STATISTICAL LABORATORY

Applied Mathematics for Economics and Management Ist Year/1st Semester 2025/2026

CONTACT

Professor: Elisabete Fernandes

E-mail: efernandes@iseg.ulisboa.pt

https://doity.com.br/estatistica-aplicada-a-nutricao

https://basiccode.com.br/produto/informatica-basica/

PROGRAM

I. Fundamental Concepts of Statistics

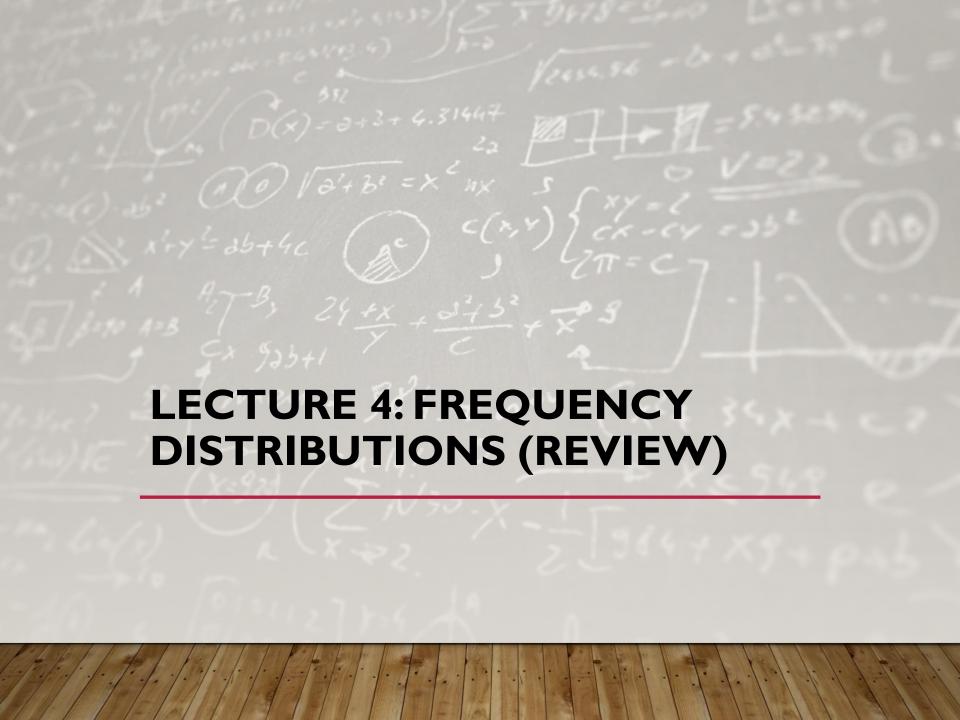
2. Exploratory Data Analysis

3. Organizing and Summarizing Data

4. Association and Relationships Between Variables

5. Index Numbers

6.Time Series Analysis



FREQUENCY TABLE FOR DISCRETE VARIABLE: EXAMPLE

1. Discrete Variable Example

Suppose we collected n=15 observations of a discrete variable x:

$$x = (2, 3, 3, 4, 2, 5, 3, 4, 2, 5, 4, 3, 2, 4, 3)$$

Step 1: Identify distinct values

$$x_1'=2,\,x_2'=3,\,x_3'=4,\,x_4'=5$$

Step 2: Count frequencies

Absolute Frequencies

$$n_1 = 4$$
, $n_2 = 5$, $n_3 = 4$, $n_4 = 2$

Step 3: Compute relative frequencies

Relative Frequencies

$$f_j = \frac{n_j}{n} \Rightarrow f_1 = 0.267, f_2 = 0.333, f_3 = 0.267, f_4 = 0.133$$

Step 4: Determine range

$$x_{\min} = 2, \quad x_{\max} = 5, \quad \text{Range} \qquad = 3$$

FREQUENCY TABLE FOR DISCRETE VARIABLE: EXAMPLE

Step 5: Table (Frequency Absolute Frequencies		Relative Frequencies
x_j'	n_j	f_{j}
2	4	0.267
3	5	0.333
4	4	0.267
5	2	0.133
Total	15	1.0

Sample Size n = 15

$$\sum_{j=1}^m n_j = n \qquad \sum_{j=1}^m f_j = 1$$

FREQUENCY TABLE FOR CONTINUOUS VARIABLE: EXAMPLE

Suppose we collected n=12 observations of a continuous variable x:

$$x = (1.2, 2.3, 1.8, 2.0, 3.1, 2.7, 3.5, 1.5, 2.8, 3.0, 1.9, 2.5)$$

Step 1: Determine range and class width

$$x_{\min} = 1.2$$
, $x_{\max} = 3.5$, Range $= 3.5 - 1.2 = 2.3$

Using **Sturges' rule**, m=4 classes:

$$ext{Class width} = rac{ ext{Range}}{m} = rac{2.3}{4} pprox 0.575 pprox 0.6$$

Step 2: Construct classes

Classes

Start at 1.2:

$$l_j = \left[l_{j-1}, l_j\right]$$
 $j = 1, 2, ..., m$
 $m = \text{number of classes}$

$$I_j \cap I_k = \emptyset$$
 and

$$D \subset \bigcup_{j=1}^m I_j$$

Step 3: Find midpoints

$$D = [x_{min}, x_{max}]$$

$$x_1' = \frac{1.2 + 1.8}{2} = 1.5, \quad x_2' = \frac{1.8 + 2.4}{2} = 2.1, \quad x_3' = \frac{2.4 + 3.0}{2} = 2.7, \quad x_4' = \frac{3.0 + 3.6}{2} = 3.3$$

FREQUENCY TABLE FOR CONTINUOUS VARIABLE: EXAMPLE

Step 4: Count frequencies

• Class [1.2, 1.8]: 1.2, 1.5, 1.8 $\rightarrow n_1 = 3$

Absolute Frequencies

• Class]1.8, 2.4]: 1.9, 2.0, 2.3 $\rightarrow n_2 = 3$

• Class]2.4, 3.0]: 2.5, 2.7, 3.0 $\rightarrow n_3 = 3$

• Class [3.0, 3.6]: 3.1, 3.5 $\rightarrow n_4 = 2$

Step 5: Compute relative frequencies

Relative Frequencies

$$f_1=rac{3}{12}=0.25, \quad f_2=0.25, \quad f_3=0.25, \quad f_4=rac{2}{12}pprox 0.167$$

Step 6: Table (Frequency Distribution with Totals)

Class I_j	$Midpoint x_j'$	n_{j}	f_{j}
[1.2, 1.8]	1.5	3	0.25
]1.8, 2.4]	2.1	3	0.25
]2.4, 3.0]	2.7	3	0.25
]3.0, 3.6]	3.3	2	0.167

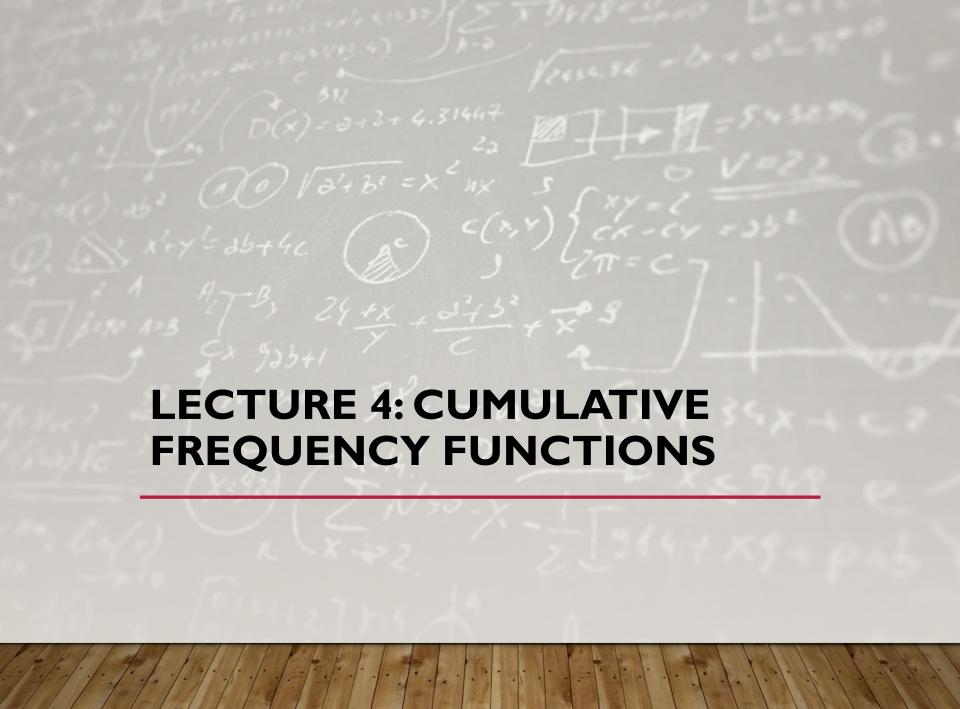
Total

12

1.0

Sample Size $\sum_{j=1}^{m} n_j =$

 $\sum_{j=1}^{m} n_j = n \qquad \sum_{j=1}^{m} f_j = 1$



CUMULATIVE FREQUENCY FUNCTION FOR DISCRETE VARIABLE

Cumulative Absolute Frequency Function

$$N(x) = \begin{cases} 0 & x < x_1' \\ n_1 & x_1' \le x < x_2' \\ n_1 + n_2 & x_2' \le x < x_3' \\ \dots & \dots \\ n_1 + n_2 + \dots + n_{m-1} & x_{m-1}' \le x < x_m' \\ n_1 + n_2 + \dots + n_m = n & x \ge x_m' \end{cases}$$
• It is a **non-decreasing function** and **right-continuous**.
• It is a **step function** where each jump corresponds to an absolute frequency. For exemple: $N(x_3') - N(x_2') = (n_1 + n_2 + n_3) - (n_1 + n_2) = n_3$

• N(x) is a function whose domain is the real line, with $N(-\infty) = 0, N(+\infty) = n \text{ and } 0 \le N(x) \le n.$

Cumulative Relative Frequency Function

$$F^*(x) = \begin{cases} 0 & x < x_1' \\ f_1 & x_1' \le x < x_2' \\ f_1 + f_2 & x_2' \le x < x_3' \\ \dots & \dots \\ f_1 + f_2 + \dots + f_{m-1} & x_{m-1}' \le x < x_m' \\ f_1 + f_2 + \dots + f_m = 1 & x \ge x_m' \end{cases}$$

• $F^*(x)$ has properties similar to N(x) , except with respect to the codomain: $0 \le F_x^*(x) \le 1$.

CUMULATIVE FREQUENCY FUNCTION FOR DISCRETE VARIABLE: EXAMPLE

Sample information:

- Observations: x = (2, 3, 3, 4, 2, 5, 3, 4, 2, 5, 4, 3, 2, 4, 3)
- Number of observations: n=15
- Sample range: Sample range $= x_{\rm max} x_{\rm min} = 5 2 = 3$

Frequency Distribution Table (with cumulative frequencies)

x_j'	n_{j}	f_{j}	$N(x_j')$	$F^*(x_j')$
2	4	0.267	4	0.267
3	5	0.333	9	0.600
4	4	0.267	13	0.867
5	2	0.133	15	1.0
Total	15	1.0	_	_

Cumulative Absolute Frequency Function

$$N(x) = egin{cases} 0, & x < 2 \ 4, & 2 \leq x < 3 \ 9, & 3 \leq x < 4 \ 13, & 4 \leq x < 5 \ 15, & x \geq 5 \end{cases}$$

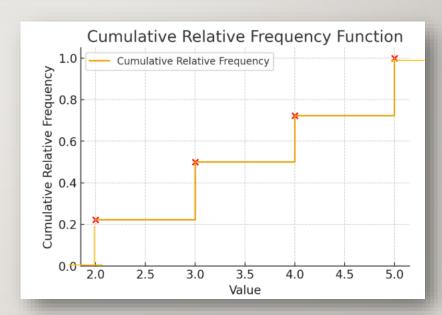
Cumulative Relative Frequency Function

$$F^*(x) = egin{cases} 0, & x < 2 \ 0.267, & 2 \leq x < 3 \ 0.600, & 3 \leq x < 4 \ 0.867, & 4 \leq x < 5 \ 1, & x \geq 5 \end{cases}$$

CUMULATIVE FREQUENCY GRAPH FOR A DISCRETE VARIABLE: EXAMPLE

Cumulative Relative Frequency Function

$$F^*(x) = egin{cases} 0, & x < 2 \ 0.267, & 2 \leq x < 3 \ 0.600, & 3 \leq x < 4 \ 0.867, & 4 \leq x < 5 \ 1, & x \geq 5 \end{cases}$$



• Here is the graph of the **cumulative relative frequency function** (ogive) for your sample:

Values: 2, 3, 4, 5 Frequencies: 4, 5, 4, 5

- The red dots mark the cumulative proportions.
- This shows how the cumulative relative frequency increases step by step until it reaches 1 (100%).

CUMULATIVE FREQUENCY FUNCTION FOR CONTINUOUS VARIABLE

Cumulative Relative Frequency Function

$$F^*(l_0) = 0$$

$$F^*(l_1) = f_1$$

$$F^*(l_2) = f_1 + f_2$$
...
$$F^*(l_{m-1}) = f_1 + f_2 + \dots + f_{m-1}$$

$$F^*(l_m) = f_1 + f_2 + \dots + f_m = 1$$

It is assumed that the frequencies are uniformly distributed within each class and that the cumulative frequencies refer to the class boundaries.

FREQUENCY CUMULATIVE FUNCTION FOR CONTINUOUS VARIABLE: EXAMPLE

Sample information:

- Observations: x = (1.2, 2.3, 1.8, 2.0, 3.1, 2.7, 3.5, 1.5, 2.8, 3.0, 1.9, 2.5)
- Number of observations: n=12
- ullet Sample range $=x_{
 m max}-x_{
 m min}=3.5-1.2=2.3$
- Classes (Sturges, width ≈ 0.6): [1.2,1.8],]1.8,2.4],]2.4,3.0],]3.0,3.6]
- Midpoints: 1.5, 2.1, 2.7, 3.3

Frequency Distribution Table (with cumulative frequencies)

Class	l_j	n_{j}	f_{j}	$N(x_j)$	$F^*(x_j)$
[1.2, 1.8]	1.2	3	0.25	3	0.25
]1.8, 2.4]	1.8	3	0.25	6	0.50
]2.4, 3.0]	2.4	3	0.25	9	0.75
]3.0, 3.6]	3.0	3	0.25	12	1.00
Total	_	12	1.00	_	_

Cumulative Absolute Frequency Function

$$N(x) = egin{cases} 0, & x < 1.2 \ 3, & 1.2 \leq x < 1.8 \ 6, & 1.8 \leq x < 2.4 \ 9, & 2.4 \leq x < 3.0 \ 12, & x \geq 3.0 \end{cases}$$

Cumulative Relative Frequency Function

$$F^*(x) = egin{cases} 0, & x < 1.2 \ 0.25, & 1.2 \leq x < 1.8 \ 0.50, & 1.8 \leq x < 2.4 \ 0.75, & 2.4 \leq x < 3.0 \ 1.0, & x \geq 3.0 \end{cases}$$

CUMULATIVE FREQUENCY GRAPH FOR A CONTINUOUS VARIABLE: EXAMPLE

Class	l_j	n_{j}	f_{j}	$N(x_j)$	$F^*(x_j)$
[1.2, 1.8]	1.2	3	0.25	3	0.25
]1.8, 2.4]	1.8	3	0.25	6	0.50
]2.4, 3.0]	2.4	3	0.25	9	0.75
]3.0, 3.6]	3.0	3	0.25	12	1.00
Total	_	12	1.00	_	_

Interval	
Endpoints	F*(x)
1,2	0
1,8	0,25
2,4	0,5
3	0,75
3,6	1

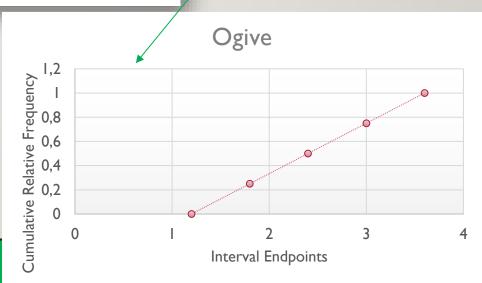
Ogive (Cumulative Frequency Graph) Where does it start?

- It starts at the **lower limit of the first class**, with cumulative frequency = 0.
- The graph is built using the upper class limits on the x-axis and the cumulative frequencies (or percentages) on the y-axis.

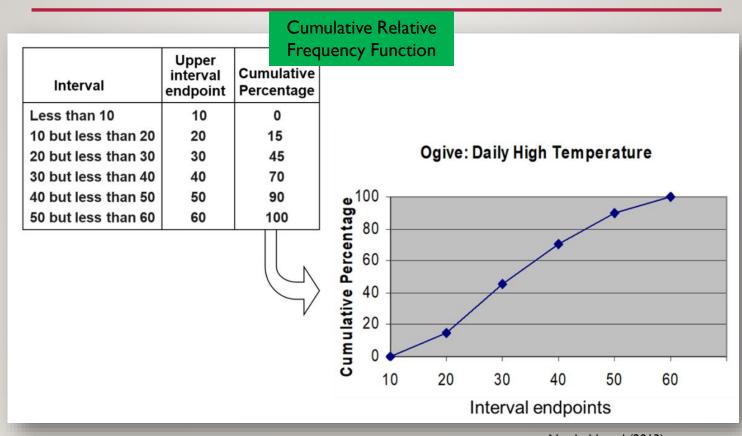
What is it used for?

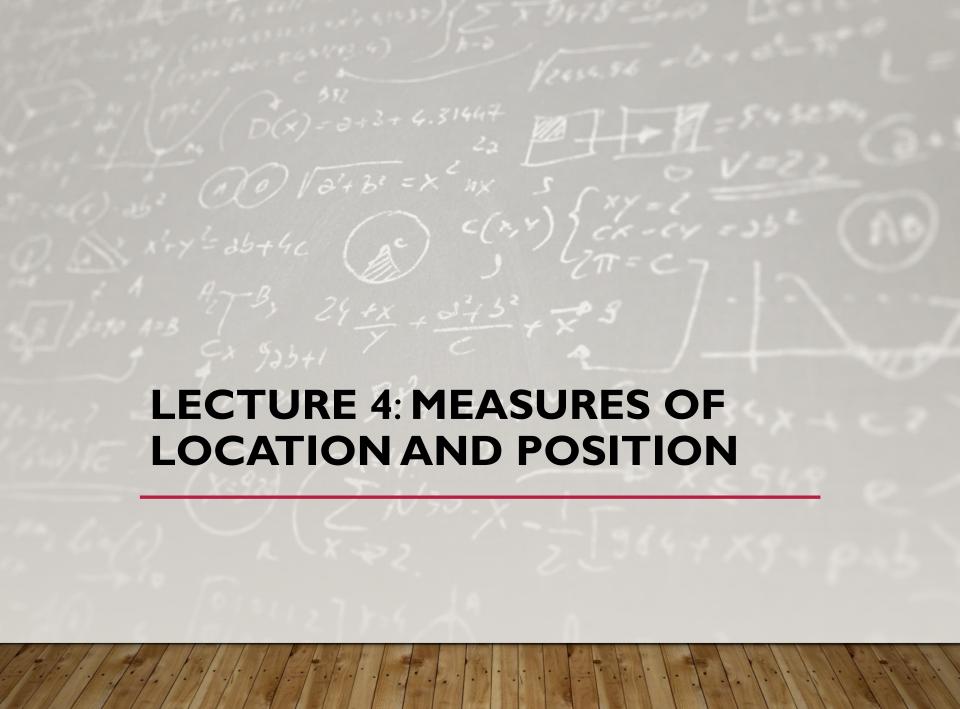
- To show how data accumulate across classes.
- To identify the median, quartiles, deciles, and percentiles.
- To compare cumulative distributions.

In this case, the ogive appears as a straight line rather than a curve, because the absolute and relative frequencies have the same values for all classes.



THE OGIVE GRAPHING CUMULATIVE FREQUENCIES: OTHER EXAMPLE





MEASURES OF LOCATION VS. MEASURES OF POSITION

Measures of Location

- Describe where the data are concentrated.
- Give an idea of the "center" or typical value of the data.
- Examples:
 - Mean sum of values divided by the number of observations.
 - Median value that separates the data into two equal halves.
 - Mode most frequently occurring value.
- Summary: indicate "on average, where the data are."

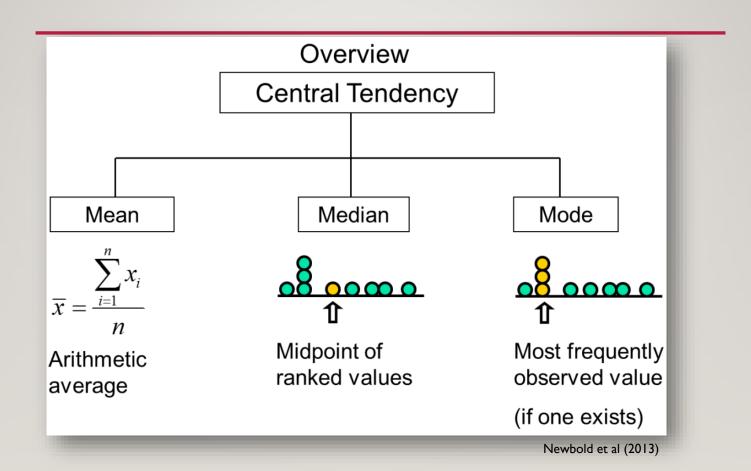
Measures of Position

- Indicate the relative position of a value within the dataset or the position of reference values.
- Useful for comparing values and identifying quantiles.
- Examples:
 - Quartiles, Deciles, Percentiles divide the data into equal parts and show relative positions.
 - **Z-score** shows how many standard deviations a value is above or below the mean.
- Summary: indicate "where a value stands in relation to the whole dataset."

Key Difference:

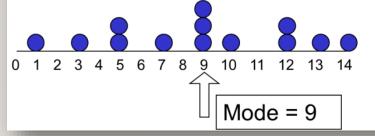
- Location: describes the center or typical value of the dataset.
- Position: describes the relative position of a value within the dataset.

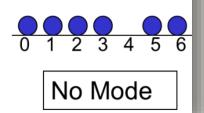
MEASURES OF LOCATION



MODE

- A measure of central tendency
- Value that occurs most often
- Not affected by extreme values
- Used for either numerical or categorical data
- There may be no mode
- There may be several modes





DISTRIBUTIONS BY MODE

- 1 Amodal Distribution (No Mode)
- **Definition:** No value repeats → no mode
- Example: 2, 3, 5, 7, 11
- Unimodal Distribution (One Mode)
- Definition: One value appears most frequently
- Example: 1, 2, 2, 3, 4 → Mode = 2
- Bimodal Distribution (Two Modes)
- Definition: Two values appear with the same highest frequency
- Example: 1, 2, 2, 3, 3, 4 → Modes = 2, 3
- Multimodal Distribution (More than Two Modes)
- **Definition**: More than two values appear with the same highest frequency
- Example: 1, 1, 2, 2, 3, 3, $4 \rightarrow$ Modes = 1, 2, 3

MODE FOR GROUPED DATA

Definition:

The modal class is the class interval with the highest frequency in a grouped frequency distribution

King's Formula (Grouped Data):

$$\mathrm{Mo} = l + rac{f^{**}}{f^* + f^{**}} \cdot h$$

Legend / Notation:

- l = lower boundary of the modal class
- h = class width
- f^* = relative frequency of the class before the modal class
- f^{**} = relative frequency of the class after the modal class

Silvestre (2007)

MODE FOR GROUPED DATA: EXAMPLE

Relative Frequencies

Class	Rel. Freq.	
0–10	0.10	
10–20	0.16	
20–30	0.24	
30–40	0.14	
40–50	0.06	

Modal class is the class interval with the highest absolute or relative frequency. Modal Class: 20 - 30

Step 1: Identify the modal class \rightarrow 20–30

Step 2: Extract values for the formula:

•
$$l = 20$$

•
$$h = 10$$

•
$$f^* = 0.16$$

•
$$f^{**} = 0.14$$

Step 3: Apply King's formula:

$$\mathrm{Mo} = 20 + \frac{0.14}{0.16 + 0.14} \cdot 10 = 20 + \frac{0.14}{0.30} \cdot 10 = 20 + 4.67$$

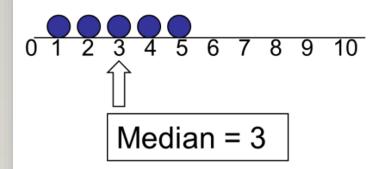
Step 4: Result

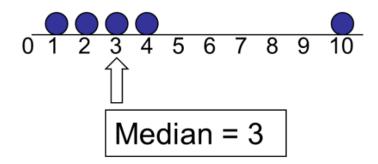
 $Mode \approx 24.67$

Mode ≈ 24.67

MEDIAN

 In an ordered list, the median is the "middle" number (50% above, 50% below)





Not affected by extreme values

FINDING THE MEDIAN

The location of the median:

Median position =
$$\left(\frac{n+1}{2}\right)^{\text{th}}$$
 position in the ordered data

- If the number of values is odd, the median is the middle number
- If the number of values is even, the median is the average of the two middle numbers
- Note that $\frac{n+1}{2}$ is not the value of the median, only the position of the median in the ranked data

CALCULATING THE MEDIAN: EXAMPLES

Formula to Find Median Position

Position =
$$\frac{n+1}{2}$$

- n = number of observations
- If **Position is integer** → Median = value at that position
- If **Position is not integer** → Median = average of values at floor and ceil(Position)

Examples

Example 1 - Position is integer

• Data: 2, 4, 6, 8, 10 (n=5)

$$Position = \frac{5+1}{2} = 3$$
 (integer)

Median = 3rd value = 6

Example 2 - Position is not integer

Data: 3, 5, 8, 12, 15, 18 (n = 6)

$$Position = \frac{6+1}{2} = 3.5 \quad (not integer)$$

$$Median = \frac{3rd \ value + 4th \ value}{2} = \frac{8+12}{2} = 10$$

MEDIAN FOR GROUPED DATA

Definition:

The **median class** is the class interval that contains the **middle value** (0.5 in cumulative relative frequency) of the distribution.

Formula (Grouped Data

$$\mathrm{Me} = l + rac{0.5 - F^*(l)}{F^*(L) - F^*(l)} \cdot h$$

Legend / Notation:

- ullet l = lower boundary of the median class
- L = upper boundary of the median class
- h = L l = class width
- ullet $F^*(l)=$ cumulative relative frequency before the median class
- $F^*(L) =$ cumulative relative frequency at the upper boundary of the median class

Silvestre (2007)

MEDIAN FOR GROUPED DATA: EXAMPLE

Relative Frequencies

Cumulative Relative Frequencies

Median Class: 20 - 30

Class	Relative Frequency	Cumulative Rel. Freq.
0–10	0.10	0.10
10–20	0.16	0.26
20–30	0.24	0.50
30–40	0.14	0.64
40-50	0.06	0.70

The median class is the first class for which the cumulative relative frequency is equal to or greater than 0.5.

Step 1: Identify the median class \rightarrow 20–30

Step 2: Extract values for the formula:

- l = 20. L = 30. h = 10
- ullet $F^*(l)=0.26$ (cumulative relative frequency before the median class)
- $F^*(L) = 0.50$ (cumulative relative frequency at the upper boundary of the median class)

Step 3: Apply formula:

$$\mathrm{Me} = 20 + rac{0.5 - 0.26}{0.50 - 0.26} \cdot 10 = 20 + rac{0.24}{0.24} \cdot 10 = 20 + 10$$

Step 4: Result

Median ≈ 30

Median ≈ 30

ARITHMETIC MEAN

The arithmetic mean (mean) is the most common measure of central tendency

– For a population of N values:

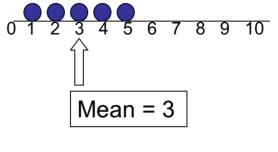
$$\mu = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{x_1 + x_2 + \dots + x_N}{N}$$
Population values
Population size

– For a sample of size n:

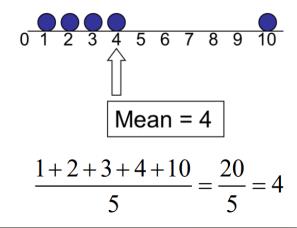
$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$$
 Observed values
Sample size

ARITHMETIC MEAN: EXAMPLES

- The most common measure of central tendency
- Mean = sum of values divided by the number of values
- Affected by extreme values (outliers)



$$\frac{1+2+3+4+5}{5} = \frac{15}{5} = 3$$



TYPES OF MEANS

Harmonic Mean

For a sample of n positive values x_1, x_2, \ldots, x_n :

$$H = rac{n}{\sum_{i=1}^n rac{1}{x_i}}$$

👉 It gives more weight to smaller values.

Typical use: averages of rates or speeds.

Geometric Mean

For a sample of n positive values x_1, x_2, \ldots, x_n :

$$G = \left(\prod_{i=1}^n x_i
ight)^{rac{1}{n}}$$

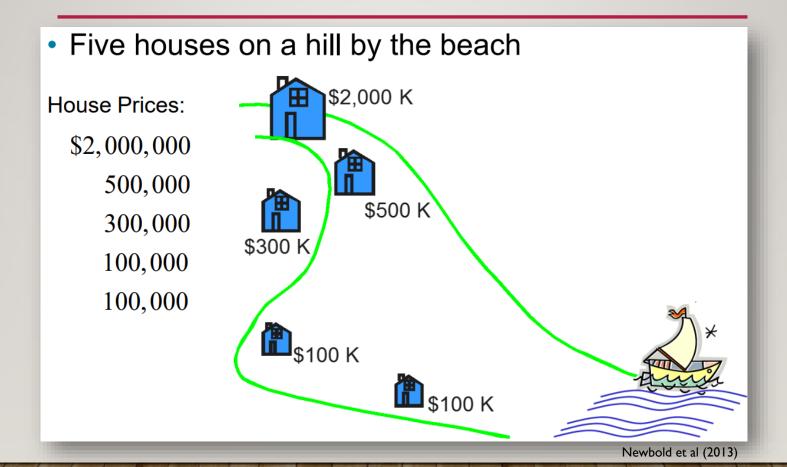
- 👉 Often used in population growth, compound interest, or growth rates.
- General comparison between means:

 $H \leq G \leq A$

WHICH MEASURE OF LOCATION IS THE "BEST"?

- Mean is generally used, unless extreme values (outliers) exist ...
- Then median is often used, since the median is not sensitive to extreme values.
 - Example: Median home prices may be reported for a region – less sensitive to outliers

REVIEW EXAMPLE



REVIEW EXAMPLE: SUMMARY STATISTICS

House Prices:

\$2,000,000

500,000

300,000

100,000

100,000

Sum 3,000,000

• Mean: $\left(\frac{\$3,000,000}{5}\right)$

= \$600,000

Median: middle value of ranked data

= \$300,000

Mode: most frequent value

= \$100,000

WEIGHTED MEAN

Weighted Mean

The weighted mean of a set of data is

$$\overline{x} = \frac{\sum w_i x_i}{n}$$

where w_i = weight of the ith observation and $n = \sum w_i$.

WEIGHTED MEAN: EXAMPLE

Example 2.17 Stock Recommendation (Weighted Mean)

Zack's Investment Research is a leading investment research firm. Zack's will make one of the following recommendations with corresponding weights for a given stock: Strong Buy (1), Moderate Buy (2), Hold (3), Moderate Sell (4), or Strong Sell (5). Suppose that on a particular day, 10 analysts recommend Strong Buy, 3 analysts recommend Moderate Buy, and 6 analysts recommend Hold for a particular stock. Based on Zack's weights, find the mean recommendation.

Solution Table 2.8 shows the weights for each recommendation and the computation leading to a recommendation based on the following weighted mean recommendation conversion values: if the weighted mean is 1, Strong Buy; 1.1 through 2.0, Moderate Buy; 2.1 through 3.0, Hold; 3.1 through 4.0, Moderate Sell; 4.1 through 5, Strong Sell.

Table 2.8 Computation of Zack's Investment Research's Average Brokerage Recommendation

ACTION	Number of Analysts, \boldsymbol{w}_i	V ALUE, x_i	$w_i x_i$
Strong Buy	10	1	10
Moderate Buy	3	2	6
Hold	6	3	18
Moderate Sell	0	4	0
Strong Sell	0	5	0

Newbold et al (2013)

$$\overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{n} = \frac{10 + 6 + 18 + 0 + 0}{19} = 1.79$$

The weighted mean of 1.79 yielded a Moderate Buy recommendation.

MEAN FOR GROUPED DATA

Definition:

The mean for grouped data is the weighted average of the class midpoints, weighted by the frequencies.

Formula (Grouped Data - Silvestre, 2007):

$$ar{x} = rac{\sum_{j=1}^m n_j \cdot x_j'}{n} = \sum_{j=1}^m f_j \cdot x_j'$$

Legend / Notation:

- $j=1,2,...,m \rightarrow \text{class index}$
- ullet $n_j=$ absolute frequency of class j
- ullet $f_j=$ relative frequency of class j
- $x'_j = \text{midpoint of class } j$
- m = number of classes
- ullet $n=\sum_{j=1}^m n_j o$ total number of observations

Silvestre (2007)

MEAN FOR GROUPED DATA: EXAMPLE

Example Calculation:		Absolute Frequencies	Relative Frequencies
Class Interval	x_j^\prime (Midpoint)	n_{j}	f_{j}
0–10	5	4	0.20
10–20	15	6	0.30
20–30	25	5	0.25
30–40	35	5	0.25

Step 1: Using absolute frequencies:

$$\bar{x} = \frac{(4\cdot 5) + (6\cdot 15) + (5\cdot 25) + (5\cdot 35)}{4+6+5+5} = \frac{410}{20} = 20.5$$

Step 2: Using relative frequencies:

$$ar{x} = (0.20 \cdot 5) + (0.30 \cdot 15) + (0.25 \cdot 25) + (0.25 \cdot 35) = 1 + 4.5 + 6.25 + 8.75 = 20.5$$

PROPORTIONS: QUANTITIES AND FREQUENCIES

Key Idea:

- A proportion represents the part of the total corresponding to a category.
- As a probability: A proportion can be interpreted as the likelihood of selecting an observation from that category, ranging from 0 to 1.
- As a percentage: A proportion can be expressed as a percentage of the total, ranging from 0% to 100%

Formulas:

1. Proportion / Probability:

Key Points:

Proportions **sum to I** → total probability = I Percentages **sum to I00**%

$$ext{Percentage} = f_j \cdot 100$$

 $f_j = rac{n_j}{n}$

Example:

Category	Quantity (n_j)	Proportion / Probability (f_j)	Percentage
А	10	0.25	25%
В	20	0.50	50%
С	10	0.25	25%

FOUR PROPERTIES OF THE MEAN

Let m(x) or \bar{x} be the mean of variable x.

Note: The notation used here follows **Silvestre (2007)**.

- 1. Addition / Subtraction of a Constant:
- Adding a constant c to all values:

$$m(x+c) = m(x) + c$$

• Subtracting a constant c from all values:

$$m(x-c) = m(x) - c$$

- 2. Multiplication / Division by a Constant:
- Multiplying all values by a constant c:

$$m(c \cdot x) = c \cdot m(x)$$

• Dividing all values by a constant *c*:

$$m(x/c) = m(x)/c$$

Silvestre (2007)

FOUR PROPERTIES OF THE MEAN

3. Mean of Deviations is Zero:

Note: The notation used here follows **Silvestre** (2007).

- $m(x-\bar{x})=m(x)-\bar{x}=0$
- The mean is the balance point of the data.
- 4. Mean of Grouped Values:
 - If the data are divided into groups $G_1,G_2,...,G_k$ with group means $\bar{x}_1,\bar{x}_2,...,\bar{x}_k$ and sizes $n_1,n_2,...,n_k$:

$$ar{x} = rac{n_1ar{x}_1 + n_2ar{x}_2 + ... + n_kar{x}_k}{n_1 + n_2 + ... + n_k}$$

Silvestre (2007)

QUANTILES: DEFINITION (REVIEW)

- What are Quantiles?
- Quantiles are values that divide a dataset into equal parts.
- Special cases:
 - Quartiles → Q1, Q2, Q3, Q4 (divide data into 4 equal parts)
 - Median = Q2
 - Deciles → D1, D2, ..., D10 (divide data into 10 equal parts)
 - Median = D5
 - Percentiles → P1, P2, ..., P100 (divide data into 100 equal parts)
 - Median = P50

QUANTILES FOR GROUPED DATA

$$q_p = l + rac{p - F^*(l)}{F^*(L) - F^*(l)} \cdot h$$

Silvestre (2007)

Legend / Notes:

- $ullet q_p = extsf{p}$ -th quantile of grouped data
- ullet l= lower class boundary of the class containing q_p
- ullet L= upper class boundary of that class
- $F^*(l) =$ cumulative relative frequency at l
- $F^*(L) =$ cumulative relative frequency at L
- p = quantile proportion (e.g., 0.25 for Q1)
- ullet h=L-l= class width of the class containing the quantile

QUANTILE FOR GROUPED DATA: EXAMPLE

Suppose we have the following frequency distribution of exam scores:					
Score Interval	Frequency	Relative Frequencies	Cumulative Relative Frequencies		
0,10 7	2	0.10	0.10		
(10,20]	5	0.25	0.35		
(20,30]	8	0.40	0.75		
(30,40]	4	0.20	0.95		
(40,50]	1	0.05	1.00		
Question: Find the 1st quartile (Q1).					

Step 1: Identify the class containing Q1

- Q1 corresponds to the **25th percentile**, so p=0.25.
- Look at the cumulative relative frequencies:

•

• (10,20]: 0.35 🔽

 \rightarrow Q1 lies in the (10,20] class.

QUANTILE FOR GROUPED DATA: EXAMPLE

Cupposouvo	have the	fallowing f		distribution	of over	
Suppose we	nave the	lollowing i	requency	distribution	oi exam so	Jores.

Question: Find the 1st quartile (Q1).

Score Interval	Frequency	Relative Frequency	Cumulative Relative Frequen
0,10 7	2	0.10	0.10
(10,20]	5	0.25	0.35
(20,30]	8	0.40	0.75
(30,40]	4	0.20	0.95
(40,50]	1	0.05	1.00

Step 2: Apply the formula

$$q_p = l + rac{p - F^*(l)}{F^*(L) - F^*(l)} \cdot h$$

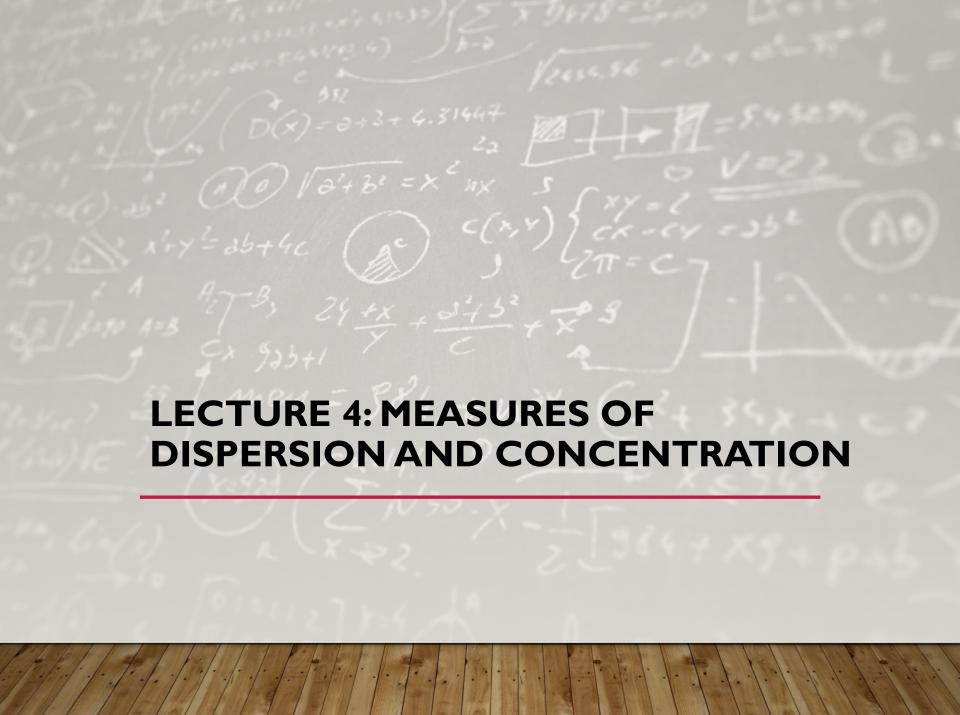
Where:

- $ullet \ l=10$ (lower boundary of the class)
- L=20 (upper boundary)
- $F^*(l) = 0.10$
- $F^*(L) = 0.35$
- p = 0.25
- h = L l = 10

$$Q1 = 10 + rac{0.25 - 0.10}{0.35 - 0.10} \cdot 10$$

Step 3: Calculate

$$Q1 = 10 + rac{0.15}{0.25} \cdot 10 = 10 + 0.6 \cdot 10 = 10 + 6 = 16$$



MEASURES OF DISPERSION AND CONCENTRATION

- 1. Measures of Absolute Dispersion describe the spread of the data in absolute terms
 - Range (Amplitude de variação)
- Interquartile Range (IQR) (Amplitude inter-quartis)
- Mean Absolute Deviation (MAD) (Desvio médio absoluto)
- Variance and Standard Deviation
 - For ungrouped (raw) data
 - For grouped (classified) data
- 2. Measures of Relative Dispersion describe spread relative to a central value:
- Coefficient of Variation (CV)
- Quartile-based measure: (Q3 Q1) / Median
- 3. Measures of Concentration describe how data are focused or unequal:
- Gini Index

MEASURES OF ABSOLUTE DISPERSION

1. Range (Amplitude de variação)

$$\mathrm{Range} = \max(x_i) - \min(x_i)$$

2. Interquartile Range (IQR) - Amplitude inter-quartis

$$IQR = Q3 - Q1$$

3. Mean Absolute Deviation (MAD) - Desvio médio absoluto (only for ungrouped data)

$$d = \frac{\sum_{i=1}^{n} |x_i - \bar{x}|}{n}$$

- 4. Variance Variância
- Ungrouped (raw) data:

$$s^2 = rac{\sum_{i=1}^n (x_i - ar{x})^2}{n} = rac{\sum_{i=1}^n x_i^2}{n} - ar{x}^2$$

Notes:

- x_i = individual data points (ungrouped)
- x'_j = class midpoint (grouped)
- \bar{x} = mean of the data
- n_j = absolute frequency of the j-th class
- f_j = relative frequency of the j-th class
- n = total number of observations

$$s=\sqrt{s^2}$$
 (standard deviation)

• Grouped (classified) data:

$$s^2 = rac{\sum_{j=1}^m n_j (x_j' - ar{x})^2}{n} = \sum_{j=1}^m f_j (x_j' - ar{x})^2 = rac{\sum_{j=1}^m n_j (x_j')^2}{n} - ar{x}^2$$

$$s = \sqrt{s^2}$$
 (standard deviation)

ABSOLUTE DISPERSION MEASURES (UNGROUPED DATA): EXAMPLE

Data (scores):

$$12, 18, 20, 22, 25, 28, 30, 35, 38, 40$$

1. Range

$$\mathrm{Range} = \max(x_i) - \min(x_i) = 40 - 12 = 28$$

- 2. Interquartile Range (IQR) using position formula and interpolation
- n = 10
- Q1 position: $(n+1) \cdot 0.25 = 2.75 \Rightarrow Q1 = 0.25 \cdot 18 + 0.75 \cdot 20 = 19.5$
- Q3 position: $(n+1) \cdot 0.75 = 8.25 \Rightarrow Q3 = 0.75 \cdot 35 + 0.25 \cdot 38 = 35.75$

$$IQR = Q3 - Q1 = 16.25$$

3. Mean Absolute Deviation (MAD)

$$ar{x} = 26.8, \quad d = rac{\sum_{i=1}^{10} |x_i - ar{x}|}{10} pprox 7.3$$

4. Variance

$$s^2 = rac{(12-26.8)^2 + \cdots + (40-26.8)^2}{10} pprox 74.68$$

5. Standard Deviation

$$s=\sqrt{s^2}pprox 8.64$$

(standard deviation)

ABSOLUTE DISPERSION MEASURES (GROUPED DATA): EXAMPLE

Data: Monthly Expenses of 20 Families (\$)				
Class Interval	$Midpoint\ x_j'$	Frequency n_j		
[0, 100]	50	2		
]100, 200]	150	5		
]200, 300]	250	8		
]300, 400]	350	4		
]400, 500]	450	1		

Step 1: Total observations

$$n = 2 + 5 + 8 + 4 + 1 = 20$$

Step 2: Range

 $Range = \max(upper\ limit) - \min(lower\ limit) = 500 - 0 = 500$

ABSOLUTE DISPERSION MEASURES (GROUPED DATA): EXAMPLE

Data: Monthly Expenses of 20 Families (\$)		Absolute Frequen
Class Interval Midpoint x_j^\prime		Frequency n_j
[0, 100]	50	2
]100, 200]	150	5
]200, 300]	250	8
]300, 400]	350	4
]400, 500]	450	1

Step 1: Total observations

$$n = 2 + 5 + 8 + 4 + 1 = 20$$

cies

Step 2: Mean

$$ar{x} = rac{\sum n_j x_j'}{n} = 235$$

Step 3: Variance

$$s^2 = rac{(50-235)^2 \cdot 2 + \dots + (450-235)^2 \cdot 1}{20} pprox 10750$$

Step 4: Standard Deviation

$$s=\sqrt{s^2}pprox 103.7$$

PROPERTIES OF VARIANCE

1. Variance of constants and shifts

$$v(c)=0,\quad v(x+c)=v(x),\quad v(x-c)=v(x)$$

• Adding or subtracting a constant does not change variance.

Note: The notation used here follows **Silvestre** (2007).

2. Variance of scaled variables

$$v(cx)=c^2v(x), \quad v\left(rac{x}{c}
ight)=rac{v(x)}{c^2}, \quad c
eq 0$$

- Scaling by a factor c multiplies variance by c^2 .
- 3. Variance decomposition for grouped data
- Suppose n observations divided into k groups g_1,g_2,\ldots,g_k with n_1,n_2,\ldots,n_k elements, such that $n_1+n_2+\cdots+n_k=n$.
- Let $\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_k$ be the group means and $s_1^2, s_2^2, \ldots, s_k^2$ the group variances.

$$v_{ ext{total}} = \underbrace{\sum_{j=1}^k rac{n_j}{n} s_j^2}_{ ext{within-group}} + \underbrace{\sum_{j=1}^k rac{n_j}{n} (ar{x}_j - ar{x})^2}_{ ext{between-group}}$$

Note: This decomposition shows how total variability is explained by variability within groups and variability between groups.
Silvestre (2007)

RELATIVE DISPERSION MEASURES

1. Coefficient of Variation (CV)

$$CV = rac{s}{ar{x}} imes 100\%$$

- Measures relative variability compared to the mean.
- Useful to compare variability across datasets with different units or scales.

2. Interquartile Range Ratio (IQR / Median)

$$\text{Relative IQR} = \frac{Q3 - Q1}{\text{Median}}$$

- Measures dispersion relative to the central value (median).
- Robust to extreme values (outliers).

Notes:

- Both measures are dimensionless, allowing comparison between different datasets.
- CV is more sensitive to changes in the mean; Relative IQR is more robust.

Silvestrel (2007)

RELATIVE DISPERSION MEASURES: EXAMPLE

2000, 2200, 2500, 2700, 2800, 3000, 3200, 3500

Step 1: Mean and Standard Deviation

$$\bar{x} = 2712.5, \quad s \approx 467.3$$

Step 2: Coefficient of Variation (CV)

$$CV = rac{s}{ar{x}} imes 100\% pprox 17.2\%$$

Step 3: Interquartile Range (IQR) - using interpolation formula

- Q1 position: $(n+1) \cdot 0.25 = 9 \cdot 0.25 = 2.25$
 - ullet r=2 , lpha=0.25

$$Q1 = (1 - 0.25) \cdot x_2 + 0.25 \cdot x_3 = 0.75 \cdot 2200 + 0.25 \cdot 2500 = 2275$$

- Q3 position: $(n+1) \cdot 0.75 = 6.75$
 - $r = 6, \alpha = 0.75$

$$Q3 = (1 - 0.75) \cdot x_6 + 0.75 \cdot x_7 = 0.25 \cdot 3000 + 0.75 \cdot 3200 = 3150$$

$$IQR = Q3 - Q1 = 3150 - 2275 = 875$$

Step 4: Relative IQR

$$ext{Relative IQR} = rac{ ext{IQR}}{ ext{Median}} = rac{875}{2750} pprox 0.318$$

K-TH MOMENT ABOUT THE ORIGIN

- 1. k-th Moment about the Origin (Positive Integer k = 1, 2, ...)
 - For ungrouped data (simple data):

$$m_k' = \frac{1}{n} \sum_{i=1}^n x_i^k$$

For grouped data:

$$m_k' = rac{1}{n}\sum_{j=1}^m n_j(x_j')^k$$

where x_j^\prime = class midpoint, n_j = frequency, m = number of classes.

Note:

- Raw moments are computed about the origin.
- They are used to calculate variance, skewness, and kurtosis

2. First Moment (k=1) - Mean

Ungrouped:
$$m_1' = \frac{1}{n} \sum_{i=1}^n x_i = ar{x}$$

$$ext{Grouped: } m_1' = rac{1}{n} \sum_{i=1}^m n_j x_j' = ar{x}_{grouped}$$

3. Second Moment (k=2) – Raw Second Moment

Ungrouped:
$$m_2' = \frac{1}{n} \sum_{i=1}^n x_i^2$$

Grouped:
$$m_2' = \frac{1}{n} \sum_{j=1}^m n_j (x_j')^2$$

K-TH CENTRAL MOMENT ABOUT THE MEAN

k-th Central Moment (k = 1, 2, ...)

Ungrouped data:

$$m_k = rac{1}{n} \sum_{i=1}^n (x_i - ar{x})^k$$

Grouped data:

$$m_k = rac{1}{n}\sum_{j=1}^m n_j (x_j' - ar{x})^k$$

where x_j' = class midpoint, n_j = frequency, m = number of classes.

Note:

 Central moments measure variability around the mean, with the second central moment equal to the variance.

Special cases:

• k = 1 (First central moment):

$$m_1 = 0$$

• k = 2 (Second central moment – Variance):

$$m_2=s^2=rac{1}{n}\sum (x_i-ar{x})^2 \quad ext{or} \quad rac{1}{n}\sum n_j(x_j'-ar{x})^2$$

MEASURE OF CONCENTRATION: GINI INDEX & LORENZ CURVE

1. Gini Index (G) - Discrete version

$$G = rac{\sum_{i=1}^{m-1} (p_i - q_i)}{\sum_{i=1}^{m-1} p_i} = 1 - rac{\sum_{i=1}^{m-1} q_i}{\sum_{i=1}^{m-1} p_i}$$

Notation:

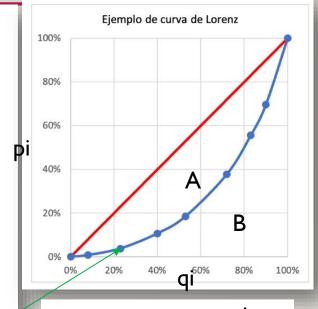
- $ullet p_i = rac{\sum_{j=1}^i n_j}{n} o$ cumulative proportion of **observations** up to class i
- $q_i = rac{\sum_{j=1}^i t_j}{\sum_{k=1}^m t_k}$ ightarrow cumulative proportion of the **variable** up to class i
- $t_j = n_j \cdot x_j' o$ total of the variable in class j (x_j' = class midpoint)
- m = total number of classes

Conditions:

$$0 \le p_i \le 1$$
, $0 \le q_i \le 1$, $p_i \ge q_i$, $i = 1, \ldots, m$

Interpretation:

- G=0 \rightarrow perfect equality
- ullet G=1 ightarrow maximum inequality



$$Gini\ Index = \frac{A}{A+B}$$

2. Lorenz Curve

- ullet Graph of q_i (cumulative share of variable) vs. p_i (cumulative population)
- ullet The area between the Lorenz curve and the line of equality is used to calculate G

GINI INDEX FOR DATA GROUPED: EXAMPLE

Data			
Class (k€)	n_{j}	x_j'	$t_j=n_jx_j'$
0–20	10	10	100
20–40	15	30	450
40-60	20	50	1000
60-80	5	70	350

• n_i : class frequency

• x_i' : class midpoint

• $t_j = n_j x_j'$ (class total income)

ullet $N=\sum_{j}n_{j}$ (total population)

• $T = \sum_{j} t_{j}$ (total income)

 n_j/N (class population share)

 t_{i}/T (class income share)

• P_i = (cumulative population share up to class i)

• Q_i : (cumulative income share up to class i)

Totals:

$$N = 10 + 15 + 20 + 5 = 50$$

$$T = 100 + 450 + 1000 + 350 = 1900$$

Shares and cumulative shares

Class	n_j/N	t_j/T	P_i (cum.)	Q_i (cum.)
0–20	0.20000	0.0526316	0.20000	0.0526316
20–40	0.30000	0.2368421	0.50000	0.2894737
40–60	0.40000	0.5263158	0.90000	0.8157895
60–80	0.10000	0.1842105	1.00000	1.0000000

(Values shown to 5–7 significant digits for clarity)

GINI INDEX FOR DATA GROUPED: EXAMPLE

Apply Silvestre's formula

Silvestre's version sums the cumulative shares **up to the penultimate class** (i.e. exclude the last row where $P_m=Q_m=1$):

$$G = 1 - \frac{\sum_{i=1}^{m-1} Q_i}{\sum_{i=1}^{m-1} P_i}.$$

Compute the sums (exclude last class):

- $\sum_{i=1}^{m-1} P_i = 0.20000 + 0.50000 + 0.90000 = 1.60000$
- $\sum_{i=1}^{m-1} Q_i = 0.0526316 + 0.2894737 + 0.8157895 = 1.1578948$

Now

$$G = 1 - \frac{1.1578948}{1.60000} = 1 - 0.72368425 = 0.27631575 \approx \mathbf{0.27632}.$$

• G=0 \rightarrow perfect equality (everyone has exactly the same income). • G=1 \rightarrow maximum inequality (one person has all the income) ★ In practice: Researchers often classify Gini values into approximate ranges: Gini Value Typical Interpretation 0.00 - 0.20 Very low inequality (almost perfect equality, rarely observed in large societies). 0.20 - 0.30Low inequality. 0.30 - 0.40Moderate inequality 0.40 - 0.50High inequality. > 0.50 Very high (extreme) inequality.

THANKS!

Questions?