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 Intensity-based models do not provide any fundamental explanation for the arrival

of default, providing only a consistent description of the distribution of arrival

times.

 Structural models provide this theoretical background, explaining the arrival of

default by using company’s balance sheet and stock market data.

 In structural models, the default time is determined endogenously by the

behavior of the company’s asset  default occurs when the market value of

assets falls below the debt face value - 1st passage of assets by a default boundary.

 These models became quite popular in the last decades, also due to the drawbacks

of traditional credit risk models and rating updates by agencies.

 The rationale of structural models is that market prices are the best assessment

available on the companies’ capital or debt value, notwithstanding the higher

volatility of market prices, namely for stocks, leading to false alarms of defaults.

2. STRUCTURAL MODELS OF CREDIT RISK
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Altman Z-score (1968)

 The first attempt to incorporate market prices in a credit risk model was
done in the Z-Score model, by Altman (1968), which is an ad-hoc
specification for credit risk as a function of several financial ratios, being
one of them dependent on stock market capitalization.

 22 financial ratios from 66 companies between 1946 and 1965 were
used, evenly split between defaulting and non-defaulting companies.
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Altman Z-score (1968)
 For defaulting companies, financial statements one year before the

default were used, having been obtained the following model (PD
decrease along with the Z-score):

Z = 1.2 X1 + 1.4 X2 + 3.3 X3 + 0.6 X4 + 1.0 X5

where:

X1 = working capital (net) / total assets;

X2 = retained earnings/ total assets

X3 = EBIT / total assets;

X4 = market capitalization/book value of long-term liabilities

X5 = sales/total assets

 Z<1,81 – defaulting companies
 Z>2,99 – non-defaulting companies
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 Later, Black and Scholes (1973) and Merton (1974) developed a corporate

valuation approach based on financial options.

 This approach became known in the literature as the Merton Model.

 The model is based on the assumption that, when the company issues
debt, shareholders transfer the control of the company to creditors.

 However, they retain an option of recovering that control if the company
reimburses the debt.
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Merton Model

 Therefore, the equity value may be seen as the price of a call-option on
the company assets, with a strike equal to the debt value.

 At the debt redemption date (time T):

 Before redemption date (at time t):

where

VE = market value of the company’s own funds

VA = market value of company’s assets

X = nominal value of the company’s total debt payable at time T

r = risk-free interest rate for the maturity T-t.
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 Consequently, at the maturity date, the equity value is positive only if
the market value of assets exceeds the value of liabilities.

 However, this is not true at a date before the maturity, as even when
the VA < X , there is a chance of VA > X at T.

 The PD at any time corresponds to the P[VA < X] at T, which depends on
the current VA , but also on the density function of VA at T.

 Therefore, the expected value and the volatility of VA have to be
estimated.
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 Assuming the following balance sheet, the equity value at T will be zero
if VA < X.

 However, at a date before the maturity, the equity value can be positive
even if VA < X, as the probability of VA > X at T may be >0.

 The equity value before T follows the bold line in the chart on the RHS.
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Source: Crosbie and Bohn (2003),
“Modeling Default Risk”, KMV.
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 If on the redemption date, the market value of assets is lower
than the debt value, the shareholders don’t exercise the call
option, i.e. the debt is not repaid =>

PD= P[Market Value of Assets < Debt value].

Merton Model



Jorge Barros Luís |  Interest Rate and Credit Risk Models 

 The value of the debt can also be seen as a derivative, as its payoff
corresponds to:

(i) the face value – if there is no default

(ii) the market value of assets – if there is a default (in this case, the recovery
will provide bondholders a payment that will stem from the asset
liquidation)

where

VB = market value of the company’s debt
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 Payoffs of shares and bonds for X = 60:

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.

Merton Model

shares

bonds
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 Consequently, if the call-option can be valued, the PD will be obtained
from the distribution function resulting from the stochastic process of
the company’s asset market value.

 Assuming that the option is European and the market value of assets
may be taken as the price of a non-paying dividend asset, one can use
the Black-Scholes formula and calculate the PD from the implied
volatility of the company’s asset value and an estimate for the
respective growth rate.

 The Merton model is based on the assumption of the growth rates of the
company’s market value of assets (VA) being normally distributed:

+= dzVdtVdV AAAA 

where VA is the company’s market value of assets,  and A the respective trend and
instantaneous volatility and dz is a Wiener process (random shocks normally distributed).

dzdtVdV AAA  +=
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 Given that this is exactly the stochastic process of the underlying asset of
an European option under the assumptions taken in the Black-Scholes
pricing formula, the pricing formula for the European call-option on the
company’s market value of assets that corresponds to the stock price is:

)2()1( dXNedNVV rT
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where

VE is the market value of the company’s own funds

N is the cumulative normal distribution function

r is the risk-free interest rate for the maturity T

X is the nominal value of the company’s total debt payable in maturity T.
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 Therefore, the option valuation involves the calculation of the
market value of assets and equity.

 Accounting identity =>

 However, most debt in VB is not observable for most firms (most
firms don’t even have traded debt).

 VA is not observable neither.

 In the option pricing formula, there are 2 unknowns: VA and A.

Merton Model

𝑉𝐴 = 𝑉𝐵 + 𝑉𝐸
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 Consequently, an additional equation is required, in order to
determine the values for those 2 variables.

 This equation will result from the relationship between the volatility
of assets and the volatility of capital:

(1) (from )

 In Jarrow and Rudd (1983), it is shown that the stock volatility is a
multiple of the volatility of the market value of assets:

(2)

𝜎𝐸 =
𝑉𝐴
𝑉𝐸

𝑁 𝑑1 𝜎𝐴

AE  =
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Merton Model
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( )
( )1dN

V

XC

A

=



=

Given (1) and that

(3)

one gets (from (1) and (2):

(4)

( )




















E

A

E
A

A

E

A

E

EA

AE

EA

E

A

AA

E

A

V
V

V

V

VVVV

V

V

dN
V

V

==

==

=

=1

From inputs VE, E , X, r and T, the
equation system including the option
pricing formula and (4) allows to
estimate VA and A .
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Merton Model
 Therefore, the PD is the probability of the market prices of assets falling

below the nominal value of debt at the expiry date:

 Given that the market value of assets follows a log-normal distribution, one
gets (with  = expected asset returns):

 Therefore, the PD is:

 Risk-neutral PD ( = r ):
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Merton Model
 Open issues:

⚫ How to obtain values for  and E?

⚫ How to deal with complex debt structures, with different maturities, seniority

degrees and installments?

⚫ How to deal with the sensitivity of PDs to the leverage ratio?

⚫ How to solve the kurtosis problem in the market value of assets?

⚫ How to use the PD estimates as a leading indicator of rating changes?

 Estimation – non-linear least squares, minimizing the sum of the squared

differences between the market value and the estimated value of the stocks

(through the option pricing formula) and the assets.
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Moody’s KMV Model
 Moody’s KMV overcomes the distribution problems motivated by the normality

assumption through a database of loans providing empirical PDs as a function of

the distance-to-default measure:
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“Credit Risk”, Princeton University Press.

289



Jorge Barros Luís |  Interest Rate and Credit Risk Models 

Moody’s KMV Model

○ In this model, A is a linear combination of a modeled and an empirical volatility,

the latter weighting 70% (80% for Financial Institutions).

○ Empirical vols - calculated as the annualized standard deviation of the growth rates

of the nominal value of assets, using 3 years of weekly observations for US

companies (5 years of monthly data for European companies), excluding extreme

values and adjusting for effects of M&A.

○ Modeled vols - obtained from a regression between the observed vol and size,

revenues, profitability, sector and region variables.
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Moody’s KMV Model
 For banks, the PD is harder to estimate, given the diversity and uncertainty of the

liabilities’ maturities.

 Moreover, by definition, banks are highly leveraged companies.

 Moody’s KMV proposes the default point (the value of the payable liabilities in the

maturity considered) to be calculated as a % of the total liabilities, being that %

differentiated according to the type of institution.

 According to Kerry (2019),* equity-market-based capital ratios signaled better the

run-up to the global financial crisis than regulatory capital ratios.

* Kerry, Will (2019), “Finding the Bad Apples in the Barrel: Using the Market Value of Equity to Signal Banking Sector

Vulnerabilities”, IMF WP/19/180.

 According to Oderda et al. (2002), Moody’s KMV model anticipates defaults with a

lead of around 15 months, but also produces false alarms in 88% of the cases.
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3. REDUCED FORM MODELS

 A reduced-form model (aka intensity-based models) assumes that hazard rates for the

different debtors are stochastic processes correlated with macroeconomic variables.

 A default may happen at any time, regardless the fundamental reason  unlike structural

model approaches, reduced-form models don’t attempt to predict default by looking at its

underlying causes, as they are essentially statistical and are calibrated using credit spreads

that are observable in financial markets.

 The reduced-form approach is less intuitive than a structural model and employs mostly

credit instrument prices derived from markets, e.g. corporate bonds and credit derivatives

(vs. equity prices from stock markets employed by the Merton/KMV approach).

 Therefore, reduced-form models depend mainly on credit market spreads, but they may also

use other input factors, including equity prices (as in Jarrow (2001)) and balance sheet data,

to better disentangle the estimation of PDs from LGDs.
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Term Structure of PDs
 However, world’s credit markets are very imperfect sources of data, as credit risk is not the 

only determinant of price for credit risky securities, as bonds may differ due to:

(i) liquidity – many corporate bonds are quite illiquid and their prices are much less transparent 

than share prices in an equity market (also because many bond transactions are done at 

over-the-counter market, rather than on a formal exchange).

(ii) embedded options (e.g., convertible bonds or callable bonds, and so on);

(iii) different regulations and taxes in local markets.

 Given that credit spreads can be decomposed in default risk (PD, or l) and recovery risk (LGD, 

or ), the PD can be modeled from the credit spreads and LGDs.

 Taking several maturities, one can obtain a term structure of PDs.
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Pricing a zero-coupon bond

 2 equivalent ways to calculate the price of a risky zero coupon bond (assuming
one-period maturity and redemption value of one monetary unit):

(i) Expected value of the future cash-flows, discounted at the risk-free rate:

(ii) Future cash-flows, discounted at the risk-free rate plus the credit spread:
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Credit spreads

 Equalizing both expressions =>

=> Credit spread:

 Increases with the probability of default ;

 Decreases with the recovery rate ;

 Increases with the risk-free rate r;

 In reality, these spreads may also be impacted by risk premium due to uncertainty 
about risk-free interest rates, PDs and LGDs.
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Credit spreads

 This relationship can be generalized for any maturity:

(i) Expected value of the future cash-flows, discounted at the risk-free rate:

(ii) Future cash-flows, discounted at the risk-free rate plus the credit spread:
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 Consequently, the (risk-neutral) PD can be obtained by modeling the risk-free and the

hazard rate, instead of the market value of the company’s assets.

 From the spreads of similar bonds for different maturities, one can obtain the PD term

structure, that can be compared to the statistics of rating agencies (the “true” PDs).

 The initial and most popular reduced form models were presented in Jarrow and Turnbull

(1995) and Duffie and Singleton (1995).

 A commercial version of reduced form models is KRIS (Kamakura Risk Information Services)

Credit Portfolio Model, developed by Kamakura.

 The approach proposed is quite general and can be applied to the construction of default

models for all types of borrowers.

 The fitting process involves hazard rate modeling as a logistic regression between the

probability of default P(t) for a given time period t, provided the firm has survived until that

time and a set of explanatory variables, Xi (i = 1, ..., n):

 Xi include financial ratios (e.g. return on assets and leverage ratio), macroeconomic factors

(e.g. unemployment rate), stock market data (e.g. monthly excess return over a stock

market index, equity volatility or the company’s size relative to the total market

capitalization of the relevant country and industry variables).

Modeling PDs
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- Zero recovery defaultable bond price:

being * the risk-neutral hazard rate

- Risk-free interest and hazard rates depend on a set of macroeconomic
variables (X(t)):

As both depend on X(t), the hazard rate becomes correlated with the
interest rates.
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Modeling PDs

- From the equations in the previous slide, we get prices for the
defaultable and the risk-free bond, respectively:

- Credit risk spread:
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Advantages:

Disadvantages:

X There is no explicit link to the company’s fundamentals

300

Pros and Cons
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4. CREDIT RATING MODELS

301

 Credit risk may be assessed for different levels of credit ratings, by modelling rating
changes.

 Stylized facts:

(i) Frequencies for low-probability events are usually based on a very small number
of observations

(ii) Ratings momentum – rating changes tend to be more frequent for entities
whose ratings have been revised recently

(iii) Ratings delay – rating changes tend to lag market prices for several months

(iv) Credit spreads are often misaligned with PDs, as the latter are just historical
information.

(v) Credit spreads change along time.
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4. CREDIT RATING MODELS

302

 An important source about rating frequencies corresponds to the regular reports
published by rating agencies.

 These reports include information about cumulative PDs, 1y PDs along time and
transition matrices, namely for 1y.

 From these 1y rating transition matrices, it is possible to calculate frequencies of
default for larger periods.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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4. CREDIT RATING MODELS

303

 2y PD for rating A?

 As this default may occur either in the 1st or in the 2nd year, the most
straightforward answer would be to calculate the Cumulative Probability of
Default as 1 - Cumulative Probability of Survival, being the latter the joint
probability of surviving in both years:

 1 − 𝑝𝐴𝐷 1 − 𝑝𝐴𝐷 = 0,952 = 0,9025 => 𝑃𝐷2𝑦 = 1 − 0,9025 = 0,0975

 However, this answer would be valid only with no ratings (or no rating transitions
besides defaults, or a single non-default rating).

 We need to take into account all rating transitions during the whole period before
default, not only the transitions to default, but also the rating changes before
default (i.e. during the 1st year).
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4. CREDIT RATING MODELS

304

 Therefore, if a default occurs in the 2nd year, the rating transition to default may
be either from rating A or from B, as defaults are often preceded by rating
downgrades.

 Actually, during the 1st year , a rating A may be kept or may be downgraded to B,
or even move straight to default:

A -> A -> D => 𝑝𝐴𝐴𝑝𝐴𝐷 = 0,80 ∙ 0,05 = 0,04

A -> B -> D => 𝑝𝐴𝐵𝑝𝐵𝐷 = 0,15 ∙ 0,10 = 0,015

A -> D (-> D) => 𝑝𝐴𝐷𝑝𝐷𝐷 = 0,05 ∙ 1 = 0,05

 𝑃𝐷2𝑦 = 𝑝𝐴𝐴𝑝𝐴𝐷 + 𝑝𝐴𝐵𝑝𝐵𝐷 + 𝑝𝐴𝐷𝑝𝐷𝐷 = 0,04 + 0,015 + 0,05 = 0,10 (which

compares to 0,0975 when rating transitions before default were discarded).

 All 2y transition frequencies will result from the squared rating transition matrix.
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 Default mode (DM) – take into consideration only the changes in the value of

bonds due to defaults.

 Marked-to-market (MTM) – allows to assess the impact on the credit value of any

change in its risk.

 Individual models – focus on the changes of a credit value, regardless the

correlations with other credits in the portfolio.

 Portfolio models – incorporate the correlations between the several assets of a

credit portfolio.

TYPES OF MODELS
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Challenges in Estimating Portfolio Credit Risk

 Non-normal returns - credit returns are highly skewed and fat-tailed.

 Difficulty in modeling correlations - lack of data, contrary to equities.

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.
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Credit-VaR

307

 CreditMetrics is a portfolio model that estimates the Credit-Var, taking into

account the current ratings of bonds, the transition frequencies and the correlation

between bond prices.

 We will start by considering a very simple portfolio, comprising just one BBB 5y-

bond at par (redemption value of 100), with an annual coupon rate of 6%, paid

annually.

 To calculate the potential losses 1 year ahead, due to rating downgrades, we need

to obtain the value of the bond after rating migrations in 1 year.

 This can be done by using forward interest rates for each rating level to discount

the remaining cash-flows 1 year ahead (the 4 remaining coupons and the

redemption value).
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Credit-VaR

308

 Credit-Var = Unexpected loss due to credit risk increase = Difference between the

price after a very unlikely unfavorable event and the expected value of the future

price at the risk horizon.

 Credit-Var = Difference between the mean of the distribution and a value at the

left tail

Source: JPMorgan (1997), “CreditMetrics - Technical document”

Note: The default price is the expected recovery rate.
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Credit-VaR

309

 Calculation of prices for the risk horizon requires:

(i) Obtain the forward interest rate curves for each rating (m=risk horizon; n=maturity

at the risk horizon of the remaining cash-flows)

(ii) Calculate the NPV at the risk horizon of the remaining cash-flows until maturity.

 Forward Price if the upgrade from BBB to rating A occurs:

Source: JPMorgan (1997), “CreditMetrics - Technical document”
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Credit-VaR

Ratings Probability of Loan Value Difference Contribution
Transition (%) at year-end to the mean to the variance

(1) (2) (3)=(2)- (4)=(1)x(3)^2
AAA 0.02 109.37 2.27 0.00
AA 0.33 109.19 2.09 0.0
A 5.96 108.66 1.56 0.15
BBB 86.93 107.55 0.45 0.18
BB 5.3 102.02 -5.08 1.37
B 1.17 98.10 -9.00 0.95
CCC 0.12 83.64 -23.46 0.66
Default 0.18 51.13 -55.97 5.64

Mean () 107.09
Variance ((4)) 8.95
Standard-dev. 2.99

310

 1-year 99% Credit-Var = Mean-P1,B (as the probability of having 1
year ahead a rating not above B = P(B) + P(CCC) + P(D)) = 1,17 +
0,12 + 0,18 ≈ 1% = 107,09-98,1 = 9.
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Credit-VaR

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.

Year-end
Bond Price

Probability of
Transition (%)
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 Now we add a single-A 3y bond, with annual coupon rate of 5%.

 Year-end price of the single-A 3y bond, after the several potential
rating migrations 1 year ahead:

The rating where the cumulative
probability of 1% is crossed is BB
(0,74+0,60+0,01+0,06=1,41), where
the price is 103,15.

1-year 99% Credit-Var of the standalone A-bond =
Mean - P1,BB = 106,54 – 103,15 = 3,39 (lower than the
B-bond, as the credit risk is lower).
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Credit-VaR

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.
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 All potential values of the portfolio will result from the combination of the 8
potential values for each bond (8x8):
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Credit-VaR

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.
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 The joint probabilities would just be product of the rating migration probability for
each bond, if these ratings were independent.
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Credit-VaR

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.
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 However, ratings do not tend to be independent, as they may be moved by the
same macroeconomic factors.

 Joint rating migration probabilities with correlated bonds:
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Credit-VaR

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.
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Credit-VaR

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.
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Credit-VaR

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.

Conclusion: The means of the BBB and the A bonds sum directly, but the risk (standard

deviations) is much less than the summed individual risks, due to diversification.

BBB Bond A Bond Portfolio

Mean 107,10 106,53 213,63

St.-Dev. 2,99 1,49 3,35

1-year 99% Credit-VaR = Mean-PP
1,(B,A) (as the probability of having 1 year after a

rating not above B in the 1st bond and A in the 2nd bond =
P(B,A)+P(B,BBB)+…+P(D,D) = 0,92+0,18+…+0 =1,45 ≈ 1%) = 213,63-204,4 = 9,23.

317

sq. root of 11.22
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VaR(%) = N(1-%)* =>

VaR(5%) = 1.65* = 1.65*3.35=5.53

VaR(1%) = 2.33* = 2.33*3.35=7.81 (lower than the observed 

value - 9,23 - due to fat tails)

Credit-VaR

 Assuming a normal distribution, the VaR would be:

318

With zero correlation, the ratings considered to calculate the 99% Credit-VaR would be

the same, as the cumulative probability = 1% is only achieved at the rating

combination (B,A), but the actual degree of freedom would be slightly smaller:

1-year 99% Credit-VaR = Mean-PP
1,(B,A) (as the probability of having 1 year after a

rating not above B in the 1st bond and A in the 2nd bond = P(B,A)+P(B,BBB)+…+P(D,D) =

0,92+0,18+…+0 =1,45 ≈ 1%) = 213,63-204,4 = 9,23.
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Credit-VaR

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.

 The decision to hold a bond or not is likely to be made within the context

of some existing portfolio.

 Thus, the more relevant calculation is the marginal increase to the

portfolio risk that would be created by adding a new bond to it = 0,36 in

standard-deviation and 0,24 in Credit-VaR.

 This increase in Credit-VaR is much smaller than the A-Bond 99% Credit-

Var (3,39) due to the diversification effect.

BBB-Bond
(1)

A-Bond
(2)

Portfolio
(3)

A-Bond Marginal 
Risk (4) = (3)-(1)

Standard-deviation 2,99 1,49 3,35 0,36

99% Credit-Var 8,99 3,39 9,23 0,24
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Creditmetrics

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.

Information required:
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