I
5. DEFAULT CORRELATION MODELS

o Creditmetrics allows for the calculation of credit losses due to defaults or any other
credit risk changes impacting on rating classifications and bond prices.

4

o Creditmetrics is based on the ratings transition matrix.
o If we are able to create homogenous credit risk portfolios, we may only use the PDs.

o In a portfolio with different independent debtors, we also need to take into account
the correlation between these different credit risks.
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5. DEFAULT CORRELATION MODELS

o Credit spreads of different issuers are correlated through time.

o However, a good model for the default correlations across firms is still an open
challenge for credit risk researchers.

o Correlations across equities are considerably higher than observed default
correlations.

o Two patterns are found in time series of spreads:
1) Spreads vary smoothly along with general macroeconomic factors.

!

Cyclical correlation between defaults

2) Simultaneous jumps of credit spreads of several firms are common. This suggests
that the sudden variation in the credit risk of one issuer, which causes an initial
jump, can propagate to other issuers as well.
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5. DEFAULT CORRELATION MODELS

Default correlations:

Historically, defaults tended to cluster as the following examples from the USA show.

® (il industry: 22 companies defaulted in 1982-1986.

e Railroad conglomerates: | default each year 1970-1977.

e Airlines: 3 defaults in 1970-1971, 5 defaults in 1989-1990,
e Thrifts (savings and loan crisis): 19 defaults in 19891990,
¢ (Casinos/hotel chains: 10 defaults in 1990,

® Retailers: =20 defaults in 1990-1992,

¢ Construction/real estate: 4 defaults in 1992,

It defaults were indeed independent, such clusters of defaults should not occur,

Secondly, there also seems to be serial dependence in the default rates of subsequent years.
A wear with high default rates is more likely o be followed by another year with an above
average detanlt rate than to be followed by a low default rate. The same applies to low detault
rates.
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5. DEFAULT CORRELATION MODELS

Notation
o Conditional probabilities: o Correlation coefficient:
PAB PAR . wPAB — PAPB

pall — pa)ps(1l — pg)

N

COV(A,B)/(c, o)

VB Pa

The joint default probability is given by:

-~ Pap=DPaPp+ oapy Pall — p)pe(l — pp)

= +COV(A,B .
PaB =PaPs (A,B) Dividing pas by Pe
and the conditional default probabilities are:

Pag = Pa+ QAH/EU — pall — pg).
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5. DEFAULT CORRELATION MODELS

Calculation of default correlations — different sources:

red joint rating : . The obvious source of information on
default correlation is the historical incidence of joint defaults of similar firms in a similar
time frame. We used such data in Section 10.1.1 when we analysed the evidence for default
dcpendcnﬁy in aggregated historical US default rate data. Such data is objective and directly
addresses the modelling problem. Unfortunately, because joint defaults are rare events,
historical data on joint defaults is very sparse. To gain a statistically useful number of
observations. long time ranges (several decades) have to be considered and the data must be
agoregated across indusiries and countries. In the majority ol cases direct data will therefore
not be available,

e (Credit spreads; Credit spreads contain much information about the default risk of traded
bonds, and changes in credit spreads reflect changes in the markets™ assessment of the
riskiness of these investments, If the credit spreads of two obligors are strongly correlated
it 15 likely that the defaults of these obligors are also correlated. Credit spreads have the
further advantage that they reflect market information (therefore they already contain risk
premia) and that they can be observed far more frequently than defaults. Disadvantages
are problems with data availability, data quality (liquidity), and the fact that there is no
theoretical justification tor the size and strength of the link between credit spread correlation
and default correlation.”
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5. DEFAULT CORRELATION MODELS

® [quity correlations: Equity price data is much more readily available and typically of better
gquality than credit spread data. Unfortunately, the connection between equity prices and
credit risk is not obvious. This link can only be established by using a theoretical model,
and we saw that these models have ditficulties in explaining the credit spreads observed in
the market. Consequently, a lot of pre-processing of the data is necessary until a statement
about default correlations can be made.
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Independent Defaults

o Credit Risk events as binomial draws — default or no default:

IT detaults are independent and happen with probability p over the time horizon 1, then the
loss distribution of a paortfolio of N loans is described by the binomial distribution function.

Definition 10.1 (binomial distribution) Consider a random experiment with success prob-
abilitv p which is repeated N times and let X be the number of successes observed. All
repetitions are independent from each other. The binomial frequency function bin: N, p) gives
the probability of observing n = N successes. The binomial distribution function Bin; N, p)
gives the probability of observing less than or equal 10 n Successes:

N

]

NI

mel — N—n _ - (] — g N —n
)” = N P U

bin, N, p)y =P|lX =nrn] = (

B(n:N.p):=P|X =n]= Z (;:);.r'rfil — ¥

=1

In our credit setting, the probability of exactly X = n (with n < N} defaults until time 7 is
b(n: N, p)and the probability of up to n defaults is B(n: N, p).
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Independent Defaults

Distribution of default losses under independence
(number of obligors = 100 and p = 0,05)
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Figure 10.5 Distribution of defanlt losses under independence. Parameters: number of obligors
N = 100, individual default probability p = 5%

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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Independent Defaults

o This example shows that the right tail of the distribution is very thin.

<

o The Credit-VaR corresponds to the number of defaults in the right tail of the

density function, whose cumulative probability of default is equal to the degree of
confidence.

o For very high degrees of confidence and low PDs, the Credit-VaR is achieved at a
low number of defaults: (see spreadsheet)

- 99% VaR = 11 defaults
- 99,9% VaR = 13 defaults
- 99,99% VaR = 15 defaults
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Independent Defaults

o The number of defaults corresponding to a Credit-VaR for very high degrees of
confidence increases with the PD:

20

15 ——

o0 9% VaR (& delaulls)

1% 2% 3o 4% 9% 6% T 8% 9% 10°%
Drefault probability

Figure 16 99,959 VaR levels of a portfolio of 100 imdependent obligors for different individual defanlt
probahbilities

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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Independent Defaults

o The dispersion of the No. defaults distribution also increases with the PD:

Density Function of the No. Defaults in a Portfolio with 100
Exposures
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Perfectly Correlated Defaults

o With perfectly dependent or correlated defaults there are only two scenarios:

(i) all loans default - with a probability = p

(ii) or no loans default - with a probability = 1-p

Perfectly dependent defaults
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o But we need to assess what happens when defaults are partially correlated.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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BINOMIAL EXPANSION TECHNIQUE (BET)

o Probability of losses in a credit risk-bearing portfolio, with independent defaults,
is the binomial frequency function:

The binomial expansion technigue (BET) is a method used by the ratings agency Moody's to
assess the default risk in bond and loan portfolios. It was one of the first attempts to quantify the
risk of a portfolio of defaultable bonds. The method is not based upon a formal portfolio default
risk model, it can be inaccurate and it is generally unsuitable for pricing, yet it has become
something of a market standard in risk assessment and portfolio credit risk concentration
terminology.”

The BET is based upon the following observation. Assume we analyse a loan portfolio of
N = 1001oans of the same size, with the same loss L indefault and the same default probability
p = 5% 1t the defaults of these obligors are independent, we know from the previous section
that the loss distribution function is given bm distributifMThe probability
of a loss of exactly X = nL (with n < N)until time 7T is (10.8);

N N
P[X =nlL] = (H)p”(] — N = N H}Tp”{l — V" = b(n: N, p).
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BINOMIAL EXPANSION TECHNIQUE (BET)

o As previously referred, with perfectly dependent defaults there are only two
scenarios:

(i) all loans default - with a probability = p => loss = NL

(ii) or noloans default - with a probability = 1-p =>loss =0

Let us now consider the other extreme. If all defaults are perfectly dependent (i.e. either ail or
none of the obligors default), we have:

PIX >0]=p=5%=P[X = NL].
P[X=0]=1—p=95%=P[X =0].

The key point to note here is that this can also be represented as a binomial distribution function
with probability p = 5%, but this time only one binomial draw is taken and the stakes are much
higher: a loss of N L if the 5% event occurs,
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BINOMIAL EXPANSION TECHNIQUE (BET)

o Probability of a loss X up to x, with perfect independence:

Thus we have the following results,

e Perfect independence is N = 100 obligors with loss L and loss probability p = 5% each.
The probability of a loss X of less than x is

P[X <x] = Bn:N. p).

where the parameters are:

- N = 100;
—n = |x/L] (“rounding down”, the largest integer less than or equal to x/L);
- p = 5%.

o x = nl, — Loss (x) = No. of defaults x Loss with each default
(LGD of each loan)
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BINOMIAL EXPANSION TECHNIQUE (BET)

e Perfect dependenceis equivalent to N' = 1 obligors with loss L' = N L and loss probability
P = 5%. The probability of a loss X of less than x is

P[X <x]= B(n;N'. p).

where:
— N’ =1, an adjusted number of obligors;
—n' = |x/L'|

- p = 5%. '

o Independence between defaults => N’ = N, with loss amount from each default
event L' = L.

o Perfect dependence between defaults => N’ = 1 with loss amount from each default

event L' =N x L. '

o It is convenient to calculate intermediate degrees of dependence assuming that we
have N’ = D < N independent debtors with losses L' = LN/D each.
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BINOMIAL EXPANSION TECHNIQUE (BET)

o In a portfolio of N debtors with a total exposure of K and p as the average
individual PD, the BET loss distribution with a diversity score D is:

PEET v N K. D) = B lx/L']; D, p) , from PIX =x]=Bn:N.p)
with  — N’ = 1, an adjusted number of obligors;

l —n' = [x/L]
— p = 5%.
o With N = 100:
- D =100 <->we have 100 independent debtors with potential losses of L each
- D =50 <->we have 50 independent debtors with potential losses of 2L each

- D =1 <-> we have perfect dependency between all exposures, with a potential
losses of N x L
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BINOMIAL EXPANSION TECHNIQUE (BET)

o Lower diversity scores => less continuous distributions and higher probability
attached to higher losses => more concentrated portfolios are riskier.

5 —

0

Figure 10.8 Loss exceedance probabilities for different diversity scores. Parameters: N = 100,
o= 5%, D= 100,50, 20. 5 (sohd. dashed. short dashed, dot dashed)

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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BINOMIAL EXPANSION TECHNIQUE (BET)

o Moody’s starts by assuming perfect diversification (D = N).

o D is adjusted according to:

(i) Exposure sizes:

- Large exposures are penalized

(ii) Industry diversification

(iii) Regional diversification
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GAUSSIAN COPULA

o Defining t; and t, as the time to default of companies 1 and 2, respectively, if these variables

are not normally distributed, we may transform them into new variables x; and x,:*

where x; =N '[Q,(1))]. X, = N '[Qs(1r)]
Q, and Q, — cumulative normal probability distributions for t, and t,

N-1 —inverse of the cumulative normal distribution

*Based on Hull (2018) (section 29.4)
o x; and x, - default threshold of each company, determined by the balance sheet structure,

normally distributed, with zero mean and unit standard deviation

o The joint distribution of x; and x, is a bivariate'normal.

4

GAUSSIAN COPULA
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GAUSSIAN COPULA

o This assumption is convenient as it allows to characterize the joint distribution of t;
and t, by the cumulative default probability distributions Q, and Q,, with a single
correlation parameter between x; and x, — the copula correlation.

o To avoid defining a different correlation between x, and x; for each pair of companies
i and j, all default thresholds x; are defined as a function of a common systematic
factor, according to a one-factor model with random firm-factor disturbances:

f ¥ .
x;=a;F++1—ar Z; with
F = the common or systematic risk factor — can be viewed as a business cycle indicator

Z;~ N(0,1), i.i.d. — can be viewed as an idiosyncratic or firm-specific factor (e.g. quality of the

management, level of innovation)

a, = constant parameters between -1 and +1 (sometimes approximated as the correlation of

company i’s equity returns with a well diversified market index).

a;* a;= correlation between x; and x;
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GAUSSIAN COPULA

o A default occurs until Twhen N(x) < Q/(T)<® x; = N~'[Q;(T)]

!

P —ro. B
X; = ﬂJ'F‘I' "n-"lll — ay EJ’ h Z; < N1 — aiF

1..-"11 — ﬂj-z

a;F+ 1 —atZ, < N '[0(T)]

o As x; = N '[Q,t)]. x; = N '[05(1,)], the PD conditional on the factor F is:

N7'0(T)] - g F)

)(T| F)=N
0,11 1) = o
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GAUSSIAN COPULA

o With all loans having the same probability distributions of default and the same correlation
i ar—1 — o
= a=5 W orin-n"EID) N(N '[0:4(1)] afF)

."'l_
v P 1./l—(.f?

|

corresponds to the % defaults in a homogeneous portfolio by time T as a function of F.

o pdrives the weight of the idiosyncratic and systematic components:

— p=0=>the business cycle is irrelevant to explain credit risk, i.e. the PD will not fluctuate.

— p=1=>the business cycle is the only driver of defaults.
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GAUSSIAN COPULA

o As F~N(0,1), we are X% sure that F> N '(1 - X) = -N"'(X)

!

o We are X% sure that the percentage of losses over T years on a large homogeneous
portfolio will be less than V(X,T):

o mmmmemee

vi—p

[l

o Vasicek (1987) (published in Risk Magazine, in 2002, as “Loan Portfolio Value”):
0. Vasicek, “Probability of Loss on a Loan Portfolio,” Working Paper, KMV, 1987,

‘NTo(T BN(X
VIX. T}_N( [Q(T] + /PN })

o Xvery close to 1 => Worst Case Default Rate (WCDR)

o

O Credit_VaR = WCDR x LGD x EAD ——* M. B. Gordy, “A Risk-Factor Model Foundation for Ratings-Based Bank Capital Ra-
tios,” Journal of Financial Intermediation 12 (2003): 199-232.
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GAUSSIAN COPULA

o Example - Retail loan portfolio:

- Value =100 M€
- 1lyPD=2%

- p=0.1

- RR=60%

- WCDR (99,9%):

N7 + JaN(X) o 'NTH0.02) + VO N-Lm.we})
, N - V(0.999, 1) = N( —0.128
V(X, T) w( M ) —> ——

4

o 1y Credit-VaR = WCDR x LGD x EAD =0.128 x (1- 0.6) x 100 M€ =5.13 M€
o 1y EL=PD x LGD x EAD = 0.02 x (1- 0.6) x 100 M€ = 0.8 M€

o p=0=>V(X,T)=N(NQ(T)]) =Q(T) = PD => Credit-VaR = EL

o p->1=>V(X,T)-> N(c) -> 1 => Credit-VaR -> LGD x EAD
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GAUSSIAN COPULA

o Portfolio credit loss tends to 1 with the PD, regardless the level of confidence and
the correlation coefficient.

o For very high degrees of confidence (X), credit loss converges to 1 with the PD,
following a concave curve, at a faster speed and from a higher value with higher
correlations <> VaR increases with the correlation

99.9% Credit-Var for different PDs and Correlations
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GAUSSIAN COPULA

o For lower degrees of confidence, credit loss converges slower to 1 with the PD.

99% Credit-Var for different PDs and Correlations 90% Credit-Var for different PDs and Correlations

10 1,0
09 0,9
0.8 08
07 0,7
o e
m 0.6 m 0,6
z g
=05 =05
5 T na
Y- = Us
z 04 S
=] o
0,3 0,3
0,2 0.2
0,1 0,1
0,0 0,0
[ ¥ = [ B = ™ owm oo = o oW = N o oo o= m
™o = ™o = N_r;c;-:roor\l:g = ™Now o T @ QDQ.—iE‘lNl’%QMMTT_‘.1_153Q‘~QOOOOUUU
o 8 2 = E_OL ™ '%ﬂ Rﬁ - mﬁ B R E - E e A oo o o o oo oo oo oo oo o oo oo o ooo o
oo o oo o oo oo o000 o000 o0 o000 oo oo
PD
PD
C =0 C -0 C =09
—Correl=] e—Correl=l5 =—Correl=0.9 ——Corre=0l  ——Correl=05  ———Corei=0.3
50% Credit-Var for different PDs and Correlations 10% Credit-Var for different PDs and Correlations
10 10
0.2 0,9
0,8 0.8
07 0,7
! =
o n
m 0,6 z 0.6
> = n
£ 05 505
- o
=04 5 04
L] 03
n 0,2
- 0,1
Y oy N r r ™
Mo og TR oY R I M YR TN D TR Lo T @ .:.ﬂéﬂ.‘E‘.‘mﬁﬁﬁﬂﬁﬁﬂﬁﬂqﬁéﬁﬂiﬂ%5g‘Q‘EQ‘m‘U—gg'gg?‘
o 2 = B T O T S S N = A= R L L = R = o o o oo o oo oo ooco oo o oo oo ooo oo
oo oo o0 o oo oo o oo o0 o0 oo ooo oo oo
PD
PD
- - - - - - = Correl=0.] e—Correl=05 e—Correl=09
e COrrEl=0.1  s——Correl=05 e—Correl=0.9

Jorge Barros Luis | Interest Rate and Credit Risk Models



e I
GAUSSIAN COPULA

o Basel Il allows banks to calculate their capital requirements for the different
portfolios using internal estimates for PD and LGD, using regulatory formulas based
on the WCDR and assuming different functions for the correlation coefficient.

) 1 —exp(-=50xPD) ) 1 —=exp(-50xPD)
o Corporate, Sovereign and Bank Exposures: p=0-12———5—+024 11 - —— 7

o Capital Requirement: EADx LGD x (WCDR — PD) x MA

o Maturity Adjustment (MA): Ma= H:T]_fj;;xb

o Where £=[0.11852-0.05478 x In(PD}]* , G is the inverse of N[] and M is the maturity.

Correlation (R) = 0.12 (1-e=%) 0241 (1-e™")] | 1
= 3 . —+ 1. - _—— Fnr— Pl T S
orrela “}n[ :I |:l_E|—=.I]] | [1_9—9: :l I| E_.I'['X T] o i\,’(ﬁh‘ [er]] + \,l"lﬂ Jilli' fX])
_ = vi—p
Maturity adjustment (b) = 011852 -0.05478.|n ICF'D] i /
[ [ e 1 1 (1+{mM-25)-b]
Capital requirement™*K) = LGD-N GiPD) LR -G(0.999) - PD.LGD -l" {j‘_ T b|'| 'l

|_1i|r[:l_R] lllll—ﬁ" _| |

Risk-weighted assets (RWaA) =K -12.5-EAD
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