
2.2. Interest Rate Risk
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Interest Rate Risk

Definition: sensitivity of the P&L to interest rate shifts in different maturities (i.e. changes 

in the term structure of interest rates).

Types of interest rate risk:

(i) Marked-to market financial assets (assets valued according to market prices) - market risk 

of interest rate-sensitive financial assets (e.g. bonds).

(ii) Non-marked-to market financial assets (e.g. loans and deposits):

- Risk of fluctuation of the Net Interest Income of a bank stemming from the impact of interest rate 

changes on the cash-flows generated by assets and liabilities.

- Risk of optionality embedded in assets and liabilities, impacting on the volume of assets and 

liabilities that generate cash-flows, e.g. prepayment of loans and early redemption of deposits.
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Interest Rate or Repricing Gaps

Most assets and liabilities in the banking book are not marked-to-market.

Their value does not change due to interest rate moves.

Nonetheless, interest rate moves still impact on the Net Income (NI) of banks, because 

many of these assets and liabilities generate cash-flows that are sensitive to interest rates.

These changes in the cash-flows impact on the Net Interest Income (NII, the difference 

between interest charged and interest paid by banks) and therefore on NI.
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2.2.1. The Term Structure of Interest Rates
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2.2.1.1. Main Concepts
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Price of a coupon-paying bond with discrete compounding:

(1)

Price of a coupon-paying bond with continuous compounding:

(2)

Price of a coupon-paying bond with continuous compounding and payments:

(3)

where: 
P = price;
Ci  = coupons paid on the bond;
M = repayment value of the bond;
y = yield to maturity;
i = periods in which the cash-flows are generated.

𝑃 =෍

𝑖=1

𝑁
𝐶𝑖

1 + 𝑦 𝑖
+

𝑀

1 + 𝑦 𝑁

𝑃 =෍

𝑖=1

𝑁

𝐶𝑖 +𝑀 ∙ 𝑒−𝑦𝑖

𝑃 = න
𝑖=0

𝑁

𝐶𝑖 +𝑀 ∙ 𝑒−𝑦𝑖 ∙ 𝑑𝑖

Bond Prices and Yields-to-Maturity
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TSIR – relationship between “risk-free” interest rates and maturities.

Yield Curve – graphical representation of the TSIR, which may assume many different 

shapes (monotonic or non-monotonic), namely regarding the slope and the convexity.

Term Structure of Interest Rates
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Source: Fabozzi, Frank J., (2012), “The Handbook of Fixed Income Securities”, 
8th Edition, McGraw-Hill Education



Problems with using YTM to characterise the TSIR:

– interest earned on different bonds but paid in the same periods are discounted at different rates 

– interest earned on a bond paid at different times is discounted at the same rate (flat yield curve).

– there aren’t bonds for all maturities

– yield curves are usually designed from linear interpolations of YTM, exhibiting a very irregular 

shape, being therefore hardly plausible and hampering the extraction of information about 

expectations of market participants on future interest rates, namely for maturities that do not 

coincide with the maturities of the existing securities.

The yield curve changes in response to:

– Economic shocks 

– Market-specific events

– Policy decisions

Term Structure of Interest Rates
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Volatility

Correlation

Standard Movements

– Shift Movements

– Twist Movements

– Butterfly Movements

Stylized Facts
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Yields and bond prices are typically much less volatile than prices in other asset classes.

Even though volatility of short-term rates is usually higher, volatility of bond prices in 

longer maturities is higher, due to the higher impact of interest rate shifts on the net 

present value of the cash-flows of bonds with higher maturities (as it will be seen).

With higher yields, the volatility of bond prices (PH) due to yield changes is lower.

As it is illustrated below, PH’-PH’’ < PL’-PL’’.

Volatility
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Source: Fabozzi, Frank J. (2012), “The Handbook of Fixed Income Securities”, 8th Edition, McGraw-
Hill Education

Changes in bond prices are close to symmetric for small 

yield changes, but for larger symmetric yield changes, 

price increases are higher than price decreases.

Prices of bonds with higher coupon rates are less volatile, 

given the higher weight of intermediate cash-flows => 

zero-coupon bonds are the most volatile.



Rates with different maturities are

– positively but not perfectly correlated, meaning that there is more than one factor behind the yield 

curve dynamics

– correlation decreases with differences in maturity

 Example:

 1M 3M 6M 1Y 2Y 3Y 4Y 5Y 7Y 10Y 

1M 1 

3M 0.999 1 

6M 0.908 0.914 1 

1Y 0.546 0.539 0.672 1 

2Y 0.235 0.224 0.31 0.88 1 

3Y 0.246 0.239 0.384 0.808 0.929 1 

4Y 0.209 0.202 0.337 0.742 0.881 0.981 1 

5Y 0.163 0.154 0.255 0.7 0.859 0.936 0.981 1 

7Y 0.107 0.097 0.182 0.617 0.792 0.867 0.927 0.97 1 

10Y 0.073 0.063 0.134 0.549 0.735 0.811 0.871 0.917 0.966 1 

Correlation
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The evolution of the interest rate curve can be split into 3 standard movements, 

regardless the time period or the market:

– Shift movements (changes in level), which account for 70 to 80% of observed movements on 

average.

– Twist movements (changes in slope), which accounts for 15 to 30% of observed movements on 

average.

– Butterfly movements (changes in curvature), which accounts for 1 to 5% of observed 

movements on average.

=> 1 or 2-factor models tend to be enough to explain the behavior of the yield curve in 

most occasions.

Standard Movements
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As it will be seen, there are 3 alternative ways to represent TSIR:

– Spot rates - rates set today for deals occurring also today and with a given maturity, with no 

intermediate cash-flows (e.g. coupons).

– Forward rates – rates set today for deals to occur at a given future time and with a given maturity.

– Discount factors – factors to discount the future cash-flows, to be comparable to current cash-

flows, computed usually from the spot rates.

In order to overcome the shortcomings of YTM, the TSIR must be characterised by the 

spot curve, which must be constructed from current zero-coupon “risk-free” bond yields. 

However, in most countries, zero-coupon government bonds are limited or restricted to 

the shortest maturities (up to 1y, Treasury Bills) => the TSIR will have to be estimated 

from the available information, usually money market rates and Government bond yields 

for maturities > 1y.

The Term Structure of Interest Rates
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Replacing the YTM by the spot rates in (1), one gets:

(4) (1)

Discount factors (discrete interest compounding):

(5)

Rewriting (4) by using (5), one obtains:

(6)

Spot and Discount Rates
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Continuous interest compounding:

(7)

Spot rate can be deducted from the discount function as follows:

- Discrete interest compounding:

(8)

- Continuous interest compounding:

(9)

Spot and Discount Rates

𝑑𝑖 = 𝑒−𝑠𝑖∙𝑖

𝑠𝑖 =
1

𝑑𝑖

Τ1 𝑖

− 1

𝑠𝑖 = −
𝑙𝑛 𝑑𝑖
𝑖
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Given that the value of an amount invested at rate s, continuously compounded, during 

the term i, is equivalent to:

(10)

With continuous compounding, the amount invested at rate s for a maturity m+n is 

equivalent to:

(11)

(12)

(13)

Forward Rates

lim
𝑁→∞

1 +
𝑠𝑖
𝑁

𝑁∙𝑖

= 𝑒𝑠𝑖∙𝑖
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Using (9) and (13) becomes:

(14)       (9)

n->0 =>                   (13)

(15)

or

(16)

(17)       => Spot rate = simple average of the instantaneous forward rates (the 

                forward rates with a very short time to settlement)

Forward Rates
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With discrete interest rate compounding, we have:

(18)

Assuming that the expected value corresponds to the forward rate:

(19)

Forward Rates
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2.2.1.2. Explanatory Theories
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Explanatory theories of the TSIR attempt to explain the relationship between “risk-free” 

interest rates and the corresponding maturities.

These theories depend mostly on:

– the preferences of market participants for maturities, namely their credit, liquidity and interest 

rate risk aversion.

– the expectations on the future behavior of short-term interest rates, i.e. monetary policy.

Introduction
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Explanatory theories:

– Expectations – Fisher, Irving (1896)

– Preferred Habitat – Modigliani and Sutch (1966)

– Liquidity Premium (or Preference) – Hicks (1939)

– Market Segmentation – Culbertson (1957), Fama (1984) and Mankiw and Summers (1984)

Explanatory Theories
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This theory postulates that long term rates depend on the current short-term rates 

and the expectations on their future path.

Let us assume that an investor has 2 investment alternatives for a horizon = T:

– A long term (zero-coupon) bond, with maturity = T;

– A set of bonds with short term maturities (=1), with the last investment done at T-1. The 

investment in these several bonds can be done by rolling over the initial investment.

The expected returns for these 2 alternatives must be equal (being r(t,T) the yield in time 

= t of a bond maturing at a later period T):

– [1+r(t,T)]T = (1+r(t,1)) x (1+E(t) (r(t+1),1)) x (1+E(t) (r(t+2),1)) x … x (1+E(t) (r(T-1),1))

– r(t,T)=[(1+r(t,1)) x (1+E(t) (r(t+1),1)) x (1+E(t) (r(t+2),1)) x … x (1+E(t) (r(T-1),1))]1/T-1

Expectations theory
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If one assumes that there is no risk premium (i.e. investors are risk-neutral regarding 

investing in short or in long term interest rates), expected interest rates = forward rates.

According to this theory, the yield curve may have different shapes and positively 

(negatively) sloped curves correspond to expectations of short-term interest rate increases 

(decreases).

Therefore, changes in yield curves are interpreted as changes in market expectations.

2 versions of the expectations theory:

(i) pure – there is no risk premium => forward rates correspond to the expected future interest 

rates => 𝑓𝑡
𝑗
= 𝐸𝑡 𝑠𝑡+𝑗

(ii) non-pure – there is risk premium, but it’s constant along time => forward rates do not 

correspond to expected future interest rates, but changes in forward rates correspond to 

changes in expectations about future interest rates.

Expectations theory
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This theory sustains that investors have preferred maturities, but they accept to invest in 

different maturities if they are compensated for that.

The risk premium paid to attract investors to maturities different from those preferred do 

not necessarily increase with the maturity.

Moves in the yield curve do not correspond necessarily to changes in investors’ 

expectations about the future path of short-term interest rates and the yield curve may 

have different shapes.

Forward rates (or their changes) cannot be used to gauge expectations about future 

interest rates.

Preferred habitat theory
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It is a particular case of the preferred habitat theory

Investors always prefer short to long maturities

Investors always demand a premium to invest in longer maturities => Long term interest 

rates > short term interest rates

The yield curve will always be positively sloped (unless we assume that long-term rates 

still reflect interest rate expectations and these point to sharp decreases)

A positively sloped curve is usually considered as a regular curve, given that investors 

tend to be risk-averse => premium to invest in longer maturities due to the uncertainty 

on the future path of interest rates.

Liquidity premium theory
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This theory postulates that interest rates in each maturity stem only from the supply and 

demand in that maturity.

As a consequence, there is no relationship between interest rates in different maturities 

and the yield curve may have very irregular shapes.

Main conclusions:

(i) the yield curve shape is explained by a mix of all these theories, even though market participants 

usually consider that a normal yield curve is a positively sloped one.

(ii) the risk premium is usually considered as increasing with maturities.

(iii) even though the risk premium is not nil, changes in long-term interest rates may be considered as 

changes in expectations on future short-term interest rates’ behavior if one assumes that risk 

premium is constant along time, which tends to happen, at least, in short periods of time.

Market segmentation theory
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2.2.1.3. Static fitting methods
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FUNDAMENTAL ASSET PRICING FORMULA

Main question: Where do we get st from?

▪ Any relevant information concerning how to price a financial asset must be primarily 

obtained from market sources.

▪ Spot rate - annualized rate of a pure risk-free discount (or zero-coupon) bond.

▪ As there aren’t enough zero-coupon bonds for most countries and currencies, this 

information will have to be extracted from coupon-paying bonds.

Introduction
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Bootstrapping method

Carleton and Cooper (1976)

Interpolation methods:

– Linear

– Polynomial

Simple

Splines

Deterministic methods:

– Nelson-Siegel (1987)

– Svensson (1994)

– Bjork and Christensen (1999)

Main Methods
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Consider 2 securities (nominal value = 100€):

– 1-year pure discount bond, with P = 95€.

– 2-year coupon-paying bond, with coupon rate = 8% and P = 99€.

1-year spot rate:

2-year spot rate:

Bootstrapping
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The same type of reasoning can be developed for any number of bonds, e.g. 4 bonds (d(k) 

is the discount factor for cash-flows to be paid k years from now):

Solve the following system recursively to obtain d(k):

101 = 105d(1)

101.5 = 5.5d(1) + 105.5d(2)

99 = 5d(1) + 5d(2) + 105d(3)

100 = 6d(1) + 6d(2) + 6d(3) + 106d(4)

R(k) is obtained from d(k): d(k)=1/{[1+R(k)]^k} => R(k)=[1/d(k)]^(1/k)-1:

Bootstrapping

Maturity (k) Price Coupon rate d(k) R(k)

1 101 5,0% 0,9619 3,960%

2 101,5 5,5% 0,9119 4,717%

3 99 5,0% 0,8536 5,417%

4 100 6,0% 0,7890 6,103%

208



Limitation: usually, one cannot find enough bonds with coincident coupon payment 

dates and longer maturities.

Moreover, bond maturities are not round figures (when measured in years) often.

A usual practical way to estimate the yield curve by bootstrapping involves the 

employment of interbank money market rates for different maturities:

Bootstrapping

Maturity Price Coupon rate R(k)

O/N 4,40%

1m 4,50%

2m 4,60%

3m 4,70%

6m 4,90%

9m 5,00%

1y 5,10%

1y2m 103,7 5,00% 5,41%

1y9m 102,0 6,00% 5,69%

2y 99,5 5,50% 5,79%

1y2m rate:
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Conclusions:

(i) If one can find different bonds with coincident cash-flow dates and one of them only 

has one remaining cash-flow date, then one can get the spot rates directly.

(ii) These are spot rates instead of yields (for the shortest bond, the yield is equal to the 

spot rate, as this is a zero-coupon) and consequently they do not face the consistency 

problems of yields.

(iii) Therefore, we have a single spot rate for each maturity.

(iv) One can also calculate spot rates by using money market rates.

Bootstrapping
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Estimation of the discount factors by OLS method if the number of bonds is larger than 

the number of discount factors to be estimated:

where

i = 1, …, k  - riskless government bonds considered 

t = 1,…, n - the cash-flows for which the discount factors are calculated.

P = vector of the prices of the i bonds (a column vector with i rows);

CF = matrix of the cash-flows of the i bonds for the t cash-flows (i rows and t columns);

d = vector of the discount factors for the t cash-flows (a column vector with t cash-flows).

This method has several drawbacks:

(i) it only allows the estimation of some points of the discount function (for the maturities of the cash-

flows considered);

(ii) it does not impose any smoothness on the discount function, allowing meaningless shapes; and

(iii) It faces multicolinearity problems resulting from the linear dependence between the cash-flows of, 

at least, some of the securities considered.

P CF d
ix ixt tx( ) ( ) ( )1 1

= 

Carlton and Cooper
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Interpolations may be useful if we don’t have all market information required to get spot 

rates for the same maturities.

Simplest approach - linear interpolations:

– Assuming that we know discount rates for maturities t1 and t2,:

the rate for maturity t, being t1< t <t2 = weighted average of the adjacent rates, being the weights higher 

for the maturity closer to t (e.g. if t=t2, t1 will not have any relevance to calculate t):

– Linear interpolations provide good proxies for near maturities.

– However, for distant maturities, the shape of the resulting yield curve tends to be kinked.

– By definition, linear interpolation doesn’t allow to get estimates for maturities longer than those 

observed.

Interpolation - Linear
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Polynomial interpolations of the interest rates allow to obtain smoother yield curves, 

with interest rates as polynomial functions of maturities.

A very common polynomial interpolation is the cubic => one can estimate the full term 

structure just by knowing the spot rates for 4 maturities.

Therefore, if R(0, t1), R(0, t2), R(0, t3) and R(0, t4) are known, one can solve the 

following system in order to the 4 coefficients of the 3rd order polynomial.

 

         

    

If one uses more than 4 spot rates, these coefficients are estimated by econometric 

techniques (as we will have degrees of freedom), e.g. OLS (as the functions are linear in 

the coefficients).

Otherwise:

𝑅 =

𝑅(0,1)
𝑅(0,2)
𝑅(0,3)
𝑅(0,4)

, 𝑇 =

𝑡1
3 𝑡1

2 𝑡1 1

𝑡2
3 𝑡2

2 𝑡2 1

𝑡3
3 𝑡3

2 𝑡3 1

𝑡4
3 𝑡4

2 𝑡4 1

, 𝐴 =

𝑎
𝑏
𝑐
𝑑

𝑅 = 𝑇 ∙ 𝐴, being

𝑅 = 𝑇 ∙ 𝐴 ⟺ 𝐴 = 𝑇−1 ∙ 𝑅

Interpolation - Polynomial
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The calculation of a, b, c and d allows to obtain the spot rate for any maturity t:

Assuming the following rates are known:

– R(0,1) = 3%

– R(0,2) = 5%  

– R(0,3) = 5.5%

– R(0,4) = 6%

Goal - Compute the 2.5 year rate:

R(0,2.5) = a x 2.53 + b x 2.52 + c x 2.51 + d = 5.34375%

𝑅 0,1 = 𝑎 ∙ 13 + 𝑏 ∙ 12 + 𝑐 ∙ 1 + 𝑑

𝑅 0,2 = 𝑎 ∙ 23 + 𝑏 ∙ 22 + 𝑐 ∙ 2 + 𝑑

𝑅 0,3 = 𝑎 ∙ 33 + 𝑏 ∙ 32 + 𝑐 ∙ 3 + 𝑑

𝑅 0,4 = 𝑎 ∙ 43 + 𝑏 ∙ 42 + 𝑐 ∙ 4 + 𝑑
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Interpolation - Polynomial
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Interpolation - Polynomial
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Conclusions:

(i) Polynomials provide very good in-sample fittings

(ii) However, the estimates out-of-sample tend to be too irregular (e.g. in the previous example the 10-

year would be 93%!)

(iii) Polynomial splines improve the adjustment, by allowing different specifications for the polynomials 

in different maturity buckets.

Nonetheless, the explosive behavior of the resulting curves is kept.

Interpolation - Polynomial
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Definition: Discount factors (p) as polynomial functions of the maturity (s), with all 

coefficients differing in the different maturity buckets:

Imposing continuity constraints and given the fact that the discount factor for zero 

maturity is 1, the number of parameters is reduced:

𝑝0 5 = 𝑝5 5

𝑝5 10 = 𝑝10 10

𝑝0 0 = 1

The No. of parameters may be even further reduced if one assumes that only 1 of the 

parameters is different in the several maturity buckets => McCulloch (1971, 1975) 

splines.

Spline Methods
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Dividing the maturity spectrum in k-2 intervals, with k-3 knots, the discount function 

can be defined as a cubic function, adding a factor (spline) to the 3rd order component, 

being k = No. of parameters:

where Dh(t) for h=1,2,…, k-3 are functions defined on the basis of the knots of the 

intervals, as follows:

=0, if t<th, =1, if , for h=1,….,k-3.

The discount function is continuous  for all knots, the values for the discount function 

are given as:
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McCulloch Splines
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How to choose the number of parameters/intervals and the vertices:

– If the number of intervals is very low, the spline adjustment becomes close to the simple 

polynomial.

– K-3 = 1 =>

- No. of intervals (k-2) =2

- No. of knots (k-3) =1

- No. of parameters =4

McCulloch Splines
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- McCulloch proposes the No. intervals (k-2) = square root of the number of observations 

(bonds/maturities), rounded to the nearest integer, with the knots chosen to ensure all 

intervals have the same No. observations (or the difference between the No. 

observations in each interval is not higher than 1).

- With 10 interest rates observed, we should have 3 intervals => 2 knots.

- Alternative methodology (used more often) - fixing the knots of the intervals in maturity 

dates corresponding to the maturities in which the market is traditionally “divided”: 1, 3, 

5 and 10 years.

McCulloch Splines
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If the vertices of the intervals correspond to the maturities in which the market is 

traditionally “divided” - 1, 3, 5 and 10 years – we have:

– No. Intervals: k-2 = 5 (0-1, 1-3, 3-5, 5-10 and > 10y)

– No. Vertices: k-3 = 4 (1, 3, 5 and 10)

– No. Parameters: k = 7
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McCulloch Splines
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The polynomial splines method provides better estimates in sample, i.e. up to the longest 

observed maturity, comparing to polynomial functions.

However, the estimation problems outside the sample remain, as the discount function 

tends to assume irregular shapes from the longest maturity onwards.

Whenever the yield curve assumes complex shapes, the use of a high number of 

parameters leads the estimated curve to adjust excessively to outliers => yield curve 

becomes even more irregular.

This is particularly inconvenient if the goal is, as it often happens, the estimation of the 

term structure of interest rates for a fixed or standardised range of maturities, or to 

calculate forward rates.

Therefore, more complex specifications will be required.

McCulloch Splines
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3 steps:

– Step 1: select a set of K bonds with prices Pj paying cash-flows Fj(ti) at dates ti>t

– Step 2: select a deterministic interest rate model for the functional form of the discount 

factors p(t,ti;ß), or the discount rates R(t,ti;ß) (or alternatively spot or forward rates), 

where ß is a vector of unknown parameters, and generate prices.

– Step 3: estimate the parameters ß as the ones making the theoretical prices as close as 

possible to market prices:

In reality, these methods are usually employed to fit the interest rates (e.g. YTM or spot 

rates), instead of bond prices.

Deterministic Methods
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Key advantages:

– Parsimonious models, i.e. do not involve many parameters

– Ensure stable functions

– Adjust to many possible shapes of the TS

– Some parameters have economic interpretation

Deterministic Methods
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Nelson and Siegel (1987) proposed to fit the term structure using a flexible and smooth 

parametric function (Nelson, Charles and Andrew F Siegel, “Parsimonious Modeling of 

Yield Curves”, The Journal of Business, 1987, vol. 60, issue 4, 473-89).

They demonstrated that the proposed model is capable of capturing many of the typically 

observed shapes that the yield curve assumes over time:

0 : level parameter - long-term spot or instantaneous forward rate (𝑙𝑖𝑚𝑚→∞𝑠 or 𝑙𝑖𝑚𝑚→∞ 𝑓)

0 + 1: short-term rate (𝑙𝑖𝑚𝑚→0𝑠 or 𝑙𝑖𝑚𝑚→0𝑓); 1 : (-) slope parameter´; 2: curvature parameter;

 : influences the speed of convergence of the curve towards the asymptotic value.

             : point of inflection of the slope of the forward curve

             : point of inflection of the concavity of the forward curve
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Nelson-Siegel model faces estimation difficulties whenever the yield curve has more than 

one point of inflection of the slope or concavity.

This is usually observed after disturbances in money markets.

Several more flexible NS specifications have been proposed in the literature to improve 

the fit to more complex shapes, namely with multiple inflection points, introducing 

additional factors and parameters.

A popular term-structure estimation method among central banks (see BIS, 2005) to 

address is the 4-factor Svensson (1994) model, that accommodates 2 changes in the slope 

or in the concavity.

Svensson (1994) proposes to increase the flexibility and fit of the NS model by adding a 

2nd hump-shape factor with a separate decay parameter (Svensson, Lars (1994), 

“Estimating and interpreting forward interest rates: Sweden 1992-94”. IMF WP No.114).

Svensson
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The resulting 4-factor spot and forward curves are given by:

with

3: additional curvature parameter

 : additional parameter to govern the speed of convergence of the curve towards the asymptotic value

Svensson
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Even though the Svensson method is more adequate to estimate the TSIR for monetary 

policy purposes, given its higher adjustment capacity in the segment of the shorter 

maturities, when the yield curve assumes simple shapes in the short segment, the 

estimation by the NS method seems preferable, since it is more parsimonious.

In fact, the NS model is a restricted version of the Svensson model with the restriction 3 

= 0 and/or → 0.

We can test the null hypothesis corresponding to those restrictions:

– H0 :

where: v  = likelihood function of the adjustment with restrictions; v* = likelihood function 

of the adjustment without restrictions; q  = number of restrictions.

The test is based on the following log-likelihood ratio test:

Svensson

  0 1 0= = = =... q

   = −  − 2 2(ln ln ) ( )* q
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In this case, v corresponds to the likelihood function of the NS model (the restricted 

model), while v* is the likelihood function of the Svensson model.

If the logarithm of the likelihood function of the Svensson model is large enough (i.e., 

statistically above that of NS model), the Svensson model will be selected.

H0 is rejected if  > 2  Svensson model must be chosen.

A potential problem with the Svensson model is that it is highly non-linear, which can 

make the estimation of the model difficult.

Nonetheless, one can implement it even in a spreadsheet!

Svensson
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One alternative model to Nelson-Siegel and Svensson models was developed by Bjork, T. 

and Christensen B.J. (1999): ”Interest rate dynamics and consistent forward rate curves”, 

Mathematical Finance.

Very similar to Svensson, by adding a 4th factor to the instantaneous forward curve, but 

with a different specification for this 4th factor, that depends on a parameter () that is the 

same in the 3rd factor:

The 4th component resembles the 2nd, as it also mainly affects short-term maturities. 

The difference is that it decays to zero at a faster rate.

Bjork and Christensen

  ( )
m

m m m
f e m e m e0 0 1 2 1 3 2

1 1 2= +  +   +− − −
       ( / ) ( / ) /

( / ) ( / ) Svensson

230



Properties:

- The factor in 4,t can be interpreted as a second slope factor. 

- As a result, Björk and Christensen model captures the slope of the term structure by the 

(weighted) sum of 2,t and 4,t .

- The instantaneous short rate in this case is given by :

Bjork and Christensen
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A second option to make the Nelson-Siegel model more flexible is by relaxing the 

restriction that the slope and curvature component must be governed by the same decay 

parameter .

Bliss (1997) estimates the term structure of interest rates with a 3-factor model that allows 

for 2 different decay parameters 1 and 2 (Bliss, Robert R. 1997. “Testing Term Structure 

Estimation Methods.” Advances in Futures and Options Research 9:197–231).

The forward and spot curves are then given by:

Bliss (1997)
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Τ−𝑚 𝜏1 + 𝛽2 ∙ Τ𝑚 𝜏𝟐 ∙ 𝑒 Τ−𝑚 𝜏2

  ( )   ( )   )/(

2

)/(

21

)/(

10
221 //1//1

  mmm

m ememes
−−−

−−+−+=

232



Conversely, some authors argue that even the NS model has to many parameters to be 

estimated, as the variation in interest rates can be explained mostly by 2 common factors:

- Diebold, Piazzesi, and Rudebusch (2005)* examined a 2-factor NS model, even though 

they recognize that more than 2 factors may “be needed in order to obtain a close fit to the 

entire yield curve at any point in time”.

- Compared to the 3-factor NS model, the 2-factor model only contains the level and slope 

factor => only 3 parameters have to be estimated:

* Diebold, Francis X., Monika Piazzesi and Glenn D. Rudebusch (2005), "Modelling Bond Yields in 

Finance and Macroeconomics“, American Economic Review, 95, pp. 415-420.

Diebold, Piazzesi, and Rudebusch (2005)

𝑠𝑚 = 𝛽0 + 𝛽1 ∙ Τ1 − 𝑒 Τ−𝑚 𝜏 Τ𝑚 𝜏
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Despite the lack of theoretical background of deterministic interest rate models, the BIS 

concluded that 9 out of 13 central banks which reported their curve estimation methods 

to the BIS use these models (BIS (2005), “Zero-coupon yield curves: technical 

documentation”, BIS Papers, No 25, Monetary and Economic Department, Oct.2005).

According to this study, most central banks have adopted either the NS (1987) model 

or the extended version by Svensson (1994), with the exception of Canada, Japan, 

Sweden, UK and the US, which all apply variants of the “smoothing splines” method.

Deterministic interest rate models are also widely used among market practitioners.

Given that these models are usually non-linear in the parameters, attention has to be paid 

to their starting values.

Diebold, Piazzesi, and Rudebusch (2005)
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2.2.2. Marked-to-market financial assets
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• These assets face market risk, as adverse prices changes impact negatively on their value.

• Market risk stems either from credit and interest rate risk.

• In this section, we will focus on how to measure and hedge market risk in bonds.

• Basic principle: attempt to reduce as much as possible the dimensionality of the problem, 

i.e. to hedge risk with as few factors as possible.

• First step: duration hedging

– Consider only one risk factor

– Assume only small changes in the risk factor

• Second step: convexity hedging

– Relax the assumption of small interest rate changes

Introduction
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2.2.2.1. Risk Measures
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Focus: sensitivity of the bond price to 

changes in yield - Interest rate risk:

▪ Rates change from y to y+dy

▪ dy - small variation in yields, e.g. 1 bp 

(e.g., from 5% to 5.01%)

▪ dP - variation in bond price due to dy

▪ The relationship between bond prices 

and the yields is not linear.

▪ However, for small changes in yields, a 

good proxy for dP is the first derivative 

of the bond price in order to y.

YTM

P

C

0

P

y

Introduction
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With continuously compounded interest rates and assuming a flat yield curve (same yields 

for all maturities), we have:

Macaulay Duration (Frederick Macaulay, 1938) – aka effective maturity: Average 

maturity (measured in years) of all cash-flows weighted by the relevance of their 

NPV on the bond price (while residual maturity is just the maturity of the final cash-

flow), as follows.

Macaulay Duration

𝑃𝑐 = 𝐹𝑉𝑒−𝑦𝑇 +෍

𝑛=1

𝑇

𝑐𝑒−𝑦𝑛

𝜕𝑃𝑐

𝜕𝑦
=
𝜕 𝐹𝑉𝑒−𝑦𝑇 + σ𝑛=1

𝑇 𝑐𝑒−𝑦𝑛

𝜕𝑦
= −𝑇 ∙ 𝐹𝑉𝑒−𝑦𝑇 −෍

𝑛=1

𝑇

𝑛 ∙ 𝑐𝑒−𝑦𝑛
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Calculated as (the absolute value of) the partial derivative of the bond price with 

respect to yield, divided by the bond price:

Macaulay Duration

𝐷 = −

𝜕𝑃𝑐

𝜕𝑦

𝑃𝑐
=
σ𝑛=1
𝑇 𝑛 ∙ 𝑐𝑒−𝑦𝑛 + 𝑇 ∙ 𝐹𝑉𝑒−𝑦𝑇 

𝑃𝑐

= 1 ∙
𝑐𝑒−𝑦

𝑃𝑐
+ 2 ∙

𝑐𝑒−2𝑦

𝑃𝑐
+ 3 ∙

𝑐𝑒−3𝑦

𝑃𝑐
+⋯+ 𝑇 ∙

𝑐𝑒−𝑦𝑇

𝑃𝑐
+ 𝑇 ∙

𝐹𝑉𝑒−𝑦𝑇

𝑃𝑐

𝜕𝑃𝑐

𝜕𝑦
= −𝐷𝑃𝑐 ⇒

𝑑𝑃𝑐

𝑃𝑐
= −𝐷𝑑𝑦    

Duration: (absolute value of a) percentage impact 

(%) on bond price of a given small change 

(percentage points) in the yield with continuously 

compounded interest rates.
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With discrete compounding interest rates:

 𝑃𝑐 =
𝐹𝑉

1+𝑦 𝑇 + σ𝑛=1
𝑇 𝑐

1+𝑦 𝑛=𝐹𝑉 ∙ 1 + 𝑦 −𝑇 + σ𝑛=1
𝑇 𝑐 1 + 𝑦 −𝑛

𝜕𝑃𝑐

𝜕𝑦
=
𝜕 𝐹𝑉 ∙ 1 + 𝑦 −𝑇 + σ𝑛=1

𝑇 𝑐 1 + 𝑦 −𝑛

𝜕𝑦
= −𝑇 ∙ 𝐹𝑉 1 + 𝑦 −𝑇−1 −෍

𝑛=1

𝑇

𝑐 ∙ 𝑛 1 + 𝑦 −𝑛−1 =

= −
𝑇 ∙ 𝐹𝑉 1 + 𝑦 𝑇−1

1 + 𝑦 2𝑇
−෍

𝑛=1

𝑇
𝑐 ∙ 𝑛 1 + 𝑦 𝑛−1

1 + 𝑦 2𝑛
= −

𝑇 ∙ 𝐹𝑉

1 + 𝑦 𝑇+1
−෍

𝑛=1

𝑇
𝑐 ∙ 𝑛

1 + 𝑦 𝑛+1

= −
1

1 + 𝑦

𝑇 ∙ 𝐹𝑉

1 + 𝑦 𝑇
+෍

𝑛=1

𝑇
𝑐 ∙ 𝑛

1 + 𝑦 𝑛

Modified duration: (absolute value of a) percentage impact (%) on bond price of a 

given change (percentage points) in the yield with discretely compounded interest rates

𝜕𝑃𝑐

𝜕𝑦
= −

1

1 + 𝑦
𝐷𝑃𝑐 ⇒

𝑑𝑃𝑐

𝑃𝑐
= −

1

1 + 𝑦
𝐷𝑑𝑦

1

1 + 𝑦
𝐷 = 𝑀𝐷

Weighted-average maturity of all cash-flows (weighted by 
the relative weight of their NPV on the bond price)

𝐷 =

𝑇 ∙ 𝐹𝑉
1 + 𝑦 𝑇 + σ𝑛=1

𝑇 𝑐 ∙ 𝑛
1 + 𝑦 𝑛

𝑃𝑐

Modified Duration
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T = 10, c = 5%, y = 5% (bond at par)
▪ The lower the coupon rate, the higher (and 

closer to residual maturity) the duration will 

be, as the relative weight of the final cash-

flow will be higher => zero-coupon bonds 

have duration equal to residual maturity.

▪ For a given coupon rate and yield, duration 

increases with the maturity:
𝜕𝐷

𝜕𝑛
≥ 0

▪ For a given maturity and coupon rate, duration 

increases as the yield decreases, given that the 

net present value of the cash-flows increase 

more in longer than in shorter maturities: 
𝜕𝐷

𝜕𝑦
≤ 0𝐷 =

𝑇 ∙ 𝐹𝑉
1 + 𝑦 𝑇 + σ𝑛=1

𝑇 𝑐 ∙ 𝑛
1 + 𝑦 𝑛

𝑃𝑐
≅ 8

Macaulay Duration

-1000

1 50 0,047619048 0,047619 47,56147123

2 50 0,045351474 0,090703 180,9674836

3 50 0,04319188 0,129576 387,3185894

4 50 0,041135124 0,16454 654,9846025

5 50 0,039176308 0,195882 973,5009788

6 50 0,03731077 0,223865 1333,472797

7 50 0,035534067 0,248738 1726,48582

8 50 0,033841968 0,270736 2145,024147

9 50 0,032230446 0,290074 2582,394014

10 1050 0,644608916 6,446089 3032,653299

Duration (S n x w n ) 8,107822 13064,3632

Modified Duration (D/(1+y)) 7,721735

Time of 

Cash Flow 

Cash Flow
 𝑛 =

1

𝑃 
∙

𝐹𝑛

1 + 𝑦 𝑛
𝑛 ∙  𝑛

𝐹𝑛
𝑛2 ∙ 𝑐𝑒−𝑦𝑛
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Duration Hedging

Principle: immunize the value of a bond portfolio to changes in yield:

– P = value of the portfolio

– H = value of the hedging instrument

Duration hedging is very simple to do, but it is only valid for small changes and 

parallel shifts of the yield curve.

The impact of these small changes is often provided by a measure usually 

employed in financial markets – basis point value (BPV) or price value of a basis 

point (PVBP):
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Duration Hedging

Changes in value:

– Portfolio: 

– Hedging instrument: 

Strategy: hold q units of the hedging instrument so that

Solution:

given that P’(y) = dP/dy and dP/P = -D x dy (with continuously compounded interest 

rates) dP/dy = -P x DP

we can calculate the number of hedging instruments to implement a duration hedging 

strategy just by knowing the current prices of the bond and the hedging instrument, as 

well as both durations.
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Example:

At date t, a portfolio P has a price of €328635, a 5.143% yield and a 7.108 duration.

Hedging instrument – bond with price = €118.786, yield = 4.779% and duration = 5.748.

Hedging strategy involves taking a short position (i.e. selling futures contracts) as 

follows:

 q = -(328635x7.108)/(118.786x5.748) = - 3421

Therefore, 3421 units of the hedging bond should be sold.

Duration Hedging
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Problems:

(i) High cost of duration immunization for very large portfolios

(ii) Duration is always changing => dynamic rebalancing of the portfolio

(iii) Relationship between prices and yields is not linear => the 2nd derivative has to be 

considered.

Duration Hedging

Convexity
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Considering a second order Taylor approximation:

With continuous compounding:

Convexity

𝑑𝑃𝑐

𝑃𝑐
=
𝑑𝑃𝑐

𝑑𝑦

1

𝑃𝑐
𝑑𝑦 +

1

2

𝑑2𝑃𝑐

𝑑𝑦2
1

𝑃𝑐
𝑑𝑦 2

-D C

𝜕2𝑃𝑐

𝜕𝑦2
= 𝑇2 ∙ 𝐹𝑉𝑒−𝑦𝑇 +෍

𝑛=1

𝑇

𝑛2 ∙ 𝑐𝑒−𝑦𝑛 as
𝜕𝑃𝑐

𝜕𝑦
= −𝑇 ∙ 𝐹𝑉𝑒−𝑦𝑇 −෍

𝑛=1

𝑇

𝑛 ∙ 𝑐𝑒−𝑦𝑛

𝐶 =
𝜕2𝑃𝑐

𝜕𝑦2
∙
1

𝑃𝑐
=
𝑇2 ∙ 𝐹𝑉𝑒−𝑦𝑇 + σ𝑛=1

𝑇 𝑛2 ∙ 𝑐𝑒−𝑦𝑛  

𝑃𝑐
≥ 0
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𝜕𝑃𝑐

𝜕𝑦
= −𝑀𝐷 ∙ 𝑃𝑐 ⇒ 𝐶 ∙ 𝑃𝑐 =

𝜕 −𝑀𝐷 ∙ 𝑃𝑐

𝜕𝑦
=
𝜕 −𝑀𝐷

𝜕𝑦
∙ 𝑃𝑐 +

𝜕𝑃𝑐

𝜕𝑦
∙ −𝑀𝐷

=
𝜕 −𝑀𝐷

𝜕𝑦
∙ 𝑃𝑐 + −

1

1 + 𝑦
𝐷𝑃𝑐 ∙ −𝑀𝐷

= −
𝜕 𝑀𝐷

𝜕𝑦
∙ 𝑃𝑐 + −𝑀𝐷 ∙ 𝑃𝑐 ∙ −𝑀𝐷

𝐶 = −
𝜕 𝑀𝐷

𝜕𝑦
+𝑀𝐷2

𝐶 =
𝜕2𝑃𝑐

𝜕𝑦2
∙
1

𝑃𝑐
𝐶 ∙ 𝑃𝑐 =

𝜕2𝑃𝑐

𝜕𝑦2

With discrete compounding, convexity may be written as a function of MD and its first 

derivative in order to the yield:

As MD decreases with the yield => C≥0

Convexity
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𝐶 =
𝜕2𝑃𝑐

𝜕𝑦2
∙
1

𝑃𝑐
=
𝑇2 ∙ 𝐹𝑉𝑒−𝑦𝑇 + σ𝑛=1

𝑇 𝑛2 ∙ 𝑐𝑒−𝑦𝑛  

𝑃𝑐
≥ 0

Convexity

▪ For a given maturity and yield, convexity increases when the bond provides regular payments 

along time => convexity increases with the coupon rate and with maturity => the yield curve 

assumes a convex shape in longer maturities.

▪ But if the coupon rate increases, the yield also increases => convexity and duration down.

▪ For a given maturity and coupon rate, convexity increases when the yield decreases.

▪ A bond with higher convexity is always preferred, as its price benefits more from yield 

decreases and its less impacted by yield increases => bonds with low coupon rates.

249



2.2.3. Non-marked-to-market financial assets
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Interest Rate or Repricing Gaps

Most assets and liabilities in the banking book are not marked-to-market.

Their value does not change due to interest rate moves.

Nonetheless, interest rate moves still impact on the Net Income (NI) of banks, because 

many of these assets and liabilities generate cash-flows that are sensitive to interest rates.

These changes in the cash-flows impact on the Net Interest Income (NII, the difference 

between interest charged and interest paid by banks) and therefore on NI.
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Interest Rate Risk in the Balance Sheet

Measurement:

(i) Interest Rate or Repricing Gap analysis:

• Definition: differences between assets and liabilities to be repriced in different time buckets (usually 

up to 1 year, with usual time bands being 1 week, 2 weeks, 1m, 2, 3, 6 and 12m).

• Data: All principal balances must be included in the gap report, along with interest flows. However, 

there is a trade-off between technical accuracy and practicality, as banks should include interest 

payments on tranches of principal that have not yet been repaid or repriced and the spread 

component of floating-rate instruments, but capturing and reporting this data is difficult.

 For amortizing loans, installments should by allocated to the time period in which they are scheduled 

to occur, but in most cases, gaps are calculated using principal rather than interest flows.

• Variable-rate products: they are normally linked to a benchmark rate (e.g. 1m, 3m or 6m Libor or 

Euribor, being the 6m Euribor the most usual reference rate for residential mortgage loans in 

Portugal) and the repricing frequency often corresponds to the maturity of the reference rate chosen.
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Interest Rate Risk in the Balance Sheet

• Bullet repayment loans: the entire principal balance should be allocated to a time bucket 

corresponding to their maturity.

• Fixed rate retail bank products: as these tend to be homogenous and face early repayments, banks 

usually build models to estimate the behavioral run-off profile of loans and deposits.

• Non-interest rate bearing balance sheet items (e.g. non-interest bearing deposits, fixed assets and 

capital, even though capital may be considered as a fixed rate liability) -  banks often decide to 

represent a proportion (e.g. 20%) of non-interest bearing deposits as notionally repricing in the short 

term and spread the remainder between 1 month and 3 or 5 years.

• Types of gaps: static or dynamic and marginal or cumulative.

• Management: 

(i) banks usually impose internal limits on these gaps

(ii) banks may also decide to hedge against the interest-rate risk, by entering into interest-rate derivative 

transactions or by changing the pricing structure of their balance sheet, in order to mitigate their exposure.

(iii) banks may also decide to keep their gaps (at least up to a given magnitude) if they expect to benefit from 

interest rate changes.
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Example 1

• The Bank is negatively impacted by 

interest rate increases.

• Impact of a change in the yield curve 

on the NI in the following year:

∆𝑁𝐼1𝑦 =෍

𝑗=1

𝑘

∆𝑖𝑗 ∙ 𝑔𝑎𝑝𝑗 ∙ 12 − 𝑚𝑗

being i the interest rate for the mid-point 

maturity of each gap (m), j the order number of 

the gap and k the total number of gaps up to 1y. Source: Choudhry, Moorad (2018) “The Moorad Choudhry 

Anthology: Past, Present and Future Principles of Banking 

and Finance”, Wiley.



Interest Rate Risk in the Balance Sheet

255

• The sensitivity of NII to interest rate 

shocks are usually based on parallel yield 

curve shifts.

• 1y impact of a 1 pp upward parallel 

shift in the yield curve = -48.1m£.

• Problems with this calculation:

(i) Bank balance sheets are not constant over time

(ii) Parallel shifts in the yield curve are rare

(iii) Some assets and liabilities won’t reprice by the 

exact amount of the shock in rates and on the 

exact dates assumed. Source: Choudhry, Moorad (2018) “The Moorad Choudhry 

Anthology: Past, Present and Future Principles of Banking 

and Finance”, Wiley.
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• This calculation can be simplified if only the cumulative interest rate or repricing gap 

(CGAP) is considered, getting a rougher but faster estimate.

• In this example, the cumulative 1y gap =  -4.733 m£

• 1y impact of a 1 pp upward parallel shift in the yield curve =-4.733x0,01=47,33.

• This figure is very close to the one obtained by using the several marginal gaps (48,10).
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Example 2:

• For the 1st gap in the table below, the impact of a 1 pp increase in interest rates is:

1y CGAP:

Assuming a parallel upward shift in the yield curve up to 1y :
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Source: Saunders, Anthony and Marcia Millon Cornett (2018), Financial 
Institutions Management – A Risk Management Approach, 9th Edition, 
McGraw-Hill International.
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(ii) Earnings-at-risk (EaR) – impact on earnings - NI or Economic Value of Equity 

(EVE) - from several very unfavorable scenarios for interest rates.

• EVE sensitivity calculation is also based on interest rate gaps, by computing the sum of 

the NPV of each bucket gap, assuming the current interest rates and then assessing the 

impact of different shifts in the yield curve.

• Typically, banks assess their EVE sensitivities to different shock scenarios.

• The interest rate shocks assumed should reflect a stressful rate environment that is both 

plausible and severe.

• The bank’s ALCO committee usually set limits also on the change in EVE, based on the 

bank’s risk appetite.
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• Key steps:

(i) Develop a bottom-up forecast of NII for the next 1–5 years;

(ii) Capture assumptions for all conceivable interest rate environments on:

(i) How all products would be repriced;

(ii) New business volumes;

(iii) Forecast prepayments / early redemptions;

(iv) The level of loan defaults.

(iii) Run a simulation to evaluate the impact of multiple different interest rate paths on NII 

and EVE;

(iv) Review the distribution of NII and EVE outputs;

(v) Focus on outlying values, particularly on the downside.

(vi) If these are of concern to management, prepare strategies to implement, in order to 

reduce the exposure.
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EBA guidelines:

- FIs must measure their exposure to IRR in the banking book, in terms of both 
potential changes to EV, and changes to expected NII or earnings, considering:

- different scenarios for potential changes in the level and shape of the yield curve, and to changes 

in the relationship between different market rates (i.e. basis risk);

- assumptions made on non-interest bearing assets and liabilities of the banking book (including 

capital and reserves); 

- assumptions made on customer behaviour for ‘non-maturity deposits’ (i.e. the maturity assumed 

for liabilities with short contractual maturity but long behavioural maturity);

- behavioural and automatic optionality embedded in assets or liabilities, considering:

(a) impacts on current and future loan prepayment speeds from the underlying economic 

environment, interest rates and competitor activity;

(b) the speed/elasticity of adjustment of product rates to changes in market interest rates; and 

(c) the migration of balances between product types, due to changes in their features.
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Portuguese banks usually have positive interest rate gaps, as credit rates are mostly 

indexed to money market rates (e.g. Euribor), while among liabilities only bonds issued 

are usually indexed, as term deposits are mostly short term liabilities (though may be 

renewed) with interest rates fixed by the bank => short term interest rate decreases are, 

ceteris paribus, unfavorable to banks.

However, we must also bear in mind that higher rates may increase credit risk, being 

Portugal one of the countries with the highest % of variable rate loans, namely in 

residential mortgage loans.
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Source: DBRS (2022), “ European Banks Face an Increase in 

Residential Mortgage Risks as Interest Rates Rise”.
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