Consider a variant of our standard model in which velocity can be greater than 1. Assume that the cash-in-advance constraint is given by

$$
M_{t} \geq \kappa P_{t} C_{t}
$$

where κ captures the extent to which cash is used in transactions. The remaining portion $(1-\kappa) P_{t} C_{t}$ must be paid for in the asset market at the end of the period. As a result, our asset market budget constraint is unchanged, and still given by

$$
P_{t} Z_{t} L_{t}+M_{t}-P_{t} C_{t}+B_{t}+T_{t}-M_{t+1}-q_{t} B_{t+1}=0 .
$$

All the other aspects of our model are standard, including the household's payoff which is given by

$$
\sum_{t=1}^{T} \beta^{t-1}\left[u\left(C_{t}\right)-v\left(L_{t}\right)\right]+\beta^{T} V\left(M_{T+1}, B_{T+1}\right) .
$$

The market clearing conditions are also unchanged and given by

$$
\begin{aligned}
& C_{t}=Z_{t} L_{t} \\
& B_{t+1}=0 \\
& M_{t+1}=\bar{M}_{t+1}
\end{aligned}
$$

where the aggregate money supply grows according to $\bar{M}_{t+1}=(1+\tau) \bar{M}_{t}$ and transfers are therefore given by $T_{t}=\tau \bar{M}_{t}$. Assume also that productivity grows according to $Z_{t+1}=(1+g) Z_{t}$. Finally assume that our preferences take the standard forms

$$
u\left(C_{t}\right)=\log \left(C_{t}\right), \quad v\left(L_{t}\right)=\frac{L_{t}^{1+\gamma}}{1+\gamma} .
$$

A) Write down the Lagrangian for this problem and determine the first-order conditions for the optimal levels of consumption, labor, money and bonds.
B) If we assume that the cash-in-advance constraint binds and that the goods market clearing condition holds, explain how this pins down the equilibrium price of consumption P_{t}. If labor L_{t} was constant (given κ) what would this lead you to predict about the rate of change in the price level P_{t+1} / P_{t} ?

Use your result here to discuss how lowering κ from our standard value of 1 can affect the relationship in a standard empirical velocity equation (which we use to measure v):

$$
M v=P Y .
$$

C) We want to reduce our equilibrium conditions down to a simple 3 equation system for $L_{t}=L$ and our two multipliers. Explain why we will need to make a change-in-variables with respect to our multipliers, make the appropriate change and derive the three key equations. Also derive an expression for q_{t} in the steady state.
D) We previously saw (in the model with $\kappa=1$) that the solution to the social planner's problem boiled down to simply solving for L such that it maximized

$$
\log \left(Z_{t} L_{t}\right)-v\left(L_{t}\right)
$$

(Note that the optimal value of L does not depend upon Z_{t}.) Denote this optimal level of labor by L^{*} and solve for it given our functional forms for u and v. If we guess that this is still the best we can do, does this still require that $q_{t}=1$? And, if so, why?
E) Assume that you were able to solve the fundamental 3-equation system in part (C). Assume that this yielded a labor function $L(\tau, \kappa)$. How would you expect L to depend upon these two variables? Also fixing τ, what does reducing κ do to the gap between $L^{*}-L(\tau, \kappa)$? What does this say about the cost of inflation?

