

Conceitos: Formação e Operacionalização

Amílcar Moreira

ISEG - Instituto Superior de Economia e Gestão Universidade de Lisboa

'Conceitos': O que são? E para que servem?

'Conceitos': O que são? E para que servem?

Na aula anterior falamos sobre os (/modelos) que nos podem ajudar no refinamento da nossa Questão de Investigação.

Acrómio	Componentes	Tipo de estudo/disciplina
PICO ^{10-11,14}	Population, Intervention, Comparison, Outcome	•
PICOT15	Population, Intervention, Comparison, Outcome, Timestamp	
PICOS14	Population, Intervention, Comparison, Outcome, Study type	
PICOC16	Population, Intervention, Comparison, Outcome, Context	Quantitativo/
PICo 17-18	Population, Interest Phenomenon, Context	Várias disciplinas e contextos clínicos
PO ¹¹	Population/Phenomenon Outcome	
EPICOT ¹⁹⁻²¹	Evidence, Population, Intervention, Comparison, Outcome, Timestamp	
PICOTT/ PICOTS ²²	Population, Intervention, Comparison, Outcome, Type of question, Type of study design Population, Intervention, Comparison, Outcome, Study type	
PECODR ²³	Problem, Exposure/Intervention, Comparison, Outcome, Duration, Results	
PISCOS24	Population, Intervention, Setting/Comparison, Outcome, Study type	Qualitativos e mistos/Saúde pública
PESICOB	Population, Environment, Stakeholders, Intervention, Comparison, Outcome,	Quantitativo /terapeutas da fala
PIPOH/S ²⁶	Population, Intervention, Professionals, Outcome, Healthcare/Setting	Quantitativo/Guidelines

Estrutura Adaptada de: Davies¹¹; Joanna Briggs Institute¹³; Martínez Díaz et al.º

Fonte: Sousa et al, 2018

'Conceitos': O que são? E para que servem?

- Como fica óbvio deste exemplo, uma questão pode ser decomposta num conjunto de elementos.
- Sendo que em muitos casos, esses elementos remetem para conceitos fundamentais do estudo em análise.

 Table 2.4
 Examples of using PICO to ask clear quantitative questions

	Example 1	Example 2	Example 3	Example 4
P Population and their problem	In patients with acute asthma	In children with a spinal deformity	In children with a fever	Among family members of patients with mental health problems
l Intervention or issue	how effective are antibiotics	how effective is bracing	how effective is paracetamol as compared to	how effective is listening to tranquil music, or audiotaped comedy routines
C Comparative intervention	as compared to standard care	as compared to observation	ibuprofen	as compared to standard care (none)
O Outcomes or themes	at reducing sputum production and coughing?	at reducing the scoliosis curvature?	at reducing fever and infection?	in reducing reported anxiety?

Fonte: Sousa et al, 2018

'Conceitos': O que são?

- Daqui podemos derivar três características fundamentais dos conceitos:
 - "Os conceitos, ou constructos, s\u00e3o ideias que representam o fen\u00f3meno.",
 Lewis-Beck et al (2004: 161)
 - "Os conceitos são os blocos de construção da teoria e representam os pontos em torno dos quais é conduzida a investigação social.", Bryman (2012: 161)
 - "São categorias para a organização de ideias e observações.", Lewis-Beck et al (2004: 161)

'Conceitos': Para que servem?

- A existência de conceitos estáveis e consensuais, enquanto garantia da validade do processo de recolha e análise de dados, é uma condição essencial para a produção (e expansão) de conhecimento científico.
- Esta necessidade é particularmente premente no contexto de estudos de natureza comparativa, em que tentamos usar uma mesma categoria para medir um fenómeno em diferentes contextos.

'Conceitos': Para que servem?

- E, no entanto, as situações de ambiguidade e confusão na definição e aplicação de conceitos são comuns nas ciências Sociais.
- Estas situações derivam de duas fontes:
 - Diferentes pontos de partida epistemológicos e/ou teóricos;
 - Necessidade de aplicar conceitos em novos contextos ou diferentes realidades.

Objetivos da Aula de Hoje

- Perceber o papel dos Conceitos no processo de produção/expansão do conhecimento científico:
- Perceber a diferença entre a Formação e a Operacionalização de Conceitos;
- Perceber a importância de **conciliar** os requisitos de **Precisão** e **Extensão**;
- Saber identificar quais a principais abordagens à Formação de Conceitos (Hierárquicas e Não-Hierárquicas) e como se distinguem;
- Saber identificar as principais etapas do processo de Operacionalização de Conceitos, e quais os critérios que devem ser tidos em conta em cada uma dessas fases.

Formação Vs. Operacionalização de Conceitos

Formação Vs. Operacionalização de Conceitos

- Uma distinção básica:
 - Formação de Conceitos (/Conceptualização) Processo pelo qual os conceitos recebem um significado teórico. O processo normalmente envolve definir os conceitos de forma abstrata em termos teóricos;
 - Operacionalização de Conceitos Conjunto de procedimentos que nos permitem tornar os conceitos em categorias mensuráveis.

Fonte: Lewis-Beck et al (2004: 161-2)

'Conceitos': Entre Extensão e Precisão

 De acordo com Giovanni Sartori (1970), mesmo reconhecendo a natureza eminentemente abstrata, os conceitos devem ser vistos como categorias (universais) eminentemente empíricas, i.e. que devem ser possíveis de medir/validar empiricamente.

Fonte: Sartori (1970): 56-9

'Conceitos': Entre Extensão e Precisão

- A natureza eminentemente empírica dos conceitos, está na base de um (potencial) conflito entre Precisão e Extensão na formação de conceitos e que está expresso no 'Travelling Problem' formulado por Sartori (1970):
 - A produção/expansão do conhecimento científico implica, em muitos casos, estudo de novas realidades.
 - Até que ponto é possível estudar essas novas com as categorias que tradicionalmente usamos? (Concept Travelling)?;
 - Segundo Sartori (1970), alerta para a tendência de que este esforços de extensão do conhecimento científico é feito por via do alargamento do conteúdo dos conceitos (*Concept Streching*), que resulta numa perda de precisão dos mesmos.

Fonte: Sartori (1970): 56-9

A Formação de Conceitos

- Max Weber oferece-nos uma primeira tentativa de sistematizar o processo de Formação de Conceitos, e que está materializada na sua noção de Tipo-Ideal, e que pode ser resumida da seguinte forma:
 - Trata-se de uma categoria 'ideal' que nunca (ou raramente) é encontrada em estado puro na realidade concreta;
 - Tratando-se de uma categoria abstrata, o Tipo-Ideal pode ser usado para confrontar a realidade empírica que pretende representar, possibilitando a identificação de desvios e singularidades que terão depois de ser explicados cientificamente.

Fonte: Drisdale (1965)

A Formação de Conceitos: Duas formas de abordagem

A **Abordagem Hierárquica (/Clássica)** (Sartori, 1970).

 A relação entre conceitos é vista em termos de uma hierarquia taxonómica, com cada categoria [ou conceito] a ter limites claros e a definir propriedades partilhadas por todos os membros". A **Abordagem Não-Hierárquica** (Collier e Mahon, 1993).

 Incorpora também conceitos que não tem um conjunto propriedades claro, ou que não obedecem a uma hierarquia interna clara.

Fonte: Mair (2008): 179-182

 A natureza hierárquica da abordagem proposta por Sartori (1970), está evidenciada na sua noção de 'Escada de Abstração' (Ladder of Abstraction).

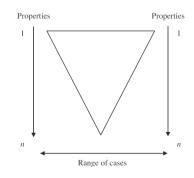
Levels of Abstraction	Major Comparative Scope and Purpose	Logical and Empirical Properties of Concepts
HL: High Level Categories Universal conceptualizations	Cross-area comparisons among heterogeneous contexts (global theory)	Maximal extension Minimal intension Definition by negation
ML: Medium Level Categories General conceptualizations and taxonomies	Intra-area comparisons among relatively homogeneous contexts (middle range theory)	Balance of denotation with connotation Definition by analysis, i.e. per genus et differentiam
LL: Low Level Categories Configurative conceptualizations	Country by country analysis (narrow-gauge theory)	Maximal intension Minimal extension Contextual definition

Fonte: Mair (2008: 179-182); Satroti (1970): 64-72

 A 'Escada de Abstração' oferece-nos um conjunto de orientações que devem guiar a formação de conceitos.

Levels of Abstraction	Major Comparative Scope and Purpose	Logical and Empirical Properties of Concepts
HL: High Level Categories Universal conceptualizations	Cross-area comparisons among heterogeneous contexts (global theory)	Maximal extension Minimal intension Definition by negation
ML: Medium Level Categories General conceptualizations and taxonomies	Intra-area comparisons among relatively	Balance of denotation with connotation
	homogeneous contexts (middle range theory)	Definition by analysis, i.e. per genus et differentiam
LL: Low Level Categories Configurative	Country by country analysis (narrow-gauge	Maximal intension Minimal extension
conceptualizations	theory)	Contextual definition

Fonte: Mair (2008: 179-182); Satroti (1970: 64-72)


- Os conceitos são classificados por referência a três níveis de abstração:
 - Categorias de nível elevado;
 - Categorias de nível médio;
 - Categorias de nível baixo;

Levels of Abstraction	Major Comparative Scope and Purpose	Logical and Empirical Properties of Concepts
HL: High Level Categories Universal conceptualizations	Cross-area comparisons among heterogeneous contexts (global theory)	Maximal extension Minimal intension Definition by negation
ML: Medium Level Categories General conceptualizations and taxonomies	Intra-area comparisons among relatively homogeneous contexts	Balance of denotation with connotation Definition by analysis,
	(middle range theory)	i.e. per genus et differentiam
LL: Low Level Categories Configurative	Country by country analysis (narrow-gauge	Maximal intension Minimal extension
conceptualizations	theory)	Contextual definition

Fonte: Mair (2008: 179-182); Satroti (1970: 64-72)

- Cada nível reflete uma relação entre o número de atributos (*Intension*) e o número de observações que este potencialmente cobre (*Extension*):
 - Quanto mais elevado o nível de abstração, menor o número de atributos e maior o universo de casos (potencialmente) cobertos:
 - Quanto mais baixo o nível de abstração, maior o número de atributos e menor o universo de casos (potencialmente) cobertos;

Fonte: Mair (2008: 186-192); Satroti (1970: 64-72)

- A escolha do tipo de conceitos a usar deve ser baseada no tipo de estudo que se pretende fazer:
 - Estudos mais abrangentes, que aponta à formação de teorias de natureza universal, devem usar conceitos mais abstratos;
 - Estudos mais focados, que apontam à explicação de um conjunto restrito de casos, devem usar conceitos menos abstratos;

Levels of Abstraction	Major Comparative Scope and Purpose	Logical and Empirica Properties of Concepts
HL: High Level Categories Universal conceptualizations	Cross-area comparisons among heterogeneous contexts (global theory)	Maximal extension Minimal intension Definition by negation
ML: Medium Level Categories General conceptualizations	Intra-area comparisons among relatively	Balance of denotation with connotation
and taxonomies	homogeneous contexts (middle range theory)	Definition by analysis, i.e. per genus et differentiam
LL: Low Level Categories	Country by country	Maximal intension
Configurative conceptualizations	analysis (narrow-gauge theory)	Minimal extension Contextual definition

Fonte: Mair (2008: 179-182); Satroti (1970: 64-72)

 Comparações entre casos só devem ser feitas com categorias com o mesmo grau de abstração;

Levels of Abstraction	Major Comparative Scope and Purpose	Logical and Empirical Properties of Concepts
HL: High Level Categories Universal conceptualizations	Cross-area comparisons among heterogeneous contexts (global theory)	Maximal extension Minimal intension Definition by negation
ML: Medium Level Categories General conceptualizations and taxonomies	Intra-area comparisons among relatively homogeneous contexts	Balance of denotation with connotation Definition by analysis,
	(middle range theory)	i.e. per genus et differentiam
LL: Low Level Categories Configurative	Country by country analysis (narrow-gauge	Maximal intension Minimal extension
conceptualizations	theory)	Contextual definition

Fonte: Mair (2008: 179-182); Satroti (1970: 64-72)

As Abordagens Não-Hierárquicas de Collier e Mahon (1993)

Collier e Mahon (1993) partem da critica de alguns dos pressupostos da perspetiva de Sartori (1970) para duas abordagens alternativas (mas complementares) à forma como Sartori tenta resolver o problema do **conceptual streching**.

Collier e Mahon (1993): O Método das 'Semelhanças de Família'

- A 'Escada de Abstração' parte de um pressuposto que os conceitos podem/devem ser organizados, de uma forma hierárquica estrita, em função do seu grau de abstração.
- Collier e Mahon (1993) argumentam que há situações em que não há um atributo que seja universalmente partilhado por todos os casos em análise.

Collier e Mahon (1993): O Método das 'Semelhanças de Família'

- Com base neste argumento, Collier e Mahon (1993) sugerem que este pressuposto que sustenta a Escala de Abstração de Sartori de deve ser relaxado e apelam à aplicação do 'Método das Semelhanças Familiares' como estratégia (alternativa, mas complementar) de conceptualização.
- O 'Método das Semelhanças Familiares' pressupõe que o processo de conceptualização passe por encontrar um conjunto de atributos comuns a uma dada realidade, que não são partilhados por todos os casos, mas que diferenciam esse fenómeno de outros.

Collier e Mahon (1993): Conceitos enquanto 'Categorias Radiais'

- A 'Escada de Abstração' parte de um pressuposto que os conceitos são definidos/delimitados por um conjunto de atributos que são necessários e suficientes.
- Collier e Mahon (1993) argumentam que há situações em que há uma categoria é
 central, e comporta um conjunto específico de atributos que descreve a essencia da
 realidade em causa; e um conjunto de sub-categorias que não (necessariamente)
 partilham atributos entre si, mas que partilham atributos com o conceito/categoria
 central.
- Na medida em que permite alargar o universo de casos cobertos sem reduzir a precisão dos conceitos adotados, a formação de conceitos como 'Categorias Radiais' oferece uma alternativa à Escada de Abstração ao problema do Concept Streching.

Operacionalização

Operacionalização: O Processo de Operacionalização

O processo de 'Operacionalização' implica a respostas a 4 questões básicas:

- Quais são as dimensões fundamentais do conceito?
- Quais são os indicadores mais adequados que descrevem completamente cada dimensão?
- A operacionalização mede o que deveria medir?
- Os instrumentos de medição são fiáveis?

Fonte: Sarantakos (2012): 155

Operacionalização: Seleção dos Indicadores

De acordo com Sarantakos (2012), o processo de **seleção de indicadores** deverá obedecer aos seguintes **critérios**:

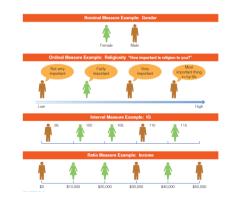
- **Relevância Empírica** Os indicadores devem refletir adequadamente o conceito que pretendem medir. Os indicadores devem ser sinónimos do conceito;
- **Correspondência** Os indicadores devem corresponder totalmente ao conceito, e apenas a um conceito, e devem ser exaustivos e mutuamente exclusivos;
- Adequação Empírica Os indicadores devem ter a capacidade de medir adequadamente todos os aspetos do conceito, cada um abordando apenas uma dimensão;
- Quantificação Devem ser utilizados procedimentos de quantificação uniformes.

Fonte: Sarantakos (2012): 156

Para além de considerações de nível mais geral, há um conjunto de questões práticas que devem ser consideradas na escolha de indicadores:

Disponibilidade de Dados- Em alguns casos, podemos defrontar-nos com a
 ausência de dados sobre a dimensão que estamos a tentar medir. Nestes casos
 podemos recorrer a variáveis proxy que nos possam dar uma ideai aproximada do
 que estamos a tentar medir. A utilização deste tipo de variáveis levanta, no
 entanto, questões de validade;

Fonte: Lewis-Beck et al (2004): 164-5; Babbie (2016: 143); Bryman (2012: 166-7)



- Número de Indicadores Algumas dimensões podem ser medidas por via de apenas um indicador. Noutros casos isso não é possível. Aliás a utilização de multiplos indicadores tem um conjunto de vantagens;
 - Quando um conceito é mais abstrato, encontrar uma medida que o capte é mais difícil;
 - As medidas de múltiplos indicadores são geralmente mais fiáveis do que as medidas baseadas num único indicador;
- No entanto, a utilização de múltiplos indicadores também tem desafios próprios, nomeadamente no que se refere à escolha do modelo de agregação e ponderação do peso de cada indicador.

Fonte: Lewis-Beck et al (2004): 164-5; Babbie (2016: 143); Bryman (2012: 166-7)

- Um terceiro aspecto a ter em conta, concerne a escolha da escala mais adequada para medir uma determinada realidade:
 - Escala Nominal Em casos em que os atributos da variável são apenas diferentes uns dos outros:
 - Escala Ordinal Em casos em que os atributos da variável podem ser classificados por uma ordem;

Fonte: Babbie (2016: 139-43)

- Um terceiro aspecto a ter em conta, concerne a escolha da escala mais adequada para medir uma determinada realidade:
 - Escala Intervalar Em casos em que os atributos da variável podem ser classificados por uma ordem e têm distâncias iguais entre atributos adiacentes:
 - Escala de Rácio Em casos em que os atributos da variável possuem todas as qualidades das escalas anteriores e temum 'zero verdadeiro'.

Ternals Male

Ordinal Measure Example: Religiosity "New important is religion to you?"

Not very Tarity Very Very Comparison of the Properties of the Proper

Nominal Measure Example: Gender

Fonte: Babbie (2016: 139-43)

Avaliação dos Indicadores: Os critérios de Validade e Consistência

A avaliação da Consistência de um indicador deve ter em conta os seguintes critérios:

- Estabilidade (Stability) Consistência entre as respostas das pessoas ao longo do tempo;
- Consistência Interna (Internal reliability) Consistência entre as respostas das pessoas ao longo dos itens numa medida de itens múltiplos (medida pelo Alpha de Crombach);
- Consistência entre Observadores (Inter-Observer Consistency)- Consistência entre as respostas das pessoas, independentemente do pesquisador em causa;

Fonte: Lewis-Beck et al (2004): 162-4

Avaliação dos Indicadores: Os critérios de Validade e Consistência

A avaliação da **Validade** de um indicador deve ter em conta os seguintes critérios:

- Validade Facial (Face Validty), i.e., Se, "à superfície", o indicador capta o conceito;
- Validade do Conteúdo (Content Validity) Se o indicador capta todas as dimensões ou características do conceito tal como é definido:
- Validade do Critério (Criterion-Related Validty) Até que ponto o indicador se correlaciona com outra medida aceite como um indicador preciso do conceito;
- Validade Discriminante/Convergente (Convergent vs. Discriminant validity). Grau em que múltiplos indicadores do conceito estão relacionados com o
 construto subjacente e não com algum outro construto.

Fonte: Lewis-Beck et al (2004): 162-4

www.iseg.ulisboa.pt

Amílcar Moreira

ISEG - Instituto Superior de Economia e Gestão Universidade de Lisboa

October 20, 2025