

Probability Theory and Stochastic Processes –
1st Semester - 2025/2026

Resit Assessment - 8th of January 2026

Duration: $(120 + \varepsilon)$ minutes, $|\varepsilon| \leq 30$

Version A

Name:

Student ID #:

Part I

- Complete the following sentences in order to obtain true propositions. The items are independent from each other.
- There is no need to justify your answers.

-
- (a) (4) In $\Omega = \{i, s, e, g\}$, consider the set $I = \{\{i, s\}, \{e, g\}\} \subset \mathcal{P}(\Omega)$. If $\mathcal{A}(I)$ is the smallest **algebra** containing I , then

$\mathcal{A}(I) = \dots$

- (b) (6) Let $A \in \mathcal{B}(\mathbb{R})$ and $f : A \rightarrow \mathbb{N}$ a **bijective** map. Then:

- with respect to the **cardinality**, A is
(use one of the terms: “finite countable” / “infinite countable” / “finite uncountable” / “infinite uncountable”)
- the Lebesgue measure of A is
- if $A = \mathbb{N} \cup \{-2, -1, 0\}$, then the expression of f could be:

$f(n) = \dots$

(c) (8) Let Ω be a finite set. Consider a probability space $(\Omega, \mathcal{F}, \mu)$ where \mathcal{F} is an algebra and μ is a **probability measure**. Let $A, B \subset \Omega$ be two events such that:

$$\mu(A) = \frac{2}{5}, \quad \mu(B) = \frac{3}{10}, \quad \text{and} \quad \mu(A|B) = \frac{1}{6},$$

Then, the following assertions hold:

- $\mu(A \cup B) = \dots$ and
- A and B are \dots
(use one of the terms: “*independent*” / “*dependent*”)

(d) (8) Consider the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ where $\mathcal{B}(\mathbb{R})$ denotes the σ -algebra of the Borelians of \mathbb{R} . The letters m , δ_a and μ denote the **Lebesgue**, the **Dirac** centered at $a \in \mathbb{R}$ and the **counting** measure, respectively. With respect to the sets

$$A = [0, 4] \cap \mathbb{Q}^c \quad \text{and} \quad B = \mathbb{Q} \setminus \{0\}$$

we may say that:

$$1. \quad m(A) = \dots$$

$$2. \quad \sum_{n=1}^{\infty} \frac{\delta_{\frac{1}{n}}(B)}{2^n} = \dots$$

$$3. \quad \mu(B \cap C) = 2. \quad \text{Then, one possibility for } C \text{ is } \dots$$

$$4. \quad (m \times \delta_{\pi})(A \times A) = \dots$$

(e) (4) With respect to the map $f : \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x) = 4 - x^2$, the **graphical representation** of f^- is:

- (f) (6) Consider the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ where $\mathcal{B}(\mathbb{R})$ denotes the σ -algebra of the Borelians of \mathbb{R} . The map $f : \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$f(x) = e^x$$

is **measurable** because f is Indeed, if \mathcal{U} is an open set of $Im(f)$, the set $f^{-1}(\mathcal{U})$ is an set of \mathbb{R} .

- (g) (6) Consider the measure space $([0, 1], \mathcal{B}([0, 1]), m)$ where $\mathcal{B}([0, 1])$ denotes the σ -algebra of the Borelians of $[0, 1]$ and m is the Lebesgue measure. The function $g : [0, 1] \rightarrow \{0, 2\}$ whose analytical expression is:

$$g(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q} \cap [0, 1] \\ 2 & \text{if } x \in \mathbb{Q}^c \cap [0, 1] \end{cases}.$$

is **discontinuous at** $x \in \dots$ (*write the maximal set where g is discontinuous*) and integrable with respect to Lebesgue. The map g is **not** integrable in the sense of

- (h) (6) The sequence of maps $f_n(x) = x^{2n}$, $x \in [0, 1]$, converges..... to the map $f(x) \equiv 0$, $x \in [0, 1[$ and $f(1) = 1$. However this convergence is **not uniform** because

.....

- (i) (6) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$ where $\mathcal{B}(\mathbb{R})$ denotes the σ -algebra of the Borelians of \mathbb{R} and m is the Lebesgue measure. Let $f : [0, 1] \rightarrow \mathbb{R}$ be:

$$f(x) = \begin{cases} 3x & \text{if } x < 1/2 \\ 3 - 3x & \text{if } x \geq 1/2 \end{cases}.$$

For each $n \in \mathbb{N}$, consider the set ($f^m = f \circ \dots \circ f$ refers to the composition of maps)

$$\Lambda_n = \{x \in [0, 1] : f^m(x) \in [0, 1], \forall m \in \{1, \dots, n\}\}.$$

Then:

1. the set $\Lambda = \bigcap_{n \in \mathbb{N}} \Lambda_n$ is usually called byset and $m(\Lambda) = \dots$
2. With respect to the **cardinality** of Λ , it is

- (j) (10) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$ where $\mathcal{B}(\mathbb{R})$ denotes the σ -algebra of the Borelians of \mathbb{R} and m is the Lebesgue measure. For each $n \in \mathbb{N}$, define the sequence of simple maps $\varphi_n \equiv n\chi_{[0,1/n]} : \mathbb{R}_0^+ \rightarrow \mathbb{R}_0^+$. The **graphical representation** of φ_3 is:

In this case, we have:

$$\dots = \int_{[0, +\infty[} \lim_{n \rightarrow +\infty} \varphi_n \, dm < \lim_{n \rightarrow +\infty} \int_{[0, +\infty[} \varphi_n \, dm = \dots$$

This does not contradict the **Dominated Convergence Theorem** because

(k) (6) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$ where $\mathcal{B}(\mathbb{R})$ denotes the σ -algebra of the Borelians of \mathbb{R} and m is the Lebesgue measure. Let μ be the **measure**

$$\mu(B) = \int_{B \cap [0,1]} x dm(x), \quad B \in \mathcal{B}(\mathbb{R}).$$

Then

$$\begin{aligned} \int_{\mathbb{R}} \sqrt{1+x^2} d\mu(x) &= \int_{[0,1]} \dots dm(x) \\ &= \int_0^1 x \sqrt{1+x^2} dx \\ &= \dots \end{aligned}$$

(l) (5) Consider the measure space $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2), m \times \delta_1)$ where $\mathcal{B}(\mathbb{R}^2)$ denotes the σ -algebra of the Borelians of \mathbb{R}^2 , m is the Lebesgue measure on \mathbb{R} and δ_1 is the Dirac measure centered at 1. Consider the map $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined by

$$f(x, y) = xy.$$

Then

$$\int_{[0,1]^2} f(x, y) dm(x) d\delta_1(y) = \dots$$

(m) (10) Consider the space $[0, 1]$ endowed with the σ -algebra of borelians $\mathcal{B}([0, 1])$. Define the measure

$$\mu = \frac{1}{2}\delta_0 + \frac{1}{2}m,$$

where δ_0 is the **Dirac** measure centered at 0 and m is the **Lebesgue** measure in $[0, 1]$. Then:

1. $\mu([0, \frac{1}{3}]) = \dots$

2. $\delta_0 \perp m$ because \dots

3. \dots -theorem says that there exists a map f (integrable) such that

$$\delta_0(A) = \int_A f d\mu$$

4. Using the notation of the previous item, we have $f(0) = \frac{d\delta_0}{d\mu}(0) = \dots$

(n) (8) Consider the measure space $([0, 1], \mathcal{B}([0, 1]), m)$ where $\mathcal{B}([0, 1])$ is a σ -algebra, m is the Lebesgue measure on $[0, 1]$. Given $A \in \mathcal{B}([0, 1])$ and $c_1 \neq c_2 \in \mathbb{R}$, define the random variable $X : \mathbb{R} \rightarrow \mathbb{R}$ as $X = c_1 \chi_A + c_2 \chi_{A^c}$. The following assertions are true:

1. If $m(A) = p > 0$, then the **distribution** α of X is given by:

$$\alpha = \dots \delta_{c_1} + \dots \delta_{c_2}$$

known as the distribution.

2. In this case, we may conclude that

$$E(X) = \dots$$

(o) (12) Consider the following homogeneous Markov chain defined on the **finite** state space $\{1, 2, 3\}$ with transition probability matrix:

$$\mathbf{T} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 \\ 1/2 & 1/2 & 0 \end{bmatrix}$$

Then:

1. All states of the chain may be classified as.....
(use one of the terms: “*transient*” / “*recurrent null*” / “*recurrent positive*”)
2. The **stationary distribution** associated to T is (\dots, \dots, \dots)
3. With respect to the periodicity, all states are and the Markov chain is
4. The **mean recurrence time** associated to 1, 2 and 3 are equal to, and, respectively.

Part II

- Give your answers in exact form.
 - In order to receive credit, you must show all of your work. If you do not indicate the way in which you solve a problem, you may get little or no credit for it, even if your answer is correct.
-

1. Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), P)$ where $\mathcal{B}(\mathbb{R})$ denotes the σ -algebra of the Borelians and P is a probability measure. Suppose that $X : \mathbb{R} \rightarrow \mathbb{R}$ is random variable and let $\lambda \in \mathbb{R}^+$. Prove that:

$$\forall k \in \mathbb{N}, \quad P(|X| \geq \lambda) \leq \frac{1}{\lambda^k} E(|X|^k).$$

Remark: If necessary, you can denote the set $\{\omega \in \mathbb{R} : |X(\omega)| \geq \lambda\}$ by A .

2. Consider $(f_n)_{n \in \mathbb{N}}$ the sequence of continuous maps

$$f_n(x) = \frac{x}{(x^{2n} + 1)^2}, \quad x \in \mathbb{R}_0^+$$

(a) Identify the map $f : \mathbb{R}_0^+ \rightarrow \mathbb{R}$ such that $\lim_{n \rightarrow +\infty} f_n(x) = f(x)$.

(b) Show that for all $n \in \mathbb{N}$ and $x \in \mathbb{R}_0^+$,

$$|f_n(x)| \leq g(x) = \begin{cases} 1 & \text{if } 0 \leq x < 1 \\ x^{-3} & \text{if } x \geq 1 \end{cases}$$

(c) Compute $\lim_{n \rightarrow +\infty} \int_{[0, +\infty[} f_n(x) dm(x)$, where m is the Lebesgue measure of \mathbb{R} .

3. Let X and Y be two random variables, both with finite variance $Var(X)$ and $Var(Y)$. Show that:

$$Var(X) \neq Var(Y) \quad \Rightarrow \quad X - Y \text{ and } X + Y \text{ are dependent}$$

4. Let $X : \mathbb{R} \rightarrow \mathbb{R}$ be a random variable on a probability space $(\mathbb{R}, \mathcal{F}, P)$ with distribution function

$$F_X(x) = \begin{cases} 0 & \text{if } x < 0 \\ \frac{x^2}{4} & \text{if } 0 \leq x < 2 \\ 1 & \text{if } x \geq 2 \end{cases}$$

Define the new random variables: $Z = \sqrt{X}$ and $W = \chi_{\{\omega \in \mathbb{R} : X(\omega) > 1\}}$. Compute

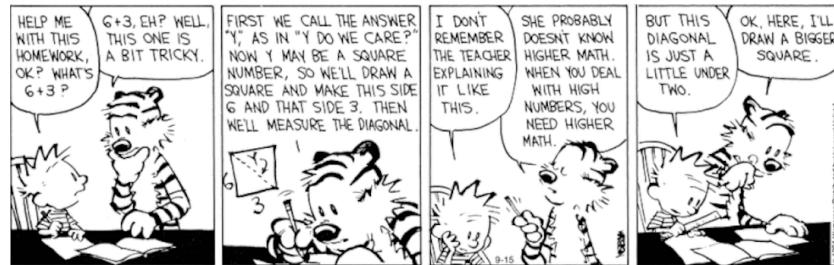
$$E(Z|W)(\omega) \quad \text{for } \omega \in \{x \in \mathbb{R} : W(x) = 0\}.$$

5. Let $(X_n)_n$ be a sequence of **independent** and **identically distributed** random variables on \mathbb{R} such that $E(X_1) = 0$ and $Var(X_1) = \sigma^2 > 0$. Let $\Phi(t)$ be the Taylor expansion of the characteristic map of X_n at $t = 0$.

- (a) Show that $\Phi(t) = 1 - \frac{\sigma^2}{2}t^2 + \dots$ where \dots represents the sum of monomials of order greater or equal than 3. Compute $\Phi\left(\frac{t}{\sqrt{n}}\right)$.
- (b) Compute $\lim_{n \rightarrow +\infty} \Phi\left(\frac{t}{\sqrt{n}}\right)^n$ and **interpret** the result in the context of *Limit theorems*. Please justify.

Remark: We may assume, without proof, that if $X \sim N(0, \sigma^2)$ then

$$E(e^{itX}) = e^{\frac{-\sigma^2 t^2}{2}}.$$



Credits:

I	II.1	II.2(a)	II.2(b)	II.2(c)	II.3	II.4	II.5(a)	II.5(b)
105	15	10	5	10	15	15	10	15