Lab05SA: Building an Arena Battle Simulation in
Python

Goal:

Learn to design and implement a simple simulation using classes and objects in Python.

By the end of this lab, you will understand how to define classes, create objects, and make them
interact in a basic battle game.

1. Introduction

In this lab, you will design a small text-based battle simulation in which fighters from different
historical eras compete in an arena. You will learn to:

e Define Python classes (Character, Arena).
o Create objects that represent game entities.

o Use methods to model actions (attack, defend).
e Use loops and conditionals to control the flow of a simulation.

2. Step 1 — Create the Character Class

Objective: Learn to define a simple Python class with attributes.
Instructions:

1. Open a new Python file named game .py.(or use Jupyter)
2. Copy and run the following code:

class Character:

def init (self, name, era, hp, atk):
self.name = name
self.era = era

self.hp = hp
self.atk = atk

3. Add a short test to create one character:

if name == " main ":
hero = Character ("Ambatus", "Lusitanian, II BC", 100, 15)
print (hero.name, hero.era, hero.hp, hero.atk)



Check: You should see Ambatus’s details printed correctly.

3. Step 2 — Add the Attack Method

Objective: Allow one character to attack another.
Instructions:

1. Inside the character class, add this method:

def attack(self, other):
print (f"{self.name} attacks {other.name} for {self.atk} damage!")

other.hp -= self.atk
2. Testit:
if name == " main ":
ambatus = Character ("Ambatus", "Lusitanian, II BC", 100, 15)
caius = Character ("Caius", "Roman, I AD", 120, 12)

ambatus.attack (caius)
print (f"{caius.name} now has {caius.hp} HP")

Check: You should see that Caius’s HP decreases after the attack.

Question: What happens if you attack the same character several times?

4. Step 3 — Add a Method to Check if Alive

4. Objective: Let characters know if they still have HP left.
Instructions:

1. Add this method to your Character class:

def is alive(self):
return self.hp > 0

2. Testit:
if name == " main_ ":
ambatus = Character ("Ambatus", "Lusitanian, II BC", 20, 15)
caius = Character ("Caius", "Roman, I AD", 10, 12)

ambatus.attack (caius)
print (f"Is {caius.name} alive? {caius.is_alive()}")



Check: When a character’s HP drops below 0, is alive () should return False.

S. Step 4 — Create a Simple Arena (Two Fighters)
Objective: Make two characters fight automatically.
Instructions:

1. Create a new file called arena.py.
2. Add this code:

from character import Character
import random

class Arena:
def init (self, fighterl, fighter2):
self.fighterl = fighterl
self.fighter2 fighter2

def fight (self):
print ("Battle begins!\n")
while self.fighterl.is alive() and self.fighter2.is alive():
attacker, defender = random.choice ([
(self.fighterl, self.fighter2),
(self.fighter2, self.fighterl)
1)
attacker.attack (defender)
print (f"{defender.name} now has {max (0, defender.hp)} HP.\n")

winner = self.fighterl if self.fighterl.is alive () else self.fighter2
print (f"{winner.name} from {winner.era} wins the duel!")

3. Test the arena:

if name == " main ":
ambatus = Character ("Ambatus", "Lusitanian, II BC", 100, 15)
caius = Character ("Caius", "Roman, I AD", 120, 12)
arena = Arena (ambatus, caius)

arena.fight ()

Check: You should see the battle unfold with random attacks until one fighter wins.

6. Step 5 — Expand to Multiple Fighters

Objective: Allow more than two fighters to join the arena.

Instructions:



1. Modify your Arena class as follows:

class Arena:
def init (self):
self.fighters = []

def add(self, character):
self.fighters.append (character)

def fight (self):
print ("\nThe Grand Battle Begins!\n")
alive = [c for c in self.fighters if c.is alive()]
while len(alive) > 1:
for ¢ in alive:

targets = [e for e in alive if e != c]
if not targets:

break
target = random.choice (targets)

c.attack (target)
print (f"{target.name} now has {max (0, target.hp)} HP
remaining.\n")
alive = [c for c¢ in self.fighters if c.is alive()]
winner = alive[0]
print (f"\n {winner.name} from {winner.era} wins the battle!\n")

2. Create and add multiple fighters:

if name == " main ":
from character import Character

fighters = [
Character ("Ambatus", "Lusitanian, II BC", 100, 15),
Character ("Caius", "Roman, I AD", 120, 12),
Character ("Fredrick", "Goth, Vv AD", 110, 13),
Character ("Ali", "Moorish, IX AD", 100, 14),
Character ("Sancho", "Templar, XII AD", 130, 11),
Character ("Gil", "Sailor, XV AD", 105, 16),

]

arena = Arena ()

for £ in fighters:
arena.add (f)

arena.fight ()

Check: The program now simulates a large-scale arena fight, where all characters battle until
only one remains.

7. Step 6 — Optional Challenge

Objective: Add new features to make the game more interesting.



Suggestions:
e Add adefend () method that reduces damage by half.

e Show a health bar (like #####----- ) to visualize HP.
e QGive random bonuses or abilities to different eras.

8. Reflection

Questions:

e How does each method (attack, is alive) change an object’s state?
e Why do we use loops inside the fight () method?
¢ How could you make the game results more strategic and less random?



