Simulação e Otimização

Capítulo 2: Problemas de otimização combinatória

Ano letivo 2025/2026

- 1. Crie um enunciado para uma aplicação prática do problema do caixeiro viajante.
- 2. Considere a seguinte instância para o problema do caixeiro viajante.

	1	2	3	4
1	-	15	12	13
2	15	-	9	2
3	12	9	-	19
4	13	2	19	-

- (a) Resolva o problema utilizando a formulação MTZ.
- (b) Resolva o problema utilizando a formulação SCF.
- (c) Determine o valor da relaxação linear das formulações desenvolvidas nas alíneas anteriores e compareos.
- 3. Uma fábrica, localizada no nodo 0, necessita de matéria-prima e existem n fornecedores que a podem fornecer. O fornecedor $i \in \{1, \ldots, n\}$ tem w_i unidades de matéria-prima disponível e a fábrica tem uma necessidade de W unidades. A fábrica pretende determinar a rota que deve executar de forma a garantir que recolhe toda a matéria-prima que necessita ao mínimo custo de deslocação.
 - (a) Adapte uma formulação compacta para resolver o problema apresentado. <u>Nota:</u> Este problema é uma variante do problema do caixeiro viajante chamada *prize-collecting traveling salesman problem*.
 - (b) Considere a seguinte matriz de custos e valores de w_i .

	0	1	2	3	4
0	-	17	13	7	4
1	14	-	3	10	17
2 3	9	7	-	8	14
	11	6	11	-	3
4	17	7	18	2	-
	211:	4	7	2	4

- i. Considerando W=10, determine a solução ótima da instância apresentada.
- ii. Considere outros valores de W. Existe alguma relação entre o valor ótimo da instância e o valor de W? Se sim, indique qual.
- 4. Considere a seguinte matriz de custos relativa a uma instância do problema do caixeiro viajante.

	1	2	3	4
1	-	3	5	1
2	-	-	1	6
3	6	1	-	3
4	1	5	-	-

- (a) Obtenha a solução ótima do problema relaxado em que não se consideram as restrições de eliminação de subcircuitos.
- (b) Introduza na solução obtida na alínea anterior as restrições de eliminação de subcircuitos da formulação CC até encontrar a solução ótima do problema.
- 5. Considere a matriz de custos seguinte relativa a uma instância do problema do caixeiro viajante.

	1	2	3	4	5
1	-	3	4	1	2
2 3	3	-	8	4	3
3	4	8	-	5	2
4	1	4	5	-	3
5	2	3	2	3	-

- (a) Obtenha uma solução do problema relaxado em que não se consideram as restrições de eliminação de subcircuitos. Relacione o valor da solução obtida com o ótimo da instância.
- (b) Obtenha uma solução para o problema relaxado em que não se consideram as restrições de grau. Relacione o valor da solução obtida com o ótimo da instância.
- (c) Obtenha uma solução admissível para o problema utilizando a heurística de inserção de menor custo. Relacione o valor da solução obtida com o ótimo da instância.
- 6. Seja G = (V, E) um grafo não orientado, onde E é o conjunto das arestas em vez do conjunto de arcos. Considere as variáveis x_e , que tomam valor 1 se a aresta $e \in E$ é visitada na solução.
 - (a) Adapte a formulação CC para o caso simétrico.
 - (b) Determine a solução ótima da instância apresentada no exercício anterior utilizado a formulação desenvolvida na alínea anterior. Quais são as vantagens/desvantagens de usar a formulação simétrica comparativamente à assimétrica?
- 7. Considere a seguinte instância do problema do caixeiro viajante.

	C1	C2	C3	C4	C5	C6
C1	-	7	10	12	2	9
C2	7	-	11	14	8	1
C3	10	11	-	12	6	8
C4	12	14	12	-	7	9
C5	2	8	6	7	-	11
C6	9	1	8	9	11	-

- (a) Construa uma solução admissível utilizando a heurística do vizinho mais próximo.
- (b) Identifique um minorante relaxando as restrições de eliminação de subcircuitos. O que pode concluir sobre o valor ótimo da instância apresentada?
- (c) Introduza, na solução da alínea anterior, as restrições relaxadas da formulação CC até encontrar uma solução ótima da instância.
- 8. Considere a seguinte instância do problema do caixeiro viajante.

	1	2	3	4	5
1	-	3	7	6	2
2	4	-	11	9	6
3	2	6	-	1	5
4 5	5	5	3	-	4
5	6	2	7	6	-

- (a) Obtenha uma solução admissível utilizando a heurística de inserção de menor custo.
- (b) Identifique um minorante recorrendo à relaxação das restrições de saída de um nodo.
- (c) Introduza, na solução da alínea anterior as restrições relaxadas até encontrar uma solução ótima para a instância apresentada.
- 9. Considere a seguinte instância para o problema do caixeiro viajante:

	1	2	3	4	5
1	-	22	61	44	50
2	22	-	40	22	31
3	61	40	-	22	42
4	44	22	22	-	22
5	50	31	42	22	-

Obtenha uma solução admissível para a instância apresentada utilizando as seguintes heurísticas:

- (a) Heurística do vizinho mais próximo.
- (b) Heurística da inserção de menor custo.
- 10. Crie um enunciado para uma aplicação prática do problema do roteamento de veículos.
- 11. Considere a seguinte matriz de custos de uma instância do problema de roteamento de veículos.

	0	C1	C2	C3	C4	C5	C6	C7
0	-	20	55	50	40	15	30	40
C1	20	-	40	20	50	25	15	50
C2	55	40	-	50	20	30	40	10
C3	50	20	50	-	20	50	60	35
C4	40	50	20	20	-	50	60	20
C5	15	25	30	50	50	-	80	20
C6	30	15	40	60	60	80	-	25
C7	40	50	10	35	20	20	25	-

Existem três veículos homogéneos com capacidade 80 e as procuras dos clientes são apresentadas na tabela seguinte.

	C1	C2	C3	C4	C5	C6	C7
d_i	45	50	30	20	25	35	30

- (a) Formule o problema utilizando a formulação MTZ e determine a sua solução ótima.
- (b) Considere a formulação SCF.
 - i. Determine o valor da sua relaxação linear utilizando as restrições de limite $0 \le f_{ij} \le Qx_{ij}$.
 - ii. Determine o valor da sua relaxação linear utilizando as restrições de limite $d_j x_{ij} \leq f_{ij} \leq (Q d_i) x_{ij}$ e compare-o com o valor obtido na alínea anterior.
 - iii. Determine o valor ótimo da instância apresentada.
- 12. O Sr. Y tem uma pequena empresa de distribuição de enlatados com uma frota de dois camiões. O camião 1 tem capacidade para transportar 80 caixas de enlatados enquanto o camião 2 tem capacidade para transportar 90. As necessidades em caixas de enlatados dos clientes do Sr. X assim com as distâncias entre o centro de distribuição (depósito 0) e as localizações dos clientes são apresentadas na tabela seguinte.

		C1	C2	C3	C4	C5	C6
d	i	28	22	26	33	20	34
c_{ij}	0	C1	C2	C3	C4	C5	C6
0	-	37	28	35	21	30	39
C1	32	-	28	29	31	31	33
C2	38	28	-	38	27	30	24
C3	37	29	20	-	38	20	35
C4	25	26	33	37	-	25	34
C5	37	40	21	20	32	-	32
C6	20	20	34	32	29	22	-

Desenvolva uma formulação compacta para o problema apresentado e indique qual o plano ótimo de distribuição que o Sr. Y deve adotar.

13. O Sr. U tem dois veículos disponíveis com capacidade 130 para fazer a distribuição dos produtos adquiridos na sua loja online. Quando fazem a sua encomenda, os clientes indicam uma janela temporal $[a_i, b_i]$ que corresponde ao intervalo de tempo durante qual a sua encomenda pode ser entregue. Na tabela seguinte encontra-se a procura de cada cliente (d_i) , a janela temporal em que devem ser servidos $([a_i, b_i])$ e o tempo de serviço (ts_i) , que corresponde ao tempo que a sua encomenda demora a ser entregue.

	C1	C2	C3	C4	C5	C6	C7
d_{i}	45	50	30	20	25	35	30
$[a_i, b_i]$	[2, 15]	[8, 20]	[10, 30]	[2, 15]	[10, 30]	[10, 30]	[16, 40]
ts_i	2	4	2	3	4	2	3

A matriz de tempos de deslocação é apresentada de seguida.

	0	C1	C2	C3	C4	C5	C6	C7
0	-	10	8	7	6	4	5	6
C1	8	-	4	2	5	3	2	5
C2	10	4	-	5	2	3	4	1
C3	6	3	4	-	2	5	6	4
C4	5	4	3	3	-	5	6	2
C5	6	3	1	6	4	-	8	2
C6	7	2	5	5	7	5	-	3
C7	8	5	2	4	3	6	5	-

- (a) Desenvolva uma formulação compacta para o problema apresentado cujo objetivo é minimizar o tempo de deslocação.
- (b) Determine o plano ótimo de distribuição que o Sr. U deve adotar.
- (c) Tendo em conta as especificidades do problema, crie uma desigualdade válida.
- 14. Considere a seguinte matriz de custos de uma instância do problema de roteamento de veículos.

	0	C1	C2	C3	C4	C5	C6
0	-	20	55	50	40	15	30
C1	25	-	40	20	50	25	15
C2	60	35	-	50	20	30	40
C3	35	30	45	-	20	50	60
C4	25	40	35	30	-	50	60
C5	30	35	10	60	35	-	80
C6	45	20	35	50	70	45	-

Considere ainda que estão disponíveis três veículos homogéneos com capacidade 65 e que as procuras dos clientes são:

		~ -				C6
d_i	23	17	47	20	36	43

- (a) Construa uma relaxação do problema removendo as restrições de eliminação de subcircuitos e as restrições de capacidade e determine um minorante para o valor ótimo.
- (b) Adicione cortes RCC até obter uma solução admissível para a instância apresentada.
- 15. Considere a seguinte matriz de custos de uma instância do problema de roteamento de veículos.

	0	C1	C2	C3	C4	C5
0	-	20	55	50	40	15
C1	20	-	40	20	50	25
C2	55	40	-	50	20	30
C3	50	20	50	-	20	50
C4	40	50	20	20	-	50
C5	15	25	30	50	50	-

Existem dois veículos homogéneos com capacidade 100 e as procuras dos clientes são apresentadas na tabela seguinte.

- (a) Determine uma solução admissível utilizando a heurística de Clarke & Wright.
- (b) Proponha uma heurística do tipo Agupar \rightarrow Rotear e aplique-a.
- (c) Proponha uma heurística do tipo Rotear \rightarrow Agrupar e aplique-a.
- (d) Compare as soluções admissíveis obtidas nas alíneas anteriores entre si e indique o que pode concluir sobre o valor ótimo da instância apresentada.
- 16. Resolva de novo os Exercícios 5, 14 e 15 utilizando o VRP Spreadsheet Solver. Compare as soluções obtidas pelo VRP Spreadsheet Solver com as que obteve quando resolveu os exercícios.