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The old idea of sorting similar things into groups under-
lies all aspects of human activity. For example, languages
can be thought of as classification systems where words
are used to describe types of events, objects, and people
encountered. In addition to being a basic human con-
ceptual activity, classification is fundamental to many
branches of science with prominent examples being ani-
mal or plant taxonomies informing evolutionary theories
in biology, or groupings of elements according to their
chemical properties influencing research on the structure
of the atom. In the social sciences, including education, it
would typically be people that are to be grouped to
identify patterns of behavior, achievement, etc.

Numerical methods aimed at discovering groups in
data are referred to as cluster analysis. The groups can
be sets of objects (individuals, countries, animals, chemical
elements, etc.) or sets of variables. It also needs to be
emphasized that cluster analysis is aimed at uncover-
ing as-yet-unknown groups of objects; with analogous
concepts being unsupervised pattern recognition or
numerical taxonomy. In contrast, discriminant analysis
or supervised pattern recognition aims to establish rules
that classify objects into classes that are known a priori
based on a set of observable characteristics. Finally, cluster
analysis is an exploratory technique. Its primary aim is not
to infer anything about population parameters as most
statistical methods do – but rather to suggest groupings
that might form the basis of future hypotheses to be
investigated.

Cluster analysis techniques themselves can be broadly
grouped into three classes labeled hierarchical clustering,
optimization clustering, andmodel-based clustering. They
operate either directly on amatrix of scores on a number of
variables for a set of objects to be classified, or on a matrix
of distances or similarities between the objects.
Proximity Measures

Ideally, clusters should be internally cohesive structures
that are isolated from each other. To judge this adequacy
criteria are needed that encapsulate the concepts of clus-
ter homogeneity (cohesion) and separation (isolation).
Such measures can be derived from a matrix of object
distances or (dis)similarities; more generally referred to as
proximities.
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Let X denote the usual n � p multivariate data matrix
containing the data values describing each object to be
clustered,

X ¼
x11 x12 . . . x1p

x21 . . . . . . x2p

� � � �
xn1 . . . . . . xnp

2
6664

3
7775

That is, the entry xij gives the value for the jth variable of the
ith object. This is a two-mode matrix indicating that the
rows and columns correspond to different things. For a raw
data matrix containing only categorical variables, similarity
measures are typically used. The similarity coefficient sik
between objects i and k is one if both objects have identical
values for all variables and zero if the two objects differ
maximally for all variables. (The corresponding dissimilar-
ity is then simply dik ¼ 1� sik.) In the binary case, similarity
measures arise from a cross-classification of the counts of
matches and mismatches of the p variables. Table 1 shows
some possible similarity measures. A multitude of measures
has been proposed largely due to the uncertainty as to how
to deal with the count of zero–zero matches (for a compre-
hensive list see Gower and Legendre (1986)). For categori-
cal variables with more than two levels, similarities are
typically calculated by allocating a score sik;j of zero or
one to each variable j, dependingonwhether the two objects
i and k are the same on that variable and then simply
averaging to give sik ¼ 1=pð ÞPj sik;j . For a raw data matrix
containing only continuous variables, proximities are typi-
cally expressed as distances (dissimilarity measures that
fulfill the metric inequality); seeTable 2 for some possible
measures. The Euclidean distance and the city block dis-
tance are appealing choices because of their geometric
interpretation as physical distances between p-dimensional
points with the latter traveled in rectilinear configuration.

As an example, consider applying the Euclidean distance
measure to the protein consumption data in Table 3 The
consumption for 25 European countries is measured in
grams of protein food per day. Clearly, if wewere to calculate
distances on the raw data, these would be dominated by the
variables relating to products generally eaten in larger quan-
tities, such as cereals. We therefore standardize the variables
to unit variance before applying the distance measure, a
technique sometimes referred to as autoscaling. Table 4
shows the resulting distance matrix (a one-mode matrix).

Finally, there are a number of approaches for con-
structing proximities for mixed-mode data – data in
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which some variables are continuous and others are cate-
gorical. A simple approach is to construct an appropriate
proximity matrix for each variable type submatrix and
then to combine the measures.

Returning to our objective of wanting to measure the
adequacy of a clustering on the basis of proximities, there
are two basic approaches to defining intergroup proximi-
ties: (1) define the proximity by a suitable summary of the
proximities between individuals from either group, or (2)
represent each group by a typical observation and mea-
sure the proximity between these centers. Suitable sum-
maries for (1) are the nearest neighbor distance, the
furthest neighbor distance, or the average distance.
Under approach (2), groups might be represented by, for
example, the mean over the objects for each variable
(continuous variables only), the so-called centroid, or
the object that has the smallest average dissimilarity to
all other group members (the medoid).
Hierarchical Clustering

Members of this class of clustering techniques produce a
nested sequence of partitions by merging (or dividing)
Table 1 Similarity measures for binary data

Counts of binary outcomes for two individuals
Individual i

Individual j Outcome 1 0 Total
1 a b a þ b

0 c d c þ d

Total a þ c b þ d p ¼ a þ b þ c þ d

Similarity measures

Measure Formula

Matching coefficient sij ¼ a þ dð Þ= a þ b þ c þ dð Þ
Jaccard coefficient sij ¼ a= a þ b þ cð Þ
Rogers and Tanimoto sij ¼ a þ dð Þ= a þ 2 b þ cð Þ þ d½ �
Sokal and Sneath sij ¼ a= a þ 2 b þ cð Þ½ �
Gower and Legendre I sij ¼ a þ dð Þ= a þ 1

2 b þ cð Þ þ d
� �

Gower and Legendre II sij ¼ a= a þ 1
2 b þ cð Þ� �

Table 2 Distance measures for continuous data

Measure Fo

Euclidean distance
di

City block distance di

Minkowski distance di

Canberra distance d
clusters. At each stage of the sequence, the new partition
is optimally merged (or divided) from the previous parti-
tion according to some adequacy criterion. In the end, the
sequence of partitions ranges from a single cluster con-
taining all the individuals to n clusters containing a single
individual. The whole series of partitions is most conve-
niently described by a tree display called the dendrogram
(see later examples). Agglomerative hierarchical cluster-
ing proceeds by a series of successive fusions of the n
objects into groups. In contrast, divisive hierarchical
methods divide the n individuals successively into finer
groups. Divisive methods are not commonly used due
to computational problems; for more details see Everitt
et al. (2001).

A variety of agglomerative techniques exist reflecting
the different ways in which intergroup dissimilarities can
be defined. For example, merging two clusters when their
nearest neighbor distance is minimal leads to an agglom-
erative procedure called single linkage. Similarly, the use
of the furthest neighbor distance or the average distance
leads to complete and average linkage, respectively. To
describe the agglomerative process, complete linkage will
be applied to the first five countries in Table 3 using the
Euclidean distances shown as the shaded area in Table 4.
Initially, there are five clusters all containing a single
country (partition 1). The first step is to combine the
closest pair of countries. From Table 4 this is seen to be
Austria and Czechoslovakia (partition 2). The distances
between Albania, Bulgaria, and Belgium and the cluster
(Austria and Czechoslovakia) need to be evaluated
next. Based on the furthest neighbor distance this
is found as: dnew country, cluster ¼ max (dnew country, Austria,
dnew country, Czechoslovakia). After these new distances are
calculated, the smallest value is again used to decide
which clusters should be merged; here Belgium and (Aus-
tria, Czechoslovakia) are fused (partition 3). The next
stage involves evaluating the furthest neighbor distances
between clusters [(Austria, Czechoslovakia), Belgium],
Albania and Bulgaria. This leads to Albania and Bulgaria
being combined (partition 4) and then in the final step
[(Austria, Czechoslovakia), Belgium] and (Albania,
rmula

j ¼
Pp
k¼1

xik � xjk
� �2� �1=2

j ¼
Pp
k¼1

xik � xjk
�� ��

j ¼
Pp
k¼1

xik � xjk
� �r� �1=r

r � 1ð Þ

ij ¼
0 for xik ¼ xjk ¼ 0

Pp
k¼1

jxik � xjk j=ðjxik j þ jxjk jÞ for xik 6¼ 0 or xjk 6¼ 0

8><
>:



Table 3 Protein consumption in 25 European countries for nine food groups (grams per day)

Country Red meat White meat Eggs Milk Fish Cereals Starch Nuts Fruits and vegetables

Albania 10.1 1.4 0.5 8.9 0.2 42.3 0.6 5.5 1.7

Austria 8.9 14 4.3 19.9 2.1 28 3.6 1.3 4.3

Belgium 13.5 9.3 4.1 17.5 4.5 26.6 5.7 2.1 4
Bulgaria 7.8 6 1.6 8.3 1.2 56.7 1.1 3.7 4.2

Czechoslovakia 9.7 11.4 2.8 12.5 2 34.3 5 1.1 4

Denmark 10.6 10.8 3.7 25 9.9 21.9 4.8 0.7 2.4

E Germany 8.4 11.6 3.7 11.1 5.4 24.6 6.5 0.8 3.6
Finland 9.5 4.9 2.7 33.7 5.8 26.3 5.1 1 1.4

France 18 9.9 3.3 19.5 5.7 28.1 4.8 2.4 6.5

Greece 10.2 3 2.8 17.6 5.9 41.7 2.2 7.8 6.5

Hungary 5.3 12.4 2.9 9.7 0.3 40.1 4 5.4 4.2
Ireland 13.9 10 4.7 25.8 2.2 24 6.2 1.6 2.9

Italy 9 5.1 2.9 13.7 3.4 36.8 2.1 4.3 6.7

Netherlands 9.5 13.6 3.6 23.4 2.5 22.4 4.2 1.8 3.7
Norway 9.4 4.7 2.7 23.3 9.7 23 4.6 1.6 2.7

Poland 6.9 10.2 2.7 19.3 3 36.1 5.9 2 6.6

Portugal 6.2 3.7 1.1 4.9 14.2 27 5.9 4.7 7.9

Romania 6.2 6.3 1.5 11.1 1 49.6 3.1 5.3 2.8
Spain 7.1 3.4 3.1 8.6 7 29.2 5.7 5.9 7.2

Sweden 9.9 7.8 3.5 24.7 7.5 19.5 3.7 1.4 2

Switzerland 13.1 10.1 3.1 23.8 2.3 25.6 2.8 2.4 4.9

UK 17.4 5.7 4.7 20.6 4.3 24.3 4.7 3.4 3.3
USSR 9.3 4.6 2.1 16.6 3 43.6 6.4 3.4 2.9

W Germany 11.4 12.5 4.1 18.8 3.4 18.6 5.2 1.5 3.8

Yugoslavia 4.4 5 1.2 9.5 0.6 55.9 3 5.7 3.2

From Hand, D. J., Daly, F., McConway, K., Lunn, D., and Ostrowsky, E. (1994). A Handbook of Small Data Sets. London: Chapman
and Hall.
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Bulgaria) are fused to become a single cluster (partition 5).
The fusion process is described graphically by the den-
drogram in Figure 1 with the y-axis showing the distance
at which clusters are fused. (Note that the display is not
unique; e.g., (Albania, Bulgaria) or [Belgium, (Austria,
Czechoslovakia)] can be flipped.) A popular agglomera-
tive method for continuous data which measures cluster
adequacy by evaluating distances between cluster cen-
troids is Wards method. The approach merges clusters if
the sum of the squared dissimilarities to the cluster cen-
troid (a measure of cohesion) is minimal across all possi-
ble merging choices. Figure 2 shows results of applying
single linkage (a), complete linkage (b) and Ward’s
method (c) to the full distance matrix from Table 4.
Different distances produce different cluster solutions.
A similarity may be observed between complete linkage
and Ward’s method, but the single linkage solution looks
rather different.

Users need to be aware that partitions obtained by
hierarchical clustering are irrevocable in the sense that
once clusters have been combined in an agglomerative
procedure they cannot be split up again. This means that
not all possible partitions are evaluated which, while
computationally convenient, may mean that an optimal
partition is missed. Second, the method may not take
account of the cluster structure properly. For example,
single linkage is known to be prone to chaining, the
tendency for new points to join the previous cluster in a
chain-like fashion. This is what appears to have happened
in Figure 2(a). In contrast, complete linkage is known to
produce compact clusters which may not always reflect
the true data structure either. Efforts have been made to
define properties that would be useful for hierarchical
cluster methods. For example, point proportionality refers
to replication of points not altering the boundaries of
partitions. The monotone property, which states that the
numerical values of the proximities are unimportant in
that only their ranking matters for the clustering, might
also be desirable. Single linkage and complete linkage,
which otherwise are problematic, possess these proper-
ties; see Everitt et al. (2001).
Optimization Clustering

In contrast to hierarchical clustering methods optimization
clustering methods aim to evaluate the adequacy of all
possible partitions of a set of objects into k clusters. For
the moment, we consider the number of clusters k to be
known. The basic idea behind these methods is that
associated with each partition of the n objects into the
required number of groups k is an index c (n, k), the value
of which is to be optimized. Differences between the clus-
tering methods in this class arise because of the variety of



Table 4 Euclidean distances for protein data after standardisation of variables to unit variance

Alb Aus Belg Bulg Czech Denm Germ Finlan France Greece Hungar Ireland Italy Nether Norwa Poland Portug Roman Spain Swed Switzer UK USSR W Ger Yugosl

Alb 0

Aus 6.14 0

Belg 5.94 2.46 0

Bulg 2.76 4.9 5.24 0

Czech 5.14 2.14 2.22 3.96 0

Denm 6.64 3.02 2.54 6.04 3.36 0

Germ 6.4 2.58 2.12 5.4 1.88 2.76 0

Finlan 5.88 4.08 3.5 5.82 3.98 2.64 4.08 0

France 6.3 3.58 2.2 5.56 3.36 3.66 3.8 4.6 0

Greece 4.26 5.16 4.7 3.76 4.88 5.6 5.62 5.5 4.54 0

Hungar 4.68 3.28 4 3.34 2.76 5.04 3.68 5.4 4.98 4.12 0

Ireland 6.76 2.74 1.66 6.22 3.16 2.82 3.04 3.24 3.16 5.7 4.82 0

Italy 4.02 3.72 3.72 2.86 3.34 4.78 4.32 4.92 3.8 2.16 3.16 4.84 0

Nether 6 1.12 2.24 5.16 2.2 2.54 2.54 3.38 3.4 5.16 3.5 2.34 3.92 0

Norwa 5.46 3.88 2.96 5.28 3.52 2 3.28 2.06 3.92 4.62 4.9 3.6 4 3.36 0

Poland 5.88 2.8 2.94 4.44 2.1 3.84 2.7 4.12 3.6 4.42 3.04 3.74 3.12 2.78 3.7 0

Portug 6.62 6.52 5.66 6 5.52 5.86 5.26 6.5 5.66 4.78 5.7 7.06 4.66 6.36 4.8 4.82 0

Roman 2.68 4.66 4.76 1.88 3.56 5.54 4.78 5.06 5.52 3.62 2.48 5.6 3.1 4.64 4.68 3.96 5.62 0

Spain 5.56 4.88 4 4.84 4.14 5.12 4.08 5.48 4.46 3.1 3.88 5.28 2.88 4.86 4.16 3.4 2.94 4.24 0

Swed 5.66 2.94 2.58 5.4 3.26 1.38 3.06 2.06 3.82 4.98 4.66 2.86 4.14 2.4 1.5 3.84 5.86 4.86 4.8 0

Switzer 5.12 2.2 2.34 4.48 2.62 3.18 3.58 3.54 2.42 4.1 3.86 2.82 2.94 1.9 3.34 3.08 6.12 4.36 4.58 2.68 0

UK 5.94 3.74 1.94 5.8 3.84 3.48 3.92 3.88 2.58 4.62 5.12 2.26 4.18 3.52 3.54 4.5 6.54 5.42 4.72 3.14 2.84 0

USSR 4.34 4.16 3.16 3.84 2.72 4.16 3.42 3.46 4.24 4.12 3.42 3.9 3.56 3.88 3.26 2.92 5.08 2.76 3.62 3.78 3.8 4 0

W Ger 6.36 1.64 1.42 5.62 2.18 2.4 1.9 3.66 2.94 5.36 3.9 1.8 4.14 1.28 3.3 3 6.14 5.1 4.6 2.46 2.28 2.9 3.9 0

Yugosl 2.94 5.44 5.6 2 4.34 6.36 5.52 5.8 6.3 3.94 3.04 6.46 3.58 5.5 5.4 4.5 5.82 0.98 4.56 5.7 5.2 6.26 3.36 5.96 0
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Complete-linkage clustering

Figure 1 Dendrogram demonstrating complete linkage
clustering of first five countries.
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criteria that might be optimized. In addition, optimization
clustering is a computing-intensive process since the num-
ber of necessary evaluations soon becomes very large as the
number of clusters and/or the sample size increases. Thus,
even with today’s computers complete enumeration is not
possible and consequently different algorithms have been
suggested to optimize the same cluster criterion.

Cluster criteria can be defined on the basis of the
proximity matrix or on the basis of the raw data matrix.
When using the proximity matrix the criteria tend to
define the lack of homogeneity for a single group (e.g.,
by the maximum dissimilarity between two objects from
the group) and then the lack of homogeneity of a partition
by suitably aggregating over the groups (e.g., by using a
weighted sum over the groups). A number of algorithms
for optimizing such cluster criteria were proposed by
Kaufman and Rousseeuw (1990), with perhaps the most
popular one being the partitioning aroundmedoids (PAM)
algorithm which minimizes criterion cPAMðn; kÞ ¼Pk

m¼1

Pnm
i dðxim;medoidmÞ, the sum of the dissimilarities

between the objects with p-dimensional data vectors
xim;m 2 1; ::; kf g; I 2 1; :::; nmf g and their cluster
medoids. As an example, consider 1993 data from 705
American colleges and universities on student intake, cost,
and learning environment published by US News and
World Report magazine in 1995. The data set is available
at the math forum data collection website. Here, we have
selected nine typical variables as shown inTable 5 and use
705 colleges with complete information on these variables.
The college sample is presented graphically in Figure 3.
This rawdata matrix was converted into a proximity matrix
by calculating Euclidean distances. To overcome the unit of
measurement problem, all variables were transformed so
that they appeared to have symmetrical distributions
(using ln and logit transformations) and then standardized
to have sample mean 0 and standard deviation 1, before
calculating distances. Application of the PAM algorithm
provided the three clusters indicated in Figure 3. As PAM
minimizes distances to the medoids, the latter represent
the best cluster summary.Table 6 shows that PAM cluster
1 consists of universities which enrol moderate numbers
of students with a high proportion from the top 10%
achievers, have the highest in-state tuition, smallest stu-
dent-to-faculty ratio, and the highest proportion of grad-
uates. Cluster 2 groups less selective universities that
enrol the largest numbers of students, charge the least
tuition fees, have a higher student-to-faculty ratio, and
produce the smallest proportion of graduates. Cluster 3
contains less selective colleges with small enrolment num-
bers that charge moderate fees and have an average pro-
portion of graduates.

Most cluster criteria derived from continuous data
make use of a decomposition of the total dispersion matrix
T ¼ Pk

m¼1

Pnm
i¼1ðxim � �xÞ xim � �xð ÞT, where �x is the

p-dimensional vector of overall sample means for each
variable, into

T ¼ Wþ B ½1�
where W¼Pk

m¼1

Pnm
i¼1ðxim�centroidmÞ xim�centroidmð ÞT

is the within-group dispersion matrix and B¼Pk
m¼1nm

ðcentroidm��xÞðcentroidm��xÞT is the between-group dis-
persionmatrix.Most popular in this class of cluster criteria is
minimization of ctrace n;kð Þ¼ trace ðWÞ. This is equivalent
to minimizing the sum of the squared Euclidean distances
between the objects and their centroids. Popularity is due to
most software packages containing a k-means algorithm,
which minimizes this criterion by iteratively reallocating
an object to another group if the object is nearer (in terms
of Euclidean distance to the centroid) to the new group than
its own. K-means clustering of the colleges into three
groups using the transformed data produced the solution
in Table 7, presenting similar substantive results to
PAM. Similar to PAM, k-means clustering minimized dis-
tances in some sense and is not scale invariant. A scale-
invariant alternative cluster criterion is minimization of
cdet n;kð Þ¼ detðWÞ. This cluster approach brings the practi-
cal benefit of not requiring the user to address the unit of
measurement problem by standardization of variables or
similar techniques. Both trace (W) and det (W) clustering
have a tendency to generate clusters of roughly the same size
(in terms of number of objects) and of similar shape and
volume. Further criteria have been suggested to overcome
this; see Everitt et al. (2001). Finally, a note of caution: as all
the so-called hill-climbing algorithms aim to find a global
optimumwithout having to evaluate all possible partitions, it
is important to check convergence against a global optimum,
for example, by rerunning the algorithm with a new set of
starting values.
Model-Based Clustering

Most cluster analysis methods are essentially heuristic
methods in the sense that they do not make explicit
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Table 5 American colleges’ data (first ten records only)

College name
Rejection
proportiona

Number
enrolledb

Top
10%c

In-state
tuitiond

Additional
feese

Personal
costsf

Number
PhD
facultyg

Ratio
faculty
studentsh

Percentage
graduatedi

Alaska Pacific
University

0.24 55 16 7560 130 1500 76 11.9 15

Chicago State

University

0.52 777 12 1848 350 2400 47 15.6 18

Brewton-
Parker

College

0.14 1202 10 4371 130 2000 62 12.6 18

College of the

Southwest

0.21 27 7 3120 125 500 24 14.3 20

Northeastern

Illinois

University

0.28 631 14 1902 236 2178 78 15.1 21

Mount Saint

Clare

College

0.13 95 16 9900 80 1200 32 13.6 21

Claflin
College

0.42 499 21 4412 600 1000 69 16.9 21

Huron

University

0.67 124 3 7260 330 1840 31 12.9 21

University of
Colorado at

Denver

0.53 261 30 1828 240 2138 89 18.1 24

Fayetteville
State

University

0.27 452 1 740 636 766 75 15.1 24

aProportion of rejected applications.
bNumber of students eventually enrolled.
cPercentage of new students from top 10% of high school class.
dState-specific tuition in $ per academic year.
eAdditional costs: books and other materials for study in $ per academic year.
fLiving and leisure costs in $ per academic year.
gNumber of PhD staff.
hNo students/no teachers ratio.
iPercentage of the students who graduated.
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assumptions about the data-generating process. It is there-
fore impossible to infer from sample to population. Per-
haps this presents no real difficulties to investigators
involved in an initial exploration of their data where
cluster analysis is only used to suggest hypothesis for
future investigation. However, attempts have been made
to develop a more acceptable statistical approach to the
clustering problem, using what are known as finite mix-
ture distributions (McLachlan and Peel, 2000).

Briefly, finite mixture densities are a family of proba-
bility density functions of the form

f x; p; uð Þ ¼
Xk

m¼1

pmgm x; umð Þ ½2�

where x is a p-dimensional random variable and vectors
p> ¼ p1; p2; . . . ; pk�1½ � and u ¼ u1; u2; . . . ; uk½ � are
parameter vectors. The pm � 0;m ¼ 1; . . . ; k;

P
mpm ¼ 1

are known as mixing proportions and the gm x; umð Þ;m ¼
1; . . . ; k are the component densities being parameterized
by um. The number of components forming the mixture is k.
Then, finite mixtures provide statistical models for cluster
analysis if we assume that the objects within a cluster arise
from one of k subpopulations with different multivariate
distributions gm x; umð Þ. The latter distributions may belong
to the same family, but differ in the values they have for the
parameters of the distributions or come from different
families (e.g., Everitt and Bullmore, 1999). The mixing pro-
portions and the parameters of the component densities can
be estimated by maximum likelihood. This more formal
statistical approach brings the advantage that one can
develop cluster criteria whose optimization corresponds to
maximizing the log-likelihood under a specified statistical
model. This enables specification of the model assumptions
under which a cluster criterion is expected to perform well.

Finally, having specified a suitable statistical model
and estimated its parameters, the so-called model-based
cluster analysis is typically performed by associating an
object with a particular subpopulation (cluster) on the
basis that this subpopulation maximizes the value of the
estimated posterior probability:
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Pr ðobject i belongs to cluster m j xiÞ ¼
p̂mgm xi ; ûm

	 


f xi ; p̂; û
	 
 ½3�

over all possible subpopulations m ¼ 1; . . . ; k.
A common finite mixture model is based on multivari-

ate normal densities with different mean vectors and pos-
sibly different covariance matrices. It can be shown that for
unconstrained component covariance matrices Sm;m ¼
1; . . . ; k maximization of the finite mixture likelihood is
the same as minimizing criterion cunconstrained n; kð Þ ¼Qk

m¼1 det Wm=n
2
mÞ

� �nm�
, where Wm denotes the (sample)

dispersion matrix for the nm-dimensional m-th subpopula-
tion. If the covariances can be assumed to be the same
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Figure 3 Scatter plot of colleges’ data in the space of the first

two principal components (symbols and ellipses indicate the

three-group PAM solution).

Table 6 Description of PAM three-cluster solution by medoids

Student intake Affordability

Cluster
(size)

Rejection
proportion

Number
enrolled

Top
10%

In-state
tuition

Additiona
fees

1 (178) 0.58 –0.38 1.02 1.11 –0.40

2 (225) 0.08 1.22 –0.26 –0.17 0.67
3 (302) �0.44 �0.75 �0.46 0.65 �0.37

Table 7 Description of k-means three-cluster solution by centroi

Student intake Affordability

Cluster
(size)

Rejection
proportion

Number
enrolled

Top
10%

In state
tuition

Additiona
fees

1 (162) 0.36 786 48 15152 388

2 (195) 0.28 1609 20 2497 529
3 (347) 0.20 292 27 9910 252
across subpopulations (though remain unknown), that
is, Sm ¼ S for all m, the corresponding cluster criterion
becomes csame cov n; kð Þ ¼ Qk

m¼1 det W=n2mÞ
� �nm�

. To
explore the number of clusters present in the American
colleges’ data, Figure 4 shows univariate distributions
of the transformed data with overlaid densities. From
this it appears that the number of visible subpopulations
is 3 (see the three-peak distribution in Figure 4(d)).
We therefore fitted a three-component multivariate nor-
mal mixture with constant (but unknown) component
covariance matrices and used posterior probabilities to
allocate cluster memberships. This leads to a cluster
solution with similar interpretation to those obtained
previously.

Finite mixtures with multivariate normal distributions
have been widely used because of their computational
convenience. However, alternatives have been suggested;
for example, multivariate t-distributions for groups
of observations with longer tails than normal or atypical
observations (McLachlan and Peel, 2000). For binary data
multivariate Bernoulli densities which arise by assuming,
that within each cluster, the binary variables are indepen-
dent from each other (the so-called conditional inde-
pendence assumption), are typically used. The latter
multivariate component densities define the classical
latent class model (Lazarsfeld and Henry, 1968) and
have also been referred to as discrete mixture distribu-
tions. An interesting example is reported by Aitkin et al.
(1981) who fitted latent class models to observations on 38
binary variables describing teaching behavior observa-
tions made on 468 teachers. Teachers were allocated to
two classes by maximizing their posterior probabilities.
Table 8 summarizes the results by displaying response
probabilities for each of the 38 items and each of the two
classes. An obvious interpretation is a split into formal and
informal teaching styles.
Learning environment

l Personal
costs

Proportion
PhD (%)

Faculty/
student ratio

Proportion
graduated (%)

–0.83 1.16 0.99 0.92

0.37 0.27 –0.37 –0.40
�0.41 �0.57 0.19 0.16

ds (back-transformed to original scale)

Learning environment

l Personal
costs

Proportion
PhD (%)

Faculty/
student ratio

Proportion
graduated (%)

1076 87 0.1 82

1689 76 0.06 52
1280 63 0.08 61
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Figure 4 Histograms with overlaid densities for American college data.
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Number of Clusters

We have so far studiously avoided the issue of choosing
the number of clusters by assuming that an investigator is
interested in the whole sequence of nested partitions or
that the number of clusters is known a priori. However, in
practice, one is often forced to decide the number of
clusters from the information at hand.

A number of ad hoc procedures have been proposed.
In the context of hierarchical clustering, selecting a
partition is equivalent to cutting the corresponding den-
drogram at a given height. This defines a partition such
that clusters below that height are distant from each
other by at least that amount. The appearance of the
dendrogram can therefore informally suggest the num-
ber of clusters with large distances between fusion levels,
suggesting the ‘‘best cut.’’ For example, applying this
rule to the dendrogram in Figure 2(c) might suggest
five clusters. In the context of optimization, clustering
scree plots, which plot the values of the optimized clus-
ter criterion against the number of groups, are most
popular. By definition, the criterion improves when the
number of groups is increased – so the optimal number
of groups is chosen as the level at which large changes in
the criterion occur (the elbow in the plot). Figure 5
shows the scree plot for k-means clustering of the col-
lege data; confirming that a partition into three clusters
was appropriate.
More formal techniques exist which try to overcome
the problem of subjectivity. Thirty such methods were
reviewed by Milligan and Cooper (1985) in the 1980s
and, more recently, 15 indices for high-dimensional
binary data were assessed by Dimitriadou et al. (2002).
Both studies assess the ability of formal/automated meth-
ods to detect the correct number of clusters in series of
simulated data sets. Based on these simulations techniques
introduced by Calinski and Harabasz (1974) and Duda
and Hart (1973) are recommended for continuous data,
while the index suggested by Ratkowsky and Lance (1978)
was the overall best performer for binary data.

More recently, progress on defining formal rules for
comparing the quality of different cluster solutions has
been made in the context of model-based clustering. As, in
this context, cluster memberships are determined by opti-
mizing likelihoods of competing nested models; the latter
can be compared to inform the choice of the number of
groups. There are problems with the conventional likeli-
hood ratio test as some parameters from the null distribu-
tion are on the edge of the parameter space. However,
suggestions have been made to overcome this, with perhaps
the most practical one being the use of information criteria
such as the Bayesian information criterion (BIC) or Akaike’s
information criterion (AIC) (Burnham and Anderson,
2002). As an example, we calculated BIC for a number of
models for the college data which differed in the numbers
of clusters (from 1 to 5) and in the parametrization of the



Table 8 Estimated probabilities (in %) of responding yes to

items for two classes of teachers

Class 1 Class 2

1 Students have choice in where to sit 22 43

2 Students sit in groups of three or

more

60 87

3 Students allocated to sitting by

ability

35 23

4 Students stay in same seats for most

of day

91 63

5 Students not allowed freedom of

movement in classroom

97 54

6 Students not allowed to talk freely 89 48

7 Students expect to ask permission
to leave room

97 76

8 Students expected to be quiet 82 42

9 Monitors appointed for special jobs 85 67
10 Students taken out of school

regularly

32 60

11 Timetable used for organizing work 90 66

12 Use own materials rather then text
books

19 49

13 Students expected to know tables

by heart

92 76

14 Students asked to find own
reference material

29 37

15 Students given homework regularly 35 22

16 Teacher talks to whole class 71 44
17 Students work in groups on teacher

class

29 42

18 Students work in groups on work of

their own choice

14 46

19 Students work individually on

teacher tasks

55 37

20 Students work individually on work

of their own choice

28 50

21 Explore concepts in number work 18 55

22 Encourage fluency in English

language even if inaccurate

87 94

23 Students work marked or graded 43 14

24 Spelling and grammatical errors

corrected

84 68

25 Stars given to students who produce
best work

57 29

26 Arithmetic test given at least once a

week

59 38

27 Spelling test given at least once a
week

73 51

28 End-of-term tests given 66 44

29 Many students who create discipline

problems

09 09

30 Verbal reproof sufficient 97 95

31 Discipline: extra work given 70 53

32 Smack 65 42
33 Withdrawal of privileges 86 77

34 Send to headteacher 24 17

35 Send out of room 19 15

36 Emphasis on separate subject
teaching

85 50

37 Emphasis on esthetic subject

teaching

55 63

38 Emphasis on integrated subject
teaching

22 65

Percentage of teachers attributed to class 54 46
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covariance matrix. The latter were chosen to reflect differ-
ent constraints displaying natural geometric features which
can be derived from its spectral decomposition. Clusters
exhibiting similar orientation, shape, or volume, satisfying
two or all these restrictions, may be desirable within a
particular classification context (Bensmail et al., 1997).
A range of these restrictions and their results for model-
based selection are displayed in Figure 6: for instance, EVI
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Figure 5 Scree plot for k-means clustering of colleges’ data.

1

Distributional shape implied by covariance matrix
parameterization (see Fraley and Raftery, 2003)
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EII: spherical, equal volume
EVI: diagonal, equal volume, varying shape
VII: spherical, unequal volume
EEE: ellipsoidal, equal volume, shape, and orientation
EEI: diagonal, equal volume and shape
VEV: ellipsoidal, equal shape
VEI: diagonal, varying volume, equal shape
VVI: diagonal, varying volume and shape

Figure 6 Model selection by maximizing BIC. The best model
is EEE with four clusters.
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indicates that the clusters are constrained to having the
same diagonal orientation and equal volume with their
shape allowed to vary. Other symbols in Figure 6 have
analogous interpretations. The results show that the EEE
criterion (which assumes the same covariance matrix and is
equivalent to requiring similar orientation, volume, and
shape for all clusters) performs well with three or four
clusters.

Finally, it needs to be emphasized that a clustering
algorithm will allocate objects into a prescribed number
of groups, irrespective of whether there is any true
clustering in the data. Many ad hocmethods for comparing
the number of groups do not allow the consideration of
the simplest clustering solution – the one-group solution.
However, when empirically determining the number of
clusters it is essential that the one-group solution be
considered. Rules derived from maximum likelihood the-
ory will allow this. An alternative approach is the GAP
statistic (Tibshirani et al., 2001), which compares the
quality of cluster solutions for different numbers of
groups based on a given (heuristic) cluster criterion.
Conclusion

The general steps involved in a cluster analysis are:

1. definition of the data matrix (including choice, weight-
ing, or standardization of variables);

2. calculation of the proximity matrix;
3. choice of cluster method (to generate a single or a

sequence of partitions);
4. decision regarding the number of clusters (for parti-

tions); and
5. validity checks.

We have talked about steps 1–4 in previous sections but not
much has yet been said about the final stage – checking the
validity of a cluster solution. There are basically two
approaches: internal checks and external checks. Internal
checks are aimed at establishing cluster isolation and cohe-
sion or demonstrating robustness of the solution under
small changes of method (change of proximity measure,
optimization criterion, starting values, etc.) or data set
used (splitting data into subsamples, adding an error term,
etc.). External checks attempt to establish agreement with a
gold standard (if one exists) or with some other yet-unused
variable/classification that one would theoretically expect
to be associated with the solution. For more information on
methods for validation checking see Everitt et al. (2001).

There are a number of related techniques not yet
mentioned. Constrained clustering imposes restrictions
on the possible cluster solutions in order to maintain
external features; for example, spatial contiguity. Many
applications, particularly in psychology and the social
sciences, require overlapping clusters; that is, an object is
allowed to be a member of more than one cluster at the
same time – for example, a member of several overlapping
social networks. Under some circumstances, direct data
clustering, which aims to cluster the (two-mode) data
matrix into sets of similar objects and variables, can be
applied. Finally, neural network techniques, such as
Kohonen’s self-organizing map, aimed at unsupervised
learning can be considered a cluster method.

Nowadays, carrying out cluster analyses is relatively
straightforward. Most general-purpose statistical packages
contain procedures for hierarchical and optimization
clustering. (The analyses presented here were generated
in Stata and R.) Routines for model-based clustering are
available in some general-purpose packages (e.g., mclust
in R, Fraley and Raftery, 2003), specialized latent classes
and finite mixtures programs (e.g., LatentGOLD and
MIXMOD), or modeling packages such as Mplus. In
addition, there are a number of packages solely devoted
to cluster analyses (e.g., Clustan).

In summary, clustering a set of objects can potentially
be very useful. However, care needs to be taken to avoid
producing misleading results. Researchers do well to
remember that cluster analysis is an exploratory tech-
nique rather than an inferential method.

See also: Discrimination and Classification; Latent Class
Models.
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