

Master in Mathematical Finance

Probability Theory and Stochastic Processes

First Semester - 2023/2024

Normal Season - First Midterm Test (MT1) - November 9, 2023 - Time: 1 hour

Justify your answers carefully

The values in [*.*] represent the rating of the corresponding question on a 0-10 scale

1. [2.0] Let $\Omega = \{1, 2, 3, 4\}$. Give examples of three different σ -algebras $\mathcal{F}_1, \mathcal{F}_2$, and \mathcal{F}_3 of Ω , such that $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3$.

- **2.** [4.0] Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
 - (a) Considering X a random variable that can only take one possible value $c \in \mathbb{R}$, describe $\sigma(X)$.
 - (b) Consider $g: \Omega \to \mathbb{R}$ a \mathcal{F} -measurable function. Let \mathcal{G} be a σ -algebra of Ω such that $\mathcal{G} \subset \mathcal{F}$. Is g also \mathcal{G} -measurable?
 - (c) Let $A, B \in \mathcal{F}$ such that $\mathbb{P}(A) = 0$. Compute $\mathbb{P}(B) \mathbb{P}(A \cup B)$.
- **3.** [4.0] Consider $\Omega = [0, +\infty[$ and $f_n : \Omega \to \mathbb{R}$ a sequence of functions such that for each $n \geq 2$,

$$f_n(x) = \frac{1}{1 + x^n}.$$

Justifying every step of your resolution, compute:

- (a) $\lim_{n \to +\infty} f_n(x)$, for every $x \in \Omega$.
- (b) $\lim_{n\to+\infty} \int_{\Omega} f_n(x) dm(x)$, where m is the Lebesgue measure.
- (c) $\lim_{n\to+\infty} \int_{[1,+\infty[} f_n(x) d\delta_1(x)$, where δ_1 is the Dirac measure at 1.