1. Consider a version of our New Keynesian model. We will assume that the household’s
shopper receives the monetary injection after entering the goods market and the house-
hold’s seller does not know its size when they make their pricing decision. The demand for
individual ¢’s good is given by

where P,(i) is his/her price, P, is the price index, #1 is the number of goods, and C; is the

composite good. Note that
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The maximization problem is given by
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where Z; is the productivity of labor, M; is money holdings, T; is government transfers, B,
is public debt and ¢; is the price of bonds.
A) Derive the first-order condition for setting the price P;(7).

B) Using this first-order condition, making use of the fact that P(7)

are the same in equilibrium, and that the production function is D (P—(i), Tt> = Z;L;, show
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where i, is the Lagrange multiplier of the budget constraint.
C) Derive the first-order conditions for consumption and money. Remember that these
decisions are taken after all uncertainty is resolved and hence we get our standard conditions.



