 0.0014 0.0039 0.0151 0.1968 0.9691
&RUUHODWLRQ�PDWUL[

\� 1.000 0.998 0.969 0.936 0.913 0.891 0.867 0.816 0.743
\� 1.000 0.982 0.955 0.934 0.912 0.889 0.839 0.765
\�� 1.000 0.993 0.980 0.964 0.944 0.898 0.829
\�� 1.000 0.996 0.986 0.972 0.935 0.875
\�� 1.000 0.997 0.988 0.961 0.911
\�� 1.000 0.997 0.980 0.940
\�� 1.000 0.992 0.962
\�� 1.000 0.989
\��� 1.000

                                                
23 Interest rates are close to being non-stationary.
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7DEOH�������3URSHUWLHV�RI�*HUPDQ�*RYHUQPHQW�%RQG�<LHOGV�LQ����������

0DWXULW\ 12 24 36 48 60 72 84 96 120
0HDQ 6.348 6.609 6.856 7.051 7.202 7.321 7.414 7.487 7.594
6W�'HY� 2.290 2.053 1.891 1.770 1.674 1.598 1.535 1.483 1.401
6NHZ� 0.545 0.349 0.224 0.151 0.108 0.084 0.075 0.077 0.112
.XUW� -0.513 -0.671 -0.677 -0.636 -0.575 -0.495 -0.397 -0.281 -0.006
$XWRFRUUHO� 0.981 0.985 0.985 0.985 0.985 0.985 0.985 0.984 0.981
1RUPDOLW\�7HVWV
0DWXULW\ 12 24 36 48 60 72 84 96 120
χ2(2) 19.28 12.44 8.76 6.59 5.01 3.64 2.39 1.37 0.67
3�;![� 0.000 0.002 0.013 0.037 0.082 0.162 0.302 0.505 0.715
&RUUHODWLRQ�PDWUL[

\�� 1.000 0.986 0.964 0.942 0.919 0.896 0.874 0.853 0.812
\�� 1.000 0.993 0.979 0.962 0.943 0.924 0.906 0.870
\�� 1.000 0.996 0.986 0.973 0.958 0.943 0.912
\�� 1.000 0.997 0.990 0.980 0.968 0.943
<�� 1.000 0.998 0.992 0.984 0.964
<�� 1.000 0.998 0.994 0.979
<�� 1.000 0.999 0.989
<�� 1.000 0.995
\��� 1.000

The first estimations to be performed were those concerning the forward

regressions. Charts 3.1 (Simple test) and Chart 3.2 (Forward regressions) show the

results of the tests of the expectations theory of the term structure, in line with

equations (2.40) and (2.42). In table 3.4, the parameter estimates are exhibited.

The pure expectations theory is easily rejected: as shown in Chart 3.1 and in the

table below, average one-period short-term forward rates vary with maturity, which

contradicts equation (2.40) with ΠQ = 0.24 However, as shown in Chart 3.2, forward

regressions generate slope coefficients close to one for all maturities, with relatively

small standard errors,25 suggesting that the assumption of constant term premiums

might be a reasonable approximation.

                                                
24 In the steady state, it is expected that short-term interest rates remain constant. Thus the one-period
forward curve should be flat under the absence of risk premium.
25 Newey-West standard errors.
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&KDUW����

6LPSOH�WHVW�RI�WKH�SXUH�H[SHFWDWLRQV�WKHRU\�RI�LQWHUHVW�UDWHV
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7DEOH�����¥�3DUDPHWHU�HVWLPDWHV�LQ�WKH�IRUZDUG�UHJUHVVLRQV

P 3 12 24 36 48 60 84 120
β 0.953 0.965 0.975 0.980 0.981 0.981 0.980 0.979

σ(β) 0.029 0.022 0.015 0.013 0.012 0.012 0.013 0.014
α -0.003 0.005 0.020 0.029 0.034 0.038 0.043 0.046

σ(α) 0.007 0.019 0.025 0.030 0.033 0.036 0.040 0.043
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The results of the term structure estimation are shown in Charts 3.3a and 3.3b

(average yield curves), 3.4a and 3.4b (Volatility curves), 3.5a and 3.5b (Term premium

curves), 3.6a and 3.6b (One-period forward curves), 3,7a and 3.7b (Expected short-

term interest rate curves), 3.8a and 3.8b (Time-series yields), 3.9a and 3.9b (Time-series

inflation), 3.10a and 3.10b (Factor loadings) and 3.11a, 3.11b, 3.11c, 3.11d, 3.11e and

3.11f (Time-series factors). The parameters and their standard errors are reported in

Tables 3.5 and 3.6.

&KDUW����D
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%

Observed 2f non-id. 3f non-id. 2f-ident. 2f-ident.2

According to Charts 3.3a, 3.3b, 3.4a and 3.4b, all estimates reproduce very

closely both the average yield and the volatility curves, though worse results are

obtained for 1986-1998 when the second factor is identified with inflation as in (3.44)

or in (3.45).26 This result must be associated to the link between the behaviour of the

second factor and the inflation, which implies a worse fitting for the long-term interest

rates.
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26 The results with the alternative identified model (in (3.45)) are labelled “2f-ident.2”.
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Concerning the term premium and the one-period forward, charts 3.5a, 3.5b,

3.6a and 3.6b show again that the results obtained differ in the shorter sample,

depending on using identified or non-identified models. The estimates obtained with

the identified model in (3.44) point to lower risk premium in the maturities between 2

and 7 years, while the risk premium is higher at both ends of the curve. This model

still presents an estimate for the 10-year risk premium around 1.7 in both samples,

though it converges monotonically to a positive value, around 4% in maturities higher

than 20 years.27 In the non-identified models, the term premium rises rapidly up to 1.5

in the 5-year maturity, converging to around 1.6 and 1.25 in the 10-year maturity,

respectively using the two- and the three-factor model.28

                                                
27 Notice that the identified model in (3.45) provides lower estimates for the risk premium as the market
price of risk of the first factor is higher, giving a lower contribution for the risk premium.
28 The term premium estimate for the 10-year maturity using the two-factor non-identified model is line
with other estimates obtained for different term structures. See, e.g., de Jong (1997), where it is
presented an estimate of 1.65 for the 10-year term premium in the US term structure.
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Accordingly, the expected short-term interest rates exhibit differences between

the identified and the non-identified models, as well as between the samples. The

most remarkable feature is the positive slope in the identified models and using the

shorter sample, namely with the model in (3.45). In the longer sample, the short-term

interest rate is roughly constant in all models, as the shape of the one-period forward

and the term premium curves are similar.
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Regarding the time-series results, charts 3.8a and 3.8b show the observed and

the estimated yields for several maturities considered, while in charts 3.9a and 3.9b

the observed and the estimated inflation (according to the models in (3.44) and (3.45)).

It can be concluded that all estimates reproduce very closely both the yields across the

maturity spectrum and the inflation.29 However, the fit for the yields is poorer in two

sub-periods. The first one concerns to Spring 1994, where predicted short-term rates

are above actual rates and predicted long term rates are below actual rates.30 The

second episode has occurred in 1998, when long bond yields fell as a consequence of

the Russian and Asian crisis, whilst short-rates remained stable. Therefore, the

estimated long-term interest rates remained higher than the actual rates.

                                                
29 The quality of the fit for the yields contrasts sharply with the results found for the USA by Gong and
Remolona (1997c). In fact, they concluded that at least two different two-factor heteroskedastic models
are needed to model the whole USA term structures of yields and volatilities: one to fit the
medium/short-end of the curves and another to fit the medium/long-terms. The lowest time-series
correlation coefficients between the observed and the estimated figures is 0.87, for the 10-year maturity,
and the cross-section correlation coefficients are, in most days of the sample, above 0.9.
30 The surprising behaviour of bond yields during 1994 is discussed in detail in Campbell (1995) with
reference to the US market.
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The identified model in (3.45) provides more accurate estimates for the

inflation, as it uses a specific factor for this variable, instead of the inflation being

explained only by the second factor of the term structure.
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7DEOH�������3DUDPHWHU�HVWLPDWHV

���������

δ σ1 ϕ1 λ1σ1 σ2 ϕ2 λ2σ2

2f non-id. 0.00489 0.00078 0.95076 0.22192 0.00173 0.98610 -0.09978
3f non-id. 0.00494 0.00114 0.97101 1.13983 0.00076 0.97543 -1.71811
2f ident. 0.00498 0.00156 0.98163 3.09798 0.00109 0.98216 -4.44754

2f ident.2 0.00566 0.00154 0.98169 3.20068 0.00111 0.98225 -4.45554

���������

2f non-id. 0.00508 0.00127 0.96283 0.10340 0.00165 0.99145 -0.10560
2f ident. 0.00547 0.00159 0.99225 2.30797 0.00070 0.99259 -5.29858

2f ident.2 0.00526 0.00141 0.95572 0.09198 0.00160 0.99298 -0.09869

σ1π ϕ1π λ1πσ1π λ2πσ1π Β1π Β2π σ3 ϕ3 λ3σ3

���������

2f non-id. - - - - - - - - -

3f non-id. - - - - - - 0.001317 0.989882 0.006502

2f ident. - - - - - - - - -

2f ident.2 6.89340 0.99773 1.72529 1.55172 0.00004 -0.05438 - - -

���������

2f non-id. - - - - - - - - -
2f ident. - - - - - - - - -

2f ident.2 0.00931 0.99748 0.08405 -2.65631 0.25683 0.06685 - - -

Focusing on the parameter estimates, the factors are very persistent, as the

estimated ϕ ’s are close to one and exhibit low volatility.31 It is the second factor that

contributes positively to the term premium (σ2λ2) and exhibits higher persistency. The

market price of risk of this factor becomes higher when it is identified with inflation.

Conversely, its volatility decreases. All variables are statistically significant, as the

                                                
31 Nevertheless, given that the standard-deviations are low, the unit root hypothesis is rejected and,
consequently, the factors are stationary. We acknowledge the comments of Jerome Henry on this issue.
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parameters evidence very low standard-deviations. This result confirms the general

assertion about the high sensitivity of the results to the parameter estimates.32

7DEOH�������6WDQGDUG�GHYLDWLRQ�HVWLPDWHV

δ σ1 ϕ1 λ1σ1 σ2 ϕ2 λ2σ2

���������

2f non-id. 0.00009 0.00001 0.00142 0.00648 0.00003 0.00100 0.00084
2f ident. 0.00001 0.00001 0.00000 0.00000 0.00071 0.00100 0.00005

2f ident.2 0.00001 0.00001 0.00000 0.00000 0.00071 0.00100 0.00005

���������

2f non-id. 0.00001 0.00001 0.00000 0.00000 0.00249 0.00084 0.00013
2f ident. 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

2f ident.2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

σ1π ϕ1π λ1πσ1π λ2πσ1π Β1π Β2π σ3 ϕ3 λ3σ3

���������

2f non-id. - - - - - - - - -
2f ident. - - - - - - - - -

2f ident.2 0.12343 0.00154 0.00653 0.00000 0.00000 0.00004 - - -

���������

2f non-id. - - - - - - - - -

2f ident. - - - - - - - - -

2f ident.2 0.00000 0.00000 0.00000 0.00000 0.00864 0.00025 - - -

As it was seen in the previous charts, the results obtained with the 3-factor

model and using the shorter sample exhibit some differences to those obtained with

the two-factor models. In order to opt between the two- and the three-factor model, a

decision must be made based on the estimation accuracy of the models. Consequently,

a hypothesis test is performed, considering that both models are nested and the two-

factor model corresponds to the three-factor version imposing ϕ σ3 3 0= = .

                                                
32 Very low standard-deviations for the parameters have been usually obtained in former Kalman filter
estimates of term structure models, as in Babbs and Nowman (1998), Gong and Remolona (1997a),
Remolona HW�DO. (1998) and Geyer and Pichler (1996).
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This test consists in computing the usual likelihood ratio test

O Y Y T= − ⋅ −2 2ln ln * ~0 5 1 6χ , being Y and Y* the sum of the likelihood functions

respectively of the two- and the three-factor models and T the number of restrictions

(in this case two restrictions are imposed). The values for ln Y�and ln Y* were –306.6472

and –304.5599, implying that O = 4 1746. . As χ 2
0 952 5 9910 5 . .= , the null hypothesis is

not rejected and the two-factor model is chosen. This conclusion is also suggested by

the results already presented, due to the fact that the three-factor model does not seem

to increase significantly the fitting quality. Consequently, the factor analysis and the

identification is focused on the two-factor models.

In what concerns to the factor loadings (Charts 3.10a and 3.10b), the first factor

– less persistent and volatile - is relatively more important for the short end of the

curve, while the second assumes that role in the long end of the curve.33

&KDUW�����D

)DFWRU�ORDGLQJV�LQ�WKH�WZR�IDFWRU�PRGHOV����������
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33 Excepting the identified 2-factor models for the shorter sample.



&KDSWHU���¥�$IILQH�PRGHOV�IRU�(XURSHDQ�WHUP�VWUXFWXUHV�RI�LQWHUHVW�UDWHV

92

&KDUW�����E

)DFWRU�ORDGLQJV�LQ�WKH�WZR�IDFWRU�PRGHOV����������
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The results already presented illustrate two ways of assessing the identification

problem. A third one, as previously referred, is to analyse the correlation between the

factors and the variables with which they are supposed to be related – the real interest

rate and the expected inflation - including the analysis of the leading indicator

properties of the second factor concerning the inflation rate.

The comparison between the unobservable factors, on one hand, and a proxy

for the real interest rate and the inflation rate, on the other hand, shows (in Charts

3.11a, 3.11b, 3.11c, and 3.11d) that the correlation between the factors and the

corresponding economic variables is high. In fact, using H[�SRVW� real interest rates as

proxies for the H[-DQWH real rates, the correlation coefficients between one-month and

three-month real rates, on one side, and the first factor, on the other side, are around
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0.75 and 0.6 respectively in the shorter and in the longer sample.34 Using the identified

models, that correlation coefficient decreases to 0.6 and 0.7 in the shorter sample,

respectively using the models in (3.44) and in (3.45), while in the larger sample it

increases to 0.75 using the model in (3.44) and slightly decreases to 0.56 with the

model in (3.45).

The correlation coefficients between the second factor and the inflation are

close to 0.6 and 0.7 in the same samples. When the identified model in (3.44) is used,

the second factor basically reproduces the inflation behaviour in the shorter sample,

with the correlation coefficient achieving figures above 0.98 in both samples. As the

model in (3.45) includes a specific factor the inflation, the correlation between the

second factor and that variable decreases to around 0.5 in the shorter sample and

remains close to 0.7 in the larger.

&KDUW�����D
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34 This finding contrasts with the results in Gerlach (1995) for the Germany, between January 1967 and
January 1995. However, it is line with the conclusion in Mishkin (1990b) that U.S. short rates have
information content regarding real interest rates.
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&KDUW�����G
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In charts 3.11e and 3.11f, the behaviour of the specific inflation factor vis-à-vis

the observed inflation is presented. This factor in both samples is highly correlated to

the inflation, which implies that the correlation between the second factor and the

inflation rate becomes lower.

One of the most striking results obtained is that the second factor appears to be

a leading indicator of inflation, according to charts 3.11c and 3.11d. This is in line with

the pioneer findings of Fama (1975) regarding the forecasting ability of the term

structure on future inflation. It is also consistent with the idea that inflation

expectations drive long-term interest rates, given that the second factor is relatively

more important for the dynamics of interest rates at the long end of the curve, as

previously stated.
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If ]
W2  is a leading indicator for 

W
π , then the highest (positive) correlation should

occur between lead values of 
W

π  and ]
W2 . Table 3.7 shows cross-correlation between 

W
π

and ]
W2  in the larger sample. The shaded figures are the correlation coefficients

between ]
W2  and lags of 

W
π . The first figure in each row is N and the next corresponds to

the correlation between 
W N

π −  and ]
W2  (negative N means lead). The next to the right is

the correlation between 1W N
π − −  and ]

W2 , etc.

According to table 3.7, the highest correlation (in bold) is at the eighth lead of

inflation. Additionally, that correlation increases with leads of inflation up to eight

and steadily declines for lags of inflation.
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Table 3.8 presents the Granger causality test and Chart 3.12 the impulse-

response functions. The results strongly support the conjecture that ]
W2  has leading

indicator properties for inflation. At the 5% level of confidence one can reject that ]
W2

does not Granger cause inflation. This is confirmed by the impulse-response analysis.

A positive shock to the innovation process of ]
W2  is followed by a statistically

significant increase in inflation, as it is illustrated by the first panel in chart 3.12,

where the confidence interval of the impulse-response function does not include zero.

However a positive shock to the innovation process of inflation does not seem to be

followed by a statistically significant increase in ]
W2 , according to the last panel in chart

3.12, where the confidence interval includes zero. These results suggest that an

innovation to the inflation process does not contain “news” for the process of

expectation formation. This is in line with the forward-looking interpretation of

shocks to ]
W2  as reflecting “news” about the future course of inflation.
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7DEOH�����¥�&URVV�FRUUHODWLRQV�RI�VHULHV
W

π �DQG�]�W��0RQWKO\�GDWD�IURP���������WR���������

-25:  0.3974759  0.4274928  0.4570631  0.4861307  0.5129488  0.5394065

-19:  0.5639012  0.5882278  0.6106181  0.6310282  0.6501370  0.6670820

-13:  0.6829368  0.6979626  0.7119833  0.7235875  0.7324913  0.7385423

-7:  0.7432024  0.7453345  0.7457082  ���������  0.7443789  0.7411556

-1:  0.7368274  0.7311008  0.7144727  0.6954511  0.6761649  0.6561413

5:  0.6360691  0.6159540  0.5949472  0.5726003  0.5478967  0.5229193

11:  0.4960254  0.4706518  0.4427914  0.4156929  0.3870690  0.3590592

17:  0.3311699  0.3011714  0.2720773  0.2425888  0.2126804  0.1829918

23:  0.1527293  0.1226024  0.0927202  0.0636053  0.0362558  0.0085952

29: -0.0167756 -0.0421135 –0.0673895 –0.0911283 -0.1139021 -0.1356261

Note: Correlation between 
W N

π −  and z�W��(i.e. negative N means lead).

7DEOH�������*UDQJHU�FDXVDOLW\�WHVWV

Inflation does not Granger cause Z2

Variable            F-Statistic       Significance
���������������

W
π                        5.8                  0.03 *

Z2 does not Granger cause inflation
Variable            F-Statistic       Significance

                Z2                       6.12                0.03 *
* Means rejection at 5% level

Overall, considering the results for the factor loadings and the relationship

between the latent factors and the economic variables, the short-term interest rates are

mostly driven by the real interest rates. In parallel, the inflation expectations exert the

most important influence on the long-term rates, as it is usually assumed. Similar

results concerning the information content of the German term structure, namely in

the longer terms, regarding future changes in inflation rate were obtained in several

previous papers, namely Schich (1996), Gerlach (1995) and Mishkin (1991), using

different samples and testing procedures.35

                                                
35 Mishkin (1991) and Jorion and Mishkin (1991) results on Germany are contradictory as, according to
Mishkin (1991), the short-end of the term structure does not contain information on future inflation for
all OECD countries studied, except for France, United Kingdom and Germany. Conversely, Jorion and
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&KDUW��������,PSXOVH�UHVSRQVH�IXQFWLRQV�DQG�WZR�VWDQGDUG�HUURU�EDQGV
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0.48
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Fleming and Remolona (1999) also found that macroeconomic announcements

of the CPI and the PPI affect mostly the long-end of the term structure of interest

rates, using high frequency data. Nevertheless, it is also important to have in mind

                                                                                                                                                         
Mishkin (1991) conclude that the predictive power of the shorter rates about future inflation is low in
the U.S., Germany and Switzerland.
Fama (1990) and Mishkin (1990a and 1990b) present identical conclusions concerning the information
content of U.S. term structure regarding future inflation and state that the U.S. dollar short rates have
information content regarding future real interest rates and the longer rates contain information on
inflation expectations. Mishkin (1990b) also concludes that for several countries the information on
inflation expectations is weaker than for the United States. Mehra (1997) presents evidence of a
cointegration relation between the nominal yield on 10-year Treasury Bond and the actual U.S. inflation
rate. Koedijk and Kool (1995), Mishkin (1991) and Jorion and Mishkin (1991) supply some evidence on
the information content of the term structure concerning inflation rate in several countries.
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that, according to Schich (1999), the information content of the term structure on

future inflation is time-varying and depends on the country considered.

The relationship between the factors and the referred variables is consistent

with the time-series properties of the factors and those variables. Actually, as

observed in Clarida HW�DO. (1998), the ,(1) hypothesis is rejected in Dickey-Fuller tests

for the German inflation rate and short-term interest rate. Besides, as previously

stated, the factors are stationary.

Using the result in (3.27), estimates for the average real yield curves are

obtained, pointing to an average 10-year real yield close to 5.5 in both samples.36 The

resulting average inflation expectations are in line with the estimates obtained from

the inflation-indexed OAT in France.37

The results obtained with the joint model for the German and French term

structures (equation 3.47) are shown next. From charts 3.13a and 3.13b it is visible that

the model has very weak fitting properties regarding the short end of the French

curve and the long end of the German curve. Concerning the volatility and the term

premium curves (respectively, charts 3.14a, 3.14b and 3.15), poorer results are

obtained for the French data.38

                                                
36 The gap between the nominal and the real curves tightens with the maturity, as the auto-regressive
specification adopted for the inflation implies that the mean expected inflation decreases with the
maturity. The mean expected inflation for a 10-year forecasting horizon was 1.4 and 2.3, respectively for
the shorter and the larger samples.
37 The indexed OAT started to be issued in 1998, the ending year of our sample. The spread between
these bond yields and nominal bond yields with similar maturity may be considered as a proxy for the
average expected inflation in France. As the spreads between French and German bonds are tight, the
comparison between this market measure of inflation expectations and the results from our estimations
may be done. In December 1998, the average expected inflation from the indexed bonds was 0.85, while
our model provides a figure of 0.83.
38 Several alternatives were considered to model simultaneously these two term structures, namely
splitting the database in two sub-periods or eliminating the link between the common factor and the
German inflation rate. Unfortunately, the results did not improve significantly.
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The estimated forward rate and expected short-term interest rate curves are

shown in 3.16 and 3.17. Comparing to chart 3.7a, the joint model provides lower

forward and expected short-term interest rates for Germany.
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In charts 3.18a, 3.18b and 3.19, the time-series results for the yields, the yield

spreads and the inflation confirm the low quality of the econometric adjustment

provided by the model used. However, the estimated latent factors and the economic

variables with which they are supposed to be related still exhibit high correlation

coefficients, as illustrated in charts 3.20a and 3.20b.

Actually, the correlation coefficients between H[�SRVW real interest rates, on one

hand, and the first factor for German and French yield curves are close to 0.9 and 0.75

respectively. Conversely, the correlation between the German inflation rate and the

second factor is around 0.8.

The factor loadings estimated are presented in charts 3.21a and 3.21b. They are

in line with charts 3.10a and 3.10b, in what concerns to the higher relative weight of

the first and the second factors respectively in the shorter and in the longer terms.
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���� &RQFOXVLRQV

The identification of the factors that determine the time series and cross section

behaviour of the term structure of interest rates is one of the most challenging

research topics in finance. In this chapter, it was shown that a two-factor constant

volatility model describes quite well the dynamics and the shape of the German yield

curve between 1986 and 1998.

The data supports the expectations theory with constant term premiums and

thus the term premium structure can be calculated and short-term interest rate

expectations derived from the adjusted forward rate curve. The estimates obtained for

the term premium curve are not inconsistent with the figures usually conjectured.

Nevertheless, poorer results are obtained if the second factor is directly linked to the

inflation rate, given that restrictions on the behaviour of that factor are imposed,

generating less plausible shapes and figures for the term premium curve.

We identified within the sample two periods of poorer model performance,

both related to world wide gyrations in bond markets (Spring 1994 and 1998), which

were characterised by sharp changes in long-term interest rates while short-term rates

remained stable.

As to the evolution of bond yields in Germany during 1998, it seems that it is

more the (low) level of inflation expectations as compared to the level of real interest

rates that underlies the dynamics of the yield curve during that year. However, there

still remains substantial volatility in long bond yields to be explained. This could be

related to the spillover effects of international bond market developments on the

German bond market in the aftermath of the Russian and Asian crisis.

It was also shown that one of those factors seems to be related to the H[�DQWH

real interest rate, while a second factor is linked to inflation expectations. This
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conclusion is much in accordance with the empirical literature on the subject and it

suggests that a Central Bank has a decisive role concerning the bond market moves,

given that it influences both the short and the long ends of the yield curve,

respectively by influencing the real interest rate and the inflation expectations.

Accordingly, the second factor may be used as an indicator of monetary policy

credibility.

Lastly, a joint model for the German and the French term structure was

presented. Though different model specifications and samples were tried, the

estimation results obtained are poorer than those provided by the single model for the

German term structure, though they are in line with the previous results on the

correlation between the factors and the relevant economic variables, as well as the

relative weight of the factors in the whole maturity spectrum of the yield curve.


