
Lab: Market-Driven Business Simulation

Objective:

Simulate a simple market where companies compete using price and advertising strategies. The

market determines demand, and companies calculate revenue, cost, and profit. Learn to apply

object-oriented programming, randomness, and market modeling.

Part 1: Company

Each company has:

• Intrinsic strategy (price, advertising) defined at creation.

• Production cost per unit.

• Efficiency in advertising (how effective advertising is in increasing demand).

• Ability to calculate units sold, revenue, cost, and profit after market allocation.

class Company:

 def __init__(self, name, production_cost, efficiency, price, advertising):

 self.name = name

 self.production_cost = production_cost

 self.efficiency = efficiency

 self.price = price

 self.advertising = advertising

 self.units_sold = 0

 self.revenue = 0

 self.cost = 0

 self.profit = 0

 def receive_demand(self, units_demanded):

 """Calculate revenue, cost, and profit based on market demand."""

 self.units_sold += units_demanded

 self.cost += units_demanded * self.production_cost

 self.revenue += units_demanded * self.price

 self.profit += (units_demanded * self.price - units_demanded * self.production_cost)

 def __str__(self):

 return (f"{self.name}: Units Sold={self.units_sold}, "

 f"Revenue={self.revenue:.1f}, Cost={self.cost:.1f}, Profit={self.profit:.1f}")

Part 2: Market

The market:

• Allocates units to companies based on their strategy (advertising and price).

• Uses randomness to simulate market fluctuations.

import random

class Market:

 def __init__(self, total_units):

 self.total_units = total_units

 def calculate_demand(self, companies):

 """Allocate market units based on company strategies."""

 scores = []

 for c in companies:

 score = c.advertising * c.efficiency - 0.5 * c.price

 scores.append(max(score, 0))

 total_score = sum(scores)

 allocation = {}

 remaining_units = self.total_units

 for i, score in enumerate(scores):

 if total_score > 0:

 units = int(self.total_units * (score / total_score) * random.uniform(0.9, 1.1))

 else:

 units = 0

 units = min(units, remaining_units)

 allocation[i] = units

 remaining_units -= units

 return allocation

Part 3: Market Share

class MarketShare:

 def __init__(self, companies):

 self.companies = companies

 def show(self):

 total_units = sum(c.units_sold for c in self.companies)

 print("\n--- Market Share ---")

 for c in self.companies:

 share = (c.units_sold / total_units * 100) if total_units > 0 else 0

 print(f"{c.name}: {share:.1f}%")

Part 4: Single-Round Simulation

class MarketSimulation:

 def __init__(self, market, companies):

 self.market = market

 self.companies = companies

 def run(self):

 print("\n--- Market Simulation (Single Round) ---")

 allocation = self.market.calculate_demand(self.companies)

 # Companies receive their allocated units and calculate profit

 for i, company in enumerate(self.companies):

 company.receive_demand(allocation[i])

 print(company)

 # Determine best-performing company

 winner = max(self.companies, key=lambda c: c.profit)

 print(f"\n Best-performing company: {winner.name} with profit {winner.profit:.1f}")

Part 5: Example Setup

Create companies with intrinsic strategies
c1 = Company("SodaKing", production_cost=2, efficiency=8, price=5, advertising=5)

c2 = Company("FizzCo", production_cost=1.8, efficiency=6, price=6, advertising=4)

c3 = Company("BubblyInc", production_cost=2.2, efficiency=7, price=5.5, advertising=6)

Create market

market = Market(total_units=100)

Run single-round simulation

simulation = MarketSimulation(market, [c1, c2, c3])

simulation.run()

Show market share

market_share = MarketShare([c1, c2, c3])

market_share.show()

Part 6: Lab Exercises

1. Record units sold, revenue, cost, and profit for each company.

2. Discuss how price and advertising strategy affected demand.

3. Experiment with different strategies for each company and compare results.

4. Analyze market share and identify the most effective strategy.

5. Run multiple simulations to see how market randomness affects outcomes.

	Lab: Market-Driven Business Simulation
	Part 1: Company
	Part 2: Market
	Part 3: Market Share
	Part 4: Single-Round Simulation
	Part 5: Example Setup
	Part 6: Lab Exercises

