
Lab05A: Building an Arena Battle Simulation in

Python

Goal:

Learn to design and implement a simple simulation using classes and objects in Python.

By the end of this lab, you will understand how to define classes, create objects, and make them

interact in a basic battle game.

1. Introduction

In this lab, you will design a small text-based battle simulation in which fighters from different

historical eras compete in an arena. You will learn to:

• Define Python classes (Character, Arena).

• Create objects that represent game entities.

• Use methods to model actions (attack, defend).

• Use loops and conditionals to control the flow of a simulation.

2. Step 1 – Create the Character Class

Objective: Learn to define a simple Python class with attributes.

Instructions:

1. Open a new Python file named game.py.(or use Jupyter)

2. Copy and run the following code:

class Character:

 def __init__(self, name, era, hp, atk):

 self.name = name

 self.era = era

 self.hp = hp

 self.atk = atk

3. Add a short test to create one character:

if __name__ == "__main__":

 hero = Character("Ambatus", "Lusitanian, II BC", 100, 15)

 print(hero.name, hero.era, hero.hp, hero.atk)

Check: You should see Ambatus’s details printed correctly.

3. Step 2 – Add the Attack Method

Objective: Allow one character to attack another.

Instructions:

1. Inside the Character class, add this method:

 def attack(self, other):

 print(f"{self.name} attacks {other.name} for {self.atk} damage!")

 other.hp -= self.atk

2. Test it:

if __name__ == "__main__":

 ambatus = Character("Ambatus", "Lusitanian, II BC", 100, 15)

 caius = Character("Caius", "Roman, I AD", 120, 12)

 ambatus.attack(caius)

 print(f"{caius.name} now has {caius.hp} HP")

Check: You should see that Caius’s HP decreases after the attack.

Question: What happens if you attack the same character several times?

4. Step 3 – Add a Method to Check if Alive

4. Objective: Let characters know if they still have HP left.

Instructions:

1. Add this method to your Character class:

 def is_alive(self):

 return self.hp > 0

2. Test it:

if __name__ == "__main__":

 ambatus = Character("Ambatus", "Lusitanian, II BC", 20, 15)

 caius = Character("Caius", "Roman, I AD", 10, 12)

 ambatus.attack(caius)

 print(f"Is {caius.name} alive? {caius.is_alive()}")

Check: When a character’s HP drops below 0, is_alive() should return False.

5. Step 4 – Create a Simple Arena (Two Fighters)

Objective: Make two characters fight automatically.

Instructions:

1. Create a new file called arena.py.

2. Add this code:

from character import Character

import random

class Arena:

 def __init__(self, fighter1, fighter2):

 self.fighter1 = fighter1

 self.fighter2 = fighter2

 def fight(self):

 print("Battle begins!\n")

 while self.fighter1.is_alive() and self.fighter2.is_alive():

 attacker, defender = random.choice([

 (self.fighter1, self.fighter2),

 (self.fighter2, self.fighter1)

])

 attacker.attack(defender)

 print(f"{defender.name} now has {max(0, defender.hp)} HP.\n")

 winner = self.fighter1 if self.fighter1.is_alive() else self.fighter2

 print(f"{winner.name} from {winner.era} wins the duel!")

3. Test the arena:

if __name__ == "__main__":

 ambatus = Character("Ambatus", "Lusitanian, II BC", 100, 15)

 caius = Character("Caius", "Roman, I AD", 120, 12)

 arena = Arena(ambatus, caius)

 arena.fight()

Check: You should see the battle unfold with random attacks until one fighter wins.

6. Step 5 – Expand to Multiple Fighters

Objective: Allow more than two fighters to join the arena.

Instructions:

1. Modify your Arena class as follows:

class Arena:

 def __init__(self):

 self.fighters = []

 def add(self, character):

 self.fighters.append(character)

 def fight(self):

 print("\nThe Grand Battle Begins!\n")

 alive = [c for c in self.fighters if c.is_alive()]

 while len(alive) > 1:

 for c in alive:

 targets = [e for e in alive if e != c]

 if not targets:

 break

 target = random.choice(targets)

 c.attack(target)

 print(f"{target.name} now has {max(0, target.hp)} HP

remaining.\n")

 alive = [c for c in self.fighters if c.is_alive()]

 winner = alive[0]

 print(f"\n {winner.name} from {winner.era} wins the battle!\n")

2. Create and add multiple fighters:

if __name__ == "__main__":

 from character import Character

 fighters = [

 Character("Ambatus", "Lusitanian, II BC", 100, 15),

 Character("Caius", "Roman, I AD", 120, 12),

 Character("Fredrick", "Goth, V AD", 110, 13),

 Character("Ali", "Moorish, IX AD", 100, 14),

 Character("Sancho", "Templar, XII AD", 130, 11),

 Character("Gil", "Sailor, XV AD", 105, 16),

]

 arena = Arena()

 for f in fighters:

 arena.add(f)

 arena.fight()

Check: The program now simulates a large-scale arena fight, where all characters battle until

only one remains.

7. Step 6 – Optional Challenge

Objective: Add new features to make the game more interesting.

Suggestions:

• Add a defend() method that reduces damage by half.

• Show a health bar (like #####-----) to visualize HP.

• Give random bonuses or abilities to different eras.

8. Reflection

Questions:

• How does each method (attack, is_alive) change an object’s state?

• Why do we use loops inside the fight() method?

• How could you make the game results more strategic and less random?

