NoSQL

(version 2025)

Carlos J. costa

DBMS

 Database Management System

e Software used to manage
databases

 Create a database
* Modify a database
 Delete databases

* |nsert data into the database

* Delete data from the database

Database Management System

& Relational R I

Document Analytical(OLAP)

Column - Family
|| I

d

—

Key Value

Graph

All Database Rating

Top 40 Results
Submission ID Description Database Rating
w IDO00ST3 (MariaDB) Amazon Web Services - db.mb. xlarge 998
¥ IDO00581 (MySQL) Amazon Web Services - db.m5.xlarge 978
¥ IDO005T (MariaDB) Amazon Web Semvices - db.mS.xlarge 974
¥ IDO0D05S82 (MySQL) Amazon Web Senvices - db.mb.xlarge 972
¥ ID0D0SE1 (MySQL) Amazon Web Services - db.ma.xlarge 959
i IDO00598 (SQL Server) Amazon Web Services - db.mad xlarge 954
¥ IDO00560 (MySQL) Amazon Web Services - db.m5.xlarge 924
¥ IDO00S597 (SQL Senver) Amazon Web Sernvices - db.mad_xlarge 906
¥ IDO00562 (MySQL) Amazon Web Services - db.m5.large 902
¥ IDO00577 (PostgreSQL) Amazon Web Services - db.m5.xlarge 871

¥ IDO00593 (S0L Senver) Amazon Web Services - db.mbd.large 839

https://www.databasebenchmarks.net/

NoSQL

* Next Generation Databases mostly
addressing some of the points:

i i sa owonee
— being non-relational, e
. . Relational w :flju:rnn-Family
— distributed, \ EE B
- Open'SOU rce and Analytical (OLAP) G:"" Documen t
HE [2! &
— horizontal scalable. [{ I | ®*h%* see
® 000

* The original intention has
been modern web-scale databases.

v

NoSQL

* The movement began early 2009 and is
growing rapidly.
» Often more characteristics apply as:
— schema-free,
— easy replication support,
— simple API,
— eventually consistent / BASE (not ACID),
— a huge data amount, and more.

v

Relational Databases: ACID

Properties
* Atomic

— All of the work in a transaction completes (commit) or none of it completes

 Consistent

— A transaction transforms the database from one consistent state to another
consistent state.

— Consistency is defined in terms of constraints.

e |solated

— The results of any changes made during a transaction are not visible until the
transaction has committed.

 Durable

— The results of a committed transaction survive failures

structured

\—-® language

management

v

NoSQL: BASE Transactions

* Acronym opposite of ACID
— Basically Available,

— Soft state (State of the system may change
over time)

— Eventually Consistent (asynchronous
propagation)

v

Brewer's CAP Theorem

A distributed system can support only two of the following
characteristics:

«Consistency
— All replicas contain the same version of data
— Client always has the same view of the data (no matter what node)
Availability
— Systems remains operational on failing notes
— All clients can always read and write
*Partition tolerance
— Multiple entry points
— System remains operational on system communication malfunction
— System works well across physical network partitions

v

Brewer's CAP Theorem

HHHHHH

Partition-Tolerance

The system continues
1o operate in spite of
natwork failures

< sriak

= cassandra

Brewer's CAP Theorem

* What the CAP theorem really says:

— If you cannot limit the number of faults and
requests can be directed to any server and
you insist on serving every request you
receive then you cannot possibly be
consistent

 How it is interpreted:

— You must always give something up:
consistency, availability or tolerance to failure

and reconfiiuration

RDBMS vs NoSQL

RDBMS: NoSQL DB:

1

I

|

1

I

' Item[Price] -

E Item[Discount]
SELECT Name, Age :

I m

1

1

I

I

1

I

I

1

FROM Customers

-
N
N

S’

[\‘d (Customers)

— e

v

Taxonomy of NoSQL

The Hard Life of a NoSQL Coder

v

5!

Key-Value ’ i‘”’ §
L A

Graph Database
‘Document-oriented ’) o
*Column Family ﬁ?&

http://nosql-database.org/

v

Taxonomy of NoSQL
Redis

‘Eﬁ?éDB

membose sriak

?® Neoyj

4
ph data

ssandra

*Key-Value

*Graph Database

Document-oriented

*Column Family
http://nosql-database.org/

v

Taxonomy of NoSQL

Key-Value Graph DB

Column Family Document

] h
€«—

I\i

Taxonomy of NoSQL

Key-Value Graph DB

Key-Value - is
a hash table of
keys

Column Family Document

] h
€«—

I\i

Taxonomy of NoSQL

Key-Value Graph DB

Key-Value

&P redis

Column Family Document

] h
€«—

I\i

Taxonomy of NoSQL

Key-Value Graph DB

Column Family Document

] h
€«—

I\i

Graph
Database

- uses graph
structures for
queries with
nodes, edges
and properties
to represent
and store
data.

Taxonomy of NoSQL

Database
9) - uses graph
o structures for
queries with

nodes, edges
and properties
to represent
and store
data.

Taxonomy of NoSQL

Key-Value

Column Family

Graph DB

Document
Document-

oriented —
stores data in
flexible
hierarchical
data structures

] h
€«—

I\i

Taxonomy of NoSQL

Key-Value

Graph DB

s
{ e A ™
" id"™: "tomjohnson",
"firstName": "Tom", " id": "sammyshark",
"middleName™: "William", "firstiame”: "Sammy",
"lastiame": "Johnson™, “lastName": "Shark",
"email™: "tom.johnson@digi] "email": "sammy.shark@digitalocean.com"”,
"department”: ["Finance”, "department”: "Finance"
"socialMediafccounts™: [
{ (" W,
"type": "facebo| {
"usarname”: "to "_id": "tomjohnson”,
1, "firstName™: "Tom",
{ "middleName™: "William",
"type": "twitte "lastMams": "Johnson”,
"username”: "@t "email": "tom.johnson@digitalocean.com”,
3 "department™: ["Finance™, "&Accounting"]
] }
1 - J
_ J
1
1

—t Al

Document-
oriented

.mongo

Taxonomy of NoSQL

Column

Family — each

storage block
contains data from
only one column

A wide-column store
can be interpreted
as a two-
dimensional key—
value store

v

Key-Value

Column Family

Graph DB

Document

i
I A
l—

I\i

Taxonomy of NoSQL

Row-oriented

ID GPA

Freshman

003 3.33

Column-ariented

Column
Family

Senior

Freshman

Junior

cassandra

. mongo

 |Is a document database

« Stores data in flexible, JSON-like

documents

— meaning fields can vary from document to document
and data structure can be changed over time

e |s a distributed database at its core

— high availability, horizontal scaling, and geographic
distribution are built in and easy to use

. mongo

* Free and open-source, published under
the GNU Affero General Public License

 The document model maps to the
objects in your application code,
making data easy to work with

 Ad hoc queries, indexing, and real time
aggregation provide powerful ways to
access and analyze your data

v

‘ mongo

* Here we are connecting to a locally
hosted MongoDB database called test with
a collection named restaurants.

1. Connect to MongoDB instance running on localhost

client = pymongo.MongoClient ()

Access the 'restaurants' collection in the 'test' database

collection = client.test.restaurants

2.

new_

{

by

by

by

by

‘ mongo

5 example documents are being inserted into the restaurants collection.
Each document represents a restaurant with a name, star rating, and
categories (stored as an array).

Insert

documents = [

"name": "Sun Bakery Trattoria",

"stars": 4,

"categories": ["Pizza","Pasta","Italian","Coffee","Sandwiches"]
{

"name": "Blue Bagels Grill",

"stars": 3,

"categories": ["Bagels","Cookies","Sandwiches"]
{

"name": "Hot Bakery Cafe",

"stars": 4,

"categories": ["Bakery","Cafe","Coffee","Dessert"]
{

"name": "XYZ Coffee Bar",

"stars": 5,

"categories": ["Coffee","Cafe","Bakery","Chocolates"]
{

"name": "456 Cookies Shop",

"stars": 4,

"categories": ["Bakery","Cookies","Cake","Coffee"]

‘ mongo

* In this example, we run a simple query to get all of the documents in the
restaurants collection and store them as an array.

3. Query
for restaurant in collection.find():
pprint.pprint (restaurant)

* Indexes in MongoDB are similar to indexes in other database systems.
MongoDB supports indexes on any field or sub-field of a document in a
collection.

* Here, we are building an index on the name field with sort order ascending.

4. Create Index
collection.create index ([('name', pymongo.ASCENDING)])

v

‘ mongo

» Using MongoDB’s aggregation pipeline, you can filter and analyse data
based on a given set of criteria.

* In this example, we pull all the documents in the restaurants collection that
have a category of Bakery using the $match operator and then group them
by their star rating using the $group operator. Using the accumulator
operator, $sum, we can see how many bakeries in our collection have each
star rating.

5. Perform aggregation

pipeline = [
{"Smatch": {"categories": "Bakery"}},
{"Sgroup": {" id": "Sstars", "count": {"Ssum": 1}}}

]

pprint.pprint (list (collection.aggregate (pipeline)))

v

@ neoy)

Find Someone in your
Network Who Can Help
You Learn Neo4j

MATCH (you {name:"You"})

MATCH (expert)-[:WORKED WITH]->(db:Database
{name:"Neo473"})
MATCH path = shortestPath((you)-[:FRIEND*..5]-(expert))

RETURN db,expert,path

HOW TO WRITE A CV

DO YOU HAVE
ANY EXPERTISE
IN sQL?

A

=W

geek & poke

|
i

DOESN'T
MATTER.
WRITE:
"EXPERT IN
NO s@L"

W

Leverage the NoSQL boom

RECENTLY DURING THE
JOB INTERVIEW

OK.
You are an
expert in NoSQL.
Are there any other
technologies you
know well?

sjod g 3
e
.I

W

NoXML,
NoUML,
NoWSDL,
NoSAP,
NolBM, ...

References

Node.js MongoDB Get Started. (n.d.). Retrieved November 26, 2017, from
https://www.w3schools.com/nodejs/nodejs _mongodb.asp

What Is MongoDB? (n.d.). Retrieved November 26, 2017, from
https://www.mongodb.com/what-is-mongodb

What is a Graph Database? A Property Graph Model Intro. (n.d.). Retrieved
November 26, 2017, from https://neodj.com/developer/graph-database/

NOSQL Databases. (n.d.). Retrieved November 26, 2017, from http://nosql-
database.org/

	Slide 1: NoSQL (version 2025)
	Slide 2: DBMS
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: RDBMS vs NoSQL
	Slide 13
	Slide 14
	Slide 15: Taxonomy of NoSQL
	Slide 16: Taxonomy of NoSQL
	Slide 17: Taxonomy of NoSQL
	Slide 18: Taxonomy of NoSQL
	Slide 19: Taxonomy of NoSQL
	Slide 20: Taxonomy of NoSQL
	Slide 21: Taxonomy of NoSQL
	Slide 22: Taxonomy of NoSQL
	Slide 23: Taxonomy of NoSQL
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

