
1. Consider a version of our New Keynesian model. We will assume that the household’s
shopper receives the monetary injection after entering the goods market and the house-
hold’s seller does not know its size when they make their pricing decision. The demand for
individual i’s good is given by
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where Pt(i) is his/her price, P̄t is the price index, #I is the number of goods, and Ct is the
composite good. Note that
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The maximization problem is given by
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subject to
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where Zt is the productivity of labor, Mt is money holdings, Tt is government transfers, Bt
is public debt and qt is the price of bonds.
A) Derive the first-order condition for setting the price Pt(i).
B) Using this first-order condition, making use of the fact that Pt(i) = P̄t since all prices

are the same in equilibrium, and that the production function is D
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that we get that
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where µt is the Lagrange multiplier of the budget constraint.
C) Derive the first-order conditions for consumption and money. Remember that these

decisions are taken after all uncertainty is resolved and hence we get our standard conditions.
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