{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Lab 2\n", "\n", "Consider the following dataset: https://github.com/masterfloss/data/raw/main/realEstate2018.xlsx\n", "\n", "The variables are: \n", "\n", "* Municipalities - name of the municipalities and territorial area\n", "* waste total - total waste in the municipality\t\n", "* collected waste\t- total selective collection waste in the municipality\n", "* indifferent waste - total indifferent waste in the municipality\n", "* unemployment - total unemployment in the municipality\n", "* tourism - tourism revenue per capita\n", "* crime - crime per capita\n", "* wage - wage per capita\n", "* bank evaluation M2\t\n", "* tax - real estate tax\tper capita\n", "* purchasing power - purchasing power per capita\n", "* population - total of the population\t\n", "\n", "Create new variables that may be adequate for the model, such as the selected waste percentage. \n", "Obviously, some variables are unnecessary, and some dates are virtually repeated.\n", "\n", "1.\tImport needed libraries, Import data\n", "2.\tAnalyze variables\n", "3.\tCreate a model that explains the price\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# import libraries" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# read data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# change data types, clean data, create variables" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# create and fit model" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 2 }