
Lab: Robot Energy Race

Objective: Learn how energy, efficiency, and small variations in performance affect the outcome

of a robot competition.

Part 1: Deterministic Robot

class Robot:

 def __init__(self, name, energy, efficiency):

 self.name = name

 self.energy = energy

 self.efficiency = efficiency

 self.distance = 0

 def move(self, speed):

 cost = speed**2 / self.efficiency

 if self.energy >= cost:

 self.energy -= cost

 self.distance += speed

Exercise 1

1.1. Create a robot “Manel” with energy = 100 and efficiency = 10.

1.2. Move at 30 m/s and calculate remaining energy.

1.3. Create a method to verify the energy and distance

Hint:

robot1 = Robot("Manel", 100, 10)
robot1.move(30)
print(robot1)

Part 2: Robot Competition

class RobotCompetition:

 def __init__(self, *robots):

 self.robots = robots

 def start_race(self, steps=10):

 for step in range(steps):

 for r in self.robots:

 r.move(10) # constant speed

 # Determine the winner without lambda

 winner = self.robots[0]

 for r in self.robots[1:]:

 if r.distance > winner.distance:

 winner = r

 print(f"Winner: {winner.name} ({winner.distance:.1f}m)")

Exercise 2

2.1. Create three robots: Tó (energy=100, efficiency=8), Xico (energy=100, efficiency=10), and Manel

(energy=100, efficiency=10).

2.2. Run a 10-step race

2.3. Which robot won?

2.4. How does efficiency affect distance?

Hint:

r1 = Robot("Toino", 100, 8)

race = RobotCompetition(r1, r2)

race.start_race(steps=10)

Part 3: Robot with Randomness

import random

class RandomRobot(Robot):

 def move(self, speed):

 # Add a small adjustment to speed: ±10%

 adjustment = random.uniform(0.9, 1.1)

 adjusted_speed = speed * adjustment

 # Optional: also adjust efficiency slightly

 adjusted_efficiency = self.efficiency * random.uniform(0.95, 1.05)

 cost = adjusted_speed**2 / adjusted_efficiency

 if self.energy >= cost:

 self.energy -= cost

 self.distance += adjusted_speed

 return adjusted_speed

Exercise 3

3.1. Replace the deterministic robots with RandomRobot instances

3.2. How does randomness influence the winner?

3.3. Compare the total distance of deterministic vs random robots.

3.4. What strategy seems safer: high efficiency or occasional bursts of speed?

	Lab: Robot Energy Race
	Part 1: Deterministic Robot
	Part 2: Robot Competition
	Part 3: Robot with Randomness

