

Estatística II

Licenciatura em Gestão 2.º Ano/1.º Semestre 2023/2024

Aulas Teóricas N.ºs 20 e 21 (Semana 11)

Docente: Elisabete Fernandes

E-mail: efernandes@iseg.ulisboa.pt

Conteúdos Programáticos

Aulas Teóricas (Semanas 1 a 5)

• Capítulo 1: Estimação

Aulas Teóricas (Semanas 5 a 7)

• Capítulo 2: Testes de Hipóteses

Aulas Teóricas (Semanas 7 a 9)

•Capítulo 3: Modelo de Regressão Linear

Aulas Teóricas (Semanas 10 a 13)

• Capítulo 4: Complementos ao Modelo de Regressão Linear

Material didático: Exercícios do Livro Murteira et al (2015), Formulário e Tabelas Estatísticas

Bibliografia: B. Murteira, C. Silva Ribeiro, J. Andrade e Silva, C. Pimenta e F. Pimenta; *Introdução à Estatística*, 2ª ed., Escolar Editora, 2015.

https://cas.iseg.ulisboa.pt

8ª semana (07/11 e 09/11)

T14 - Modelo de Regressão Linea (MRL)r

Interpretação dos parâmetros da regressão; exemplos; Resíduos MQ e regressão ajustada; Propriedades dos estimadores MQ dos coeficientes da regressão; Estimador não enviesado da variância da variável residual; Exemplo.

T15 - Modelo de regressão Linear

Coeficiente de determinação e sua interpretação. Hipótese adicional (H6) e inferência estatística sobre o modelo; Inferência sobre um parâmetro beta. Exemplos

9º semana (14/11 e 16/11)

T16 - Modelo de Regressão Linear

Mais exemplos de inferência sobre um parâmetro beta; Inferência sobre uma combinação linear de betas; exemplos.

T17 - Modelo de Regressão Linear

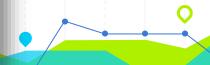
Teste de nulidade conjunta de vários coeficientes; exemplo; Teste F à significância global da regressão; Teste de um conjunto de restrições lineares; exemplo.

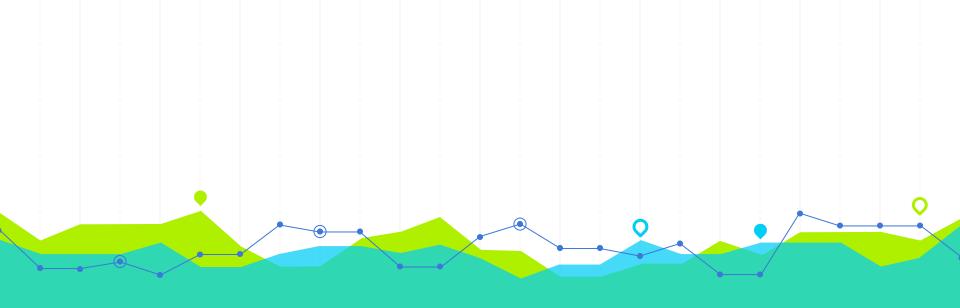
10^a semana (21/11 e 23/11)

T18 - Complementos ao MRL

Variáveis artificiais: Introdução à modelação de fatores qualitativos, conceito de variável artificial, estimação e interpretação do modelo com variáveis artificiais; exemplos.

T19 - Complementos ao MRL



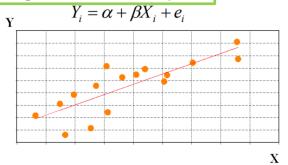


Modelo de Regressão Linear Múltipla

Interpretação dos Coeficientes da Reta de Regressão

MRLM: Interpretação dos Coeficientes

Regressão Linear Simples:

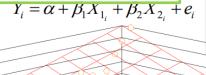


Temos que:

$$E[Y/X=0]=\alpha$$
 Valor esperado de Y quando X é

$$\frac{dY}{dX} = \beta$$
 Variação marginal esperada em Y para cada variação unitária em

Regressão Linear Múltipla:



Caso particular: MRLM com apenas duas variáveis regressoras

Temos que:

Valor esperado de Y
$$E[Y/X_1 = 0, X_2 = 0] = \alpha$$
 quando ambos $X_1 \in X_2$ são nulos.

$$\frac{\partial Y}{\partial X_1} = \beta_1$$
 Variação marginal esperada em Y para cada variação unitária em X_1 ,

mantendo X_2 constante. Variação marginal esperada em Y para

cada variação unitária em X₂, mantendo X₁ constante.

MRLM: Interpretação dos Coeficientes...

Regressão Múltipla

Em um modelo de regressão múltipla, a variável dependente (Y) será determinada por mais de uma variável independente (X). Genericamente, um modelo de regressão linear múltipla com k variáveis independentes e p parâmetros (p=k+1) pode ser representado por:

$$Y_i = \alpha + \beta_1 X_{1_i} + \beta_2 X_{2_i} + ... + \beta_k X_{k_i} + e_i$$

Onde:

 α é o valor esperado de Y quando todos as variáveis independentes forem nulas;

 β_1 é a variação esperada em Y dado um incremento unitário em X_1 , mantendo-se constantes todas as demais variáveis independentes;

...

 β_k é a variação esperada em Y dado um incremento unitário em X_k , mantendo-se constantes todas as demais variáveis independentes; e_i é o erro não explicado pelo modelo;

Maia, Alexandre Gori (2017). Econometria: conceitos e aplicações. Cap. 6.

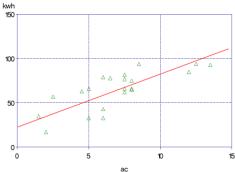
Caso geral: MRLM com k variáveis regressoras

MRLM: Exemplo 1 - Interpretação dos Coeficientes

Seja a relação para consumo de energia (Kwh), horas de ar condicionado ligado (AC) e horas de secadora ligada (SEC):

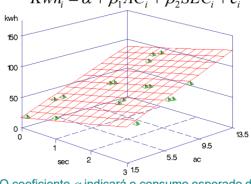
Regressão Linear Simples

$$Kwh_i = \alpha + \beta AC_i + e_i$$



O coeficiente α indicará o consumo esperado de energia quando o ar condicionado permanecer desligado.

O coeficiente β indicará o consumo de energia adicional esperado para cada hora adicional com ar condicionado ligado.



Regressão Linear Múltipla

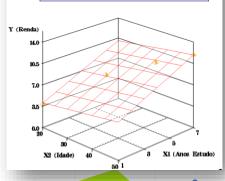
O coeficiente α indicará o consumo esperado de energia quando ambos ar condicionado e secadora permanecerem desligados.

O coeficiente β_1 indicará o aumento no consumo de energia esperado para cada hora adicional com ar condicionado ligado, mantendo-se constante o tempo de uso da secadora. Analogamente, O coeficiente β_2 indicará efeito isolado de uma hora adicional com a secadora ligada sobre o consumo esperado de energia.

MRLM: Exemplo 2 - Estimação dos Coeficientes e Interpretação

Seja a relação entre renda familiar em SM (Y), anos de estudo (X_1) e idade (X_2) do responsável pela família:

Y (Renda)	X ₁ (Anos Estudo)	X ₂ (Idade)
4	1	20
8	4	30
10	6	40
12	7	50



$$Y_i = \alpha + \beta_1 X_{1_i} + \beta_2 X_{2_i} + e_i \implies \mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$

A função de regressão amostral será dada por:

$$\mathbf{y} = \mathbf{X}\hat{\boldsymbol{\beta}} + \hat{\mathbf{e}} \implies \begin{pmatrix} 4 \\ 8 \\ 10 \\ 12 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 20 \\ 1 & 4 & 30 \\ 1 & 6 & 40 \\ 1 & 7 & 50 \end{pmatrix} \begin{pmatrix} \hat{\alpha} \\ \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix} + \begin{pmatrix} \hat{e}_1 \\ \hat{e}_2 \\ \hat{e}_3 \\ \hat{e}_4 \end{pmatrix}$$

$$\mathbf{y}_{4\times 1} \qquad \mathbf{x}_{4\times 3} \qquad \hat{\boldsymbol{\beta}}_{3\times 1} \qquad \hat{\boldsymbol{e}}_{4\times 1}$$

E as estimativas de MQO:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{y}) = \begin{pmatrix} 4 & 18 & 140 \\ 18 & 102 & 730 \\ 140 & 730 & 5400 \end{pmatrix}^{-1} \begin{pmatrix} 34 \\ 180 \\ 1320 \end{pmatrix} = \begin{pmatrix} 1,9 \\ 1 \\ 0,06 \end{pmatrix}$$

Maia, Alexandre Gori (2017). Econometria: conceitos e aplicações. Cap. 6.

Espera-se, para cada ano adicional de estudo do responsável pela família, um aumento de 1 SM e, para cada ano de idade adicional, um aumento de 0,06 SM na renda familiar.

O departamento de RH da empresa TEMCO objetiva estudar o comportamento dos salários dos funcionários dos mais diversos setores da empresa.

Para tanto, o gerente de RH, baseando-se numa amostra aleatória de 46 empregados, coletou informações sobre as seguintes variáveis:


```
    id – número cadastral do funcionário;
    salario – anual, em dólares;
    anosemp – tempo (em anos) na empresa;
    expprev – experiência anterior (em anos);
    educ – anos de estudo após o segundo grau;
    sexo – (feminino = 0, masculino = 1);
    dept – departamento no qual atua (Compras = 1, Engenharia = 2, Propaganda = 3, Vendas = 4);
    super – número de empregados sob responsabilidade do empregado.
```

🚮 EViev	ws - [Group: UN	TITLED Wor	kfile: TEMCO:	:Temco\]				
File	Edit Object Vie	w Proc Quick	Options Windo	ow Help				
View Proc	Object Print Na	me Freeze De	fault V Sor	t Transpose Ed	lit+/- Smpl+/- Ti	tle Sample		
obs	ID	SALARIO	ANOSEMP	EXPPREV	EDUC	SEXO	DEPT	SUPER
1	972.0000	47536.00	15.00000	5.000000	6.000000	0.000000	3.000000	4.000000
2	539.0000	23654.00	0.000000	0.000000	0.000000	1.000000	3.000000	2.000000
3	649.0000	37548.00	19.00000	9.000000	4.000000	0.000000	3.000000	6.000000
4	824.0000	36578.00	4.000000	4.000000	8.000000	0.000000	3.000000	8.000000
5	649.0000	54679.00	20.00000	3.000000	6.000000	1.000000	3.000000	4.000000
6	624.0000	53234.00	25.00000	0.000000	6.000000	0.000000	3.000000	3.000000
7	891.0000	31425.00	7.000000	6.000000	5.000000	1.000000	3.000000	6.000000
8	974.0000	39743.00	9.000000	6.000000	5.000000	1.000000	2.000000	1.000000
9	648.0000	26452.00	1.000000	3.000000	2.000000	1.000000	2.000000	0.000000
10	321.0000	34632.00	5.000000	4.000000	4.000000	0.000000	2.000000	0.000000
11	264.0000	35631.00	6.000000	4.000000	4.000000	0.000000	2.000000	2.000000
12	291.0000	46211.00	14.00000	5.000000	6.000000	1.000000	2.000000	5.000000
13	267.0000	34231.00	6.000000	2.000000	6.000000	0.000000	2.000000	3.000000
14	548.0000	26548.00	5.000000	1.000000	0.000000	0.000000	2.000000	2.000000
15	555.0000	36512.00	6.000000	6.000000	4.000000	1.000000	2.000000	2.000000
16	366.0000	34869.00	7.000000	5.000000	4.000000	1.000000	2.000000	1.000000
17	246.0000	41255.00	9.000000	4.000000	6.000000	0.000000	2.000000	4.000000
18	215.0000	39331.00	9.000000	3.000000	6.000000	1.000000	2.000000	1.000000
19	814.0000	35487.00	8.000000	2.000000	2.000000	1.000000	2.000000	2.000000
20	212.0000	36487.00	6.000000	5.000000	2.000000	0.000000	2.000000	3.000000
21	526.0000	68425.00	25.00000	2.000000	12.00000	0.000000	2.000000	1.000000
22	778.0000	69246.00	22.00000	3.000000	10.00000	0.000000	2.000000	45.00000
0.0	100,000	05407.00	07.00000	0.000000	40.00000	4.000000	0.000000	44.00000

Quadro 1 - Parte de uma planilha que contem informações sobre os empregados da empresa TEMCO.

Como parte do estudo, a gerente de RH propôs a estimação dos parâmetros do seguinte modelo de regressão múltipla:

salario =
$$\beta_0$$
 + β_1 educ + β_2 anosemp + ε

- a) Em termos do problema, β_0 apresenta algum significado prático?
- b) Qual o sinal esperado para β_1 ? E para β_2 ?
- c) Encontre as estimativas dos parâmetros, via mínimos quadrados ordinários, escreva a equação estimada e interprete os resultados obtidos, em termos do problema de interesse.

Exercícios (a) e (b): Interpretação dos Parâmetros

Interpretação dos parâmetros do modelo proposto, em termos do problema:

- β₀ salário médio dos funcionários da empresa TEMCO, que acabaram de entrar na empresa (ou que ainda não completaram um ano) e que não apresentam nenhum ano de escolaridade após o segundo grau;
- β₁ efeito no salário médio dos funcionários da empresa TEMCO, dada a variação de um ano no tempo de escolaridade após o segundo grau, mantendo constante a variável anosemp; e
- β₂ efeito no salário médio dos funcionários da empresa TEMCO, dada a variação de um ano no tempo de empresa, mantendo constante a variável educ.

Exercícios (a) e (b): Interpretação dos Parâmetros

Dependent Variable: SALARIO

Method: Least Squares Date: 08/26/12 Time: 15:45

Sample: 146

Included observations: 46

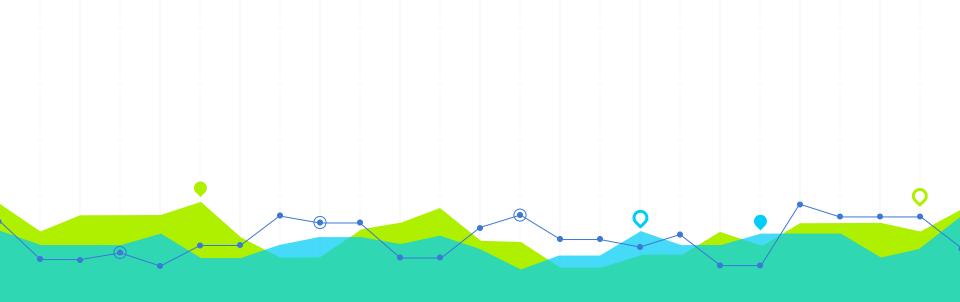
SALARIO=C(1)+C(2)*EDUC+C(3)*ANOSEMP

	Coefficient	Std. Error	t-Statistic	Prob.
C(1) C(2) C(3)	23177.47 1916.489 672.3250	1769.732 379.2670 141.6725	13.09660 5.053139 4.745629	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.739927 0.727830 5738.291 1.42E+09 -461.8462 61.16907 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		39827.39 10999.24 20.21070 20.32996 20.25538 1.229794

Exercício (c): Modelo Estimado

$$salario = 23177,47 + 1916,49 educ + 672,32 ano semp$$

Pergunta: qual o salário médio estimado para pessoas com 3 anos de escolaridade após o 2º grau e com 5 anos na empresa?



Qualidade do Modelo de Regressão Linear Múltipla

Coeficiente de Determinação

Coeficiente de Determinação (R²): Medida do Grau de Ajuste

 O coeficiente de determinação R² é uma medida que diz quão bem a reta de regressão da amostra se ajusta ao dados.

R²: Medida do Grau de Ajuste

 Nós podemos dividir a variação em Y em dois componentes, uma parte explicada pelo modelo de regressão e uma parte não explicada.

 O coeficiente de determinação R² mede a proporção ou a percentagem da variação total em Y explicada pelo modelo de regressão.

Como Calcular R²?

Definindo:

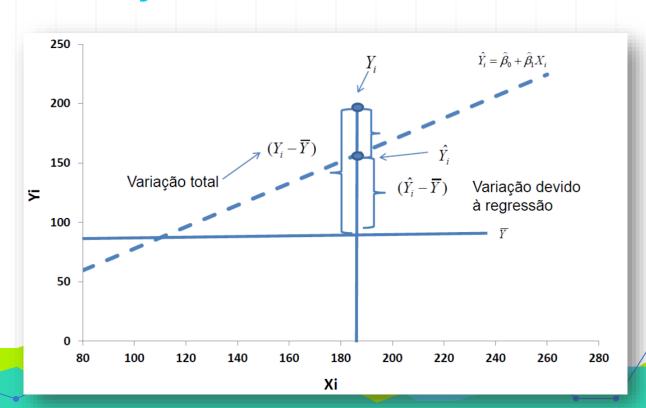
$$\sum (Y_i - \overline{Y})^2$$
 como Soma dos Quadrados Total (**SST**)

$$\sum (\hat{Y}_i - \overline{Y})^2$$
 como Soma dos Quadrados Explicada (**SSR**)

$$\sum \hat{u}_i^2$$
 como Soma dos Quadrados dos Resíduos (**SSE**)

É possívelmostrar que

Ilustração da Regressão Linear Simples



Coeficiente de Determinação

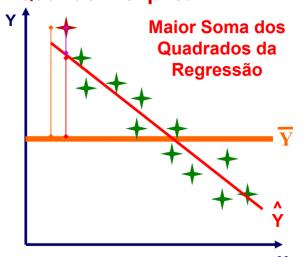
Parcela da variabilidade de y que é explicada pelas variáveis do modelo Parcela da variabilidade de y que **não** é explicada pelas variáveis do modelo

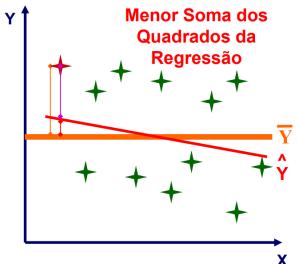
$$R^2 = \frac{SSR}{SST}$$

Proporção da variabilidade de y que é explicada pelo conjunto de variáveis explicativas.

Soma dos Quadrados: Conceitos

Quando X explica Y Quando X não explica Y





$$STQ = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

$$STQ = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

$$SQReg = \sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2$$

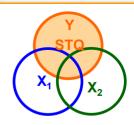
$$SQRes = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Soma dos Quadrados: Definição

Soma Total dos Quadrados (STQ):

$$STQ = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} y_i^2 = \mathbf{y}^T \mathbf{y} - n \overline{Y}^2$$

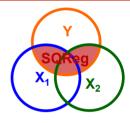
Variabilidade total da variável dependente. Representa as distâncias quadráticas dos valores de Y em relação à média aritmética.



Soma dos Quadrados da Regressão (SQReg):

$$SQReg = \sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2 = \hat{\boldsymbol{\beta}}^T \mathbf{X}^T \mathbf{y} - n \overline{Y}^2$$

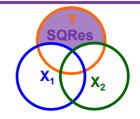
Variabilidade da variável dependente explicada pelo conjunto de variáveis independentes. Representa as distâncias quadráticas dos valores ajustados pelo modelo em relação à média aritmética.



Soma dos Quadrados dos Resíduos (SQRes):

$$SQRes = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \hat{\mathbf{e}}^T \hat{\mathbf{e}} = \mathbf{y}^T \mathbf{y} - \hat{\boldsymbol{\beta}}^T \mathbf{X}^T \mathbf{y}$$

Variabilidade da variável dependente não explicada pelo conjunto de variáveis independentes. Representa as distâncias quadráticas entre os valores observados de Y e seus valores ajustados pelo modelo.



Coeficiente de Determinação (R2)

Coeficiente de Determinação (R^2):

Definição: Estima a proporção da variabilidade da variável dependente (Y) que é explicada pelo conjunto das k variáveis independentes do modelo de regressão (X).

$$R^2 = \frac{SQReg}{STQ} = 1 - \frac{SQRes}{STQ}$$

Escala para R^2 :

0 Independência linear 1 Relação linear exata

Coeficiente de Determinação: Exemplo

Seja a relação entre renda familiar em salários mínimos (Y), anos de estudo (X_1) e idade (X_2) do responsável pela família: $Y_i = 1.9 + 1X_{1i} + 0.06X_{2i} + \hat{e}_i$

Y (Renda)	X ₁ (Anos Estudo)	X ₂ (Idade)
4	1	20
8	4	30
10	6	40
12	7	50

Fonte	gl	Soma dos Quadrados	Quadrados Médios
Regressão	2	34,8	17,4
Resíduos	1	0,2	0,2
Total	3	35,0	

 $R^2 = \frac{SQReg}{STQ} = \frac{34.8}{35} = 0,994$ renda familiar na amostra.

$$SQReg = \hat{\boldsymbol{\beta}}^T \mathbf{X}^T \mathbf{y} - n\overline{Y}^2 = \begin{pmatrix} 1,9 & 1 & 0,06 \\ 180 \\ 1320 \end{pmatrix} - 4(8,5)^2 = 323,8 - 289 = 34,8$$

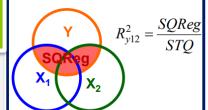
$$SQ \operatorname{Re} s = STQ - SQ \operatorname{Re} g = 35 - 34,8 = 0,2$$

Coeficiente de Determinação Ajustado

Regressão Linear Múltipla com duas variáveis independentes

Seja o ajuste:

$$Y_{i} = \alpha + \hat{\beta}_{1} X_{1_{i}} + \hat{\beta}_{2} X_{2_{i}} + \hat{e}_{i}$$



Incorporando uma variável independente adicional (X_3) :

$$Y_{i} = \alpha + \hat{\beta}_{1} X_{1_{i}} + \hat{\beta}_{2} X_{2_{i}} + \hat{e}_{i} \quad Y_{i} = \alpha + \hat{\beta}_{1} X_{1_{i}} + \hat{\beta}_{2} X_{2_{i}} + \hat{\beta}_{3} X_{3_{i}} + \hat{e}_{i}$$

Poderemos ter:



O R² nunca diminui quando incorporamos variáveis independentes adicionais no modelo.

Regressão Linear Múltipla com três variáveis independentes

 X_3

Coeficiente de Determinação Ajustado (R²):

 R^2 ajustado (\overline{R}^2) pondera o coeficiente de determinação (R^2) pelo número de variáveis explicativas e pelo número de observações da amostra. É particularmente útil quando desejamos comparar modelos de regressão múltipla que prevêem a mesma variável dependente, pois penaliza aquele modelo com maior número de variáveis independentes. Será dado por:

$$\overline{R}^2 = 1 - \frac{SQRes/[n-(k+1)]}{STQ/(n-1)} = 1 - (1-R^2) \frac{n-1}{n-(k+1)}$$

Slide 1 (unicamp.b

Coeficiente de Determinação Ajustado: Exemplo

Seja a relação entre renda familiar em salários mínimos (Y), anos de estudo (X_1) e idade (X_2) do responsável pela família: $Y_i = 1.9 + 1X_{1_i} + 0.06X_{2_i} + \hat{e}_i$

Fonte	gl	Soma dos Quadrados	Quadrados Médios	F
Regressão	2	34,8	17,4	87,0
Resíduos	1	0,2	0,2	
Total	3	35,0		

$$R^2 = 0.994$$

$$\overline{R}^2 = 1 - (1 - 0.994) \frac{4 - 1}{4 - (2 + 1)} = 0.982$$

Não há mudanças expressivas no coeficiente de determinação ajustado pelo número de observações e variáveis do modelo é expressivamente inferior ao R^2 . Reflexo, sobretudo, do elevadíssimo valor encontrado para o R^2 .

Variação e Coeficiente de Determinação

Formulário

No modelo com termo independente:

$$y_t = \beta_1 + \beta_2 x_{t2} + ... + \beta_k x_{tk} + u_t, \ t = 1,2,...,$$
 SST
 $VT = VE + VR;$ $VT = \sum_{t=1}^{n} (y_t - \overline{y}_t)^{-1} (y_t - \overline{y}_t)^{-1$

$$VT = \sum_{t=1}^{n} (y_t - \overline{y})^2; \qquad VE = \sum_{t=1}^{n} (\hat{y}_t - \overline{y})^2;$$

$$R^2 = \frac{VE}{VT} = 1 - \frac{VR}{VT};$$
 $\overline{R}^2 = 1 - \frac{VR/(n-k)}{VT/(n-1)} = 1 - (1 - R^2) \frac{n-1}{n-k}.$

SSE

$$VR = \sum_{t=1}^{n} \hat{u}_t^2$$

Coeficiente de Determinação

Coeficiente de Determinação Ajustado

SSR

Nota:

k = nº de parâmetros a estimar

k-1 = nº de variáveis

A senhorita Jolie, gerente do departamento de RH da empresa TEMCO, objetiva estudar o comportamento médio dos salários dos funcionários dos mais diversos setores da empresa. Para tanto, baseando-se numa amostra aleatória de 46 funcionários da empresa, ela propôs os seguintes modelos de regressão:

salario =
$$\beta_0 + \beta_1$$
 educ + ϵ (1)

salario =
$$\alpha_0 + \alpha_1$$
 anosemp + ν (2)

salario =
$$\delta_0 + \delta_1$$
 educ + δ_2 anosemp + ξ (3)

Como a gerente pode avaliar a qualidade de ajuste dos modelos?

salario = $\beta_0 + \beta_1$ educ + ϵ

Dependent Variable: SALARIO Method: Least Squares Date: 08/26/12 Time: 14:31

Sample: 146

Included observations: 46 SALARIO=C(1)+C(2)*EDUC

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	24581.70	2129.189	11.54510	0.0000
C(2)	3009.878	367.6294	8.187262	0.0000
R-squared	0.603715	Mean deper	ndent var	39827.39
Adjusted R-squared	0.594709	S.D. dependent var		10999.24
S.E. of regression	7002.393	Akaike info criterion		20.58840
Sum squared resid	2.16E+09	Schwarz cri	terion	20.66790
Log likelihood	-471.5331	Hannan-Quinn criter.		20.61818
F-statistic	67.03125	Durbin-Watson stat		1.334781
Prob(F-statistic)	0.000000			

salario = α_0 + α_1 anosemp + ν

Dependent Variable: SALARIO Method: Least Squares Date: 08/26/12 Time: 14:23 Sample: 1 46 Included observations: 46 SALARIO=C(1)+C(2)*ANOSEMP

	Coefficient	Std. Error	t-Statistic	Prob.
C(1) C(2)	28394.16 1107.218	1793.951 140.4476	15.82772 7.883500	0.0000 0.0000
R-squared	0.585491	Mean dependent var		39827.39
Adjusted R-squared	0.576070	S.D. dependent var		10999.24
S.E. of regression	7161.598	Akaike info criterion		20.63336
Sum squared resid	2.26E+09	Schwarz cri	terion	20.71286
Log likelihood	-472.5673	Hannan-Qui	nn criter.	20.66314
F-statistic	62.14957	Durbin-Wats	on stat	1.081824
Prob(F-statistic)	0.000000			

salario = δ_0 + δ_1 educ + δ_2 anosemp + ξ

Dependent Variable: SALARIO Method: Least Squares Date: 08/26/12 Time: 15:45 Sample: 1 46

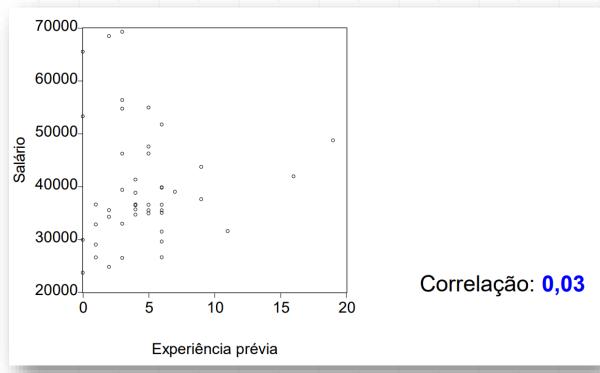
Included observations: 46

SALARIO=C(1)+C(2)*EDUC+C(3)*ANOSEMP

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	23177.47	1769.732	13.09660	0.0000
C(2)	1916.489	379.2670	5.053139	0.0000
C(3)	672.3250	141.6725	4.745629	0.0000
R-squared 0.739		Mean dependent var		39827.39
Adjusted R-squared	0.727830	S.D. dependent var		10999.24
S.E. of regression	5738.291	Akaike info criterion		20.21070
Sum squared resid	1.42E+09	Schwarz cri	terion	20.32996
Log likelihood	-461.8462	Hannan-Qui	nn criter.	20.25538
F-statistic	61.16907	Durbin-Wats	son stat	1.229794
Prob(F-statistic)	0.000000			

Variáveis explicativas no modelo	R ²
Educ	60,4%
Anosemp	58,6%
Educ e Anosemp	74,0%

O departamento de RH desconfia que a variável *EXPPREV* (experiência anterior, em anos) é importante para explicar o salário dos funcionários, uma vez que os recémcontratados passam por um treinamento antes de iniciar as atividades na empresa. Pede-se, então: acrescente a variável ao modelo de regressão linear múltipla e verifique o que acontece com o R²?



Dependent Variable: SALARIO

Method: Least Squares Date: 08/22/03 Time: 17:42

Sample: 1 46

Included observations: 46

	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	C EDUC ANOSEMP EXPPREV	23480.46 1925.882 671.3254 -73.82734	2027.696 384.4395 143.2125 232.7840	11.57987 5.009586 4.687618 -0.317150	0.0000 0.0000 0.0000 0.7527
Adju S.E Sun Log	quared usted R-squared , of regression n squared resid likelihood bin-Watson stat	0.740548 0.722016 5799.262 1.41E+09 -461.7912 1.250596	Mean deper S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stati	dent var criterion terion	39827.39 10999.24 20.25179 20.41080 39.95994 0.000000

Coeficiente de Determinação

<u>Fato</u>: Quanto maior o número de variáveis independentes, maior será o valor de R².

Isso pode vir a ser um problema ao se comparar modelos, já que modelos com um número maior de variáveis tenderão a ter um R² maior do que um modelo, eventualmente equivalente, em termos de qualidade, com um número menor de variáveis.

Coeficiente de Determinação Ajustado

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k + \varepsilon$$

Nota: Se o MRLM considerado for este, o número de coeficientes de regressão é p=k+1.

Valor ajustado pelo número de variáveis

$$\mathbf{R_a^2} = 1 - (1 - \mathbf{R^2}) \frac{\mathbf{n} - \mathbf{1}}{\mathbf{n} - (\mathbf{k} + \mathbf{1})} \frac{\mathbf{Formulário}}{\mathbf{R}^2 = 1 - \frac{VR/(n-k)}{VT/(n-1)} = 1 - (1 - R^2) \frac{n-1}{n-k}}$$

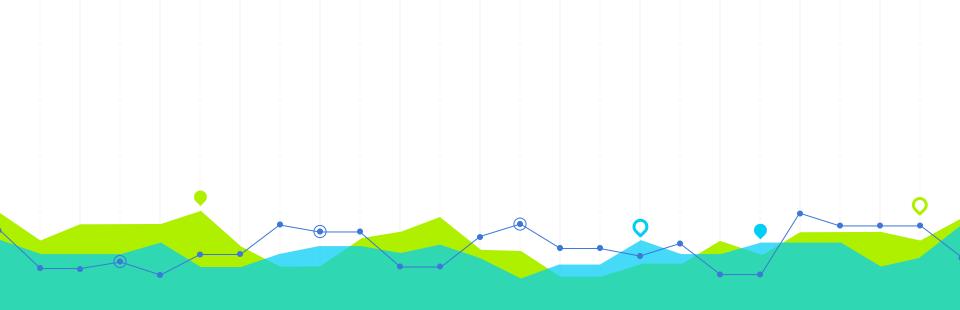
Formulário

$$\overline{R}^2 = 1 - \frac{VR/(n-k)}{VT/(n-1)} = 1 - (1 - R^2) \frac{n-1}{n-k}$$

acréscimo de variáveis não acarreta necessariamente um aumento em R²_a.

Resolução do Exercício

Variáveis explicativas no modelo	\mathbb{R}^2	R_a^2
Educ	60,3%	59,5%
Anosemp	58,6%	57,6%
Educ e Anosemp	73,9%	72,8%
Educ, Anosemp e Expprev	74,1%	72,2%



Modelo de Regressão Linear Múltipla

Suposições e Propriedades

MLR.1 – O modelo de regressão é linear nos parâmetros

O modelo na população pode ser escrito como

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k + \varepsilon$$

em que

 β_0 , β_1 , ..., β_k - são parâmetros desconhecidos (constantes);

ε – termo de erro aleatório não observável.

MLR.2 – Amostragem Aleatória

Temos uma amostra aleatória de n observações

$$(x_{1i}, x_{2i}, ..., x_{ki}, y_i), i = 1, 2, ..., n,$$

do modelo populacional descrito em MLR.1.

MLR.3 – Ausência de Colinearidade Perfeita

Na amostra (e, portanto, na população) nenhum regressor é constante e não há relação linear <u>PERFEITA</u> entre os regressores (a matriz X apresenta posto completo).

MLR.4 – Média Condicional Zero

O valor esperado do vetor de erro aleatório, ε, condicionado na matriz de explicação X, é igual a zero.

Ou seja,

$$E(\epsilon | X) = 0.$$

MRLM: Suposições e Propriedades

<u>Teorema 1</u>. Sob as suposições MLR.1 a MLR.4, condicionado nos valores do regressores, os estimadores de MQO para os parâmetros do modelo de regressão múltipla são nãoviesados, ou seja, $E(\hat{\beta}_i) = \beta_i$, j = 0, 1, 2, ..., k.

MLR.5 - Homocedasticidade

A variância do vetor de erro aleatório, condicional na matriz de explicação, é diagonal (com todos os elementos da diagonal iguais a σ^2).

Ou seja,

$$Var\left(\mathbf{\varepsilon} \mid \mathbf{X}\right) = E\left(\mathbf{\varepsilon}\mathbf{\varepsilon}' \mid \mathbf{X}\right) = \begin{pmatrix} \sigma^{2} & 0 & 0 & \dots & 0 \\ 0 & \sigma^{2} & 0 & \dots & 0 \\ 0 & 0 & \sigma^{2} & & \vdots \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & \dots & 0 & \sigma^{2} \end{pmatrix} = \sigma^{2} \mathbf{I}_{n}$$

MRLM: Suposições e Propriedades

Observação 1

As suposições MLR.1 a MLR.5 conjuntamente são conhecidas como suposições de Gauss-Markov.

MRLM: Suposições e Propriedades

Curiosidade

Sob as suposições MLR.1 a MLR.5:

$$(iii) Var\left(\hat{\boldsymbol{\beta}} \mid \mathbf{X}\right) = Var\left[\left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{X}'\mathbf{y} \mid \mathbf{X}\right] = Var\left[\left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{X}'\left(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}\right) \mid \mathbf{X}\right] =$$

$$= Var\left[\left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{X}'\mathbf{X}\boldsymbol{\beta} + \left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{X}'\boldsymbol{\varepsilon} \mid \mathbf{X}\right] = Var\left[\boldsymbol{\beta} + \left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{X}'\boldsymbol{\varepsilon} \mid \mathbf{X}\right] =$$

$$= Var\left[\left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{X}'\boldsymbol{\varepsilon} \mid \mathbf{X}\right] = \left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{X}'Var\left[\boldsymbol{\varepsilon} \mid \mathbf{X}\right] \left(\left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{X}'\right)' =$$

$$= \left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{X}'\boldsymbol{\sigma}^{2} \mathbf{I}_{\mathbf{n}} \mathbf{X}\left(\mathbf{X}'\mathbf{X}\right)^{-1} = \sigma^{2}\left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{X}'\mathbf{I}_{\mathbf{n}} \mathbf{X}\left(\mathbf{X}'\mathbf{X}\right)^{-1} =$$

 $= \sigma^2 \left(\mathbf{X'X} \right)^{-1}$ Index of /wp-content/uploads/2014/02 (hedibert org)

MRLM: Variância dos Estimadores

Variância dos estimadores de MQO:

Seja o modelo de RLM:

$$y = X\beta + e$$

Caso os pressupostos do Teorema de Gauss-Markov sejam válidos, o método de MQO oferecerá estimadores não viesados para os coeficientes do modelo e para suas respectivas variâncias. As variâncias dos estimadores e seus respetivos estimadores serão dados por:

$$Var(\hat{\boldsymbol{\beta}}) = (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2$$
 \Rightarrow $S_{\hat{\boldsymbol{\beta}}}^2 = (\mathbf{X}^T \mathbf{X})^{-1} \hat{\sigma}^2$

Onde σ^2 é a variânica dos erros ou variância da regressão e $\hat{\sigma}^2$ seu respectivo estimador, dado por:

$$\hat{\sigma}^2 = \frac{\hat{\mathbf{e}}^T \hat{\mathbf{e}}}{n - (k+1)} = \frac{\mathbf{y}^T \mathbf{y} - \hat{\boldsymbol{\beta}}^T \mathbf{X}^T \mathbf{y}}{n - (k+1)}$$

$$\hat{\sigma}^2 = MSR = \frac{SSR}{n - (k+1)}$$

MSR (Quadrado Médio devido aos Resíduos)

MRLM: Suposições e Propriedades

Curiosidade

Observação 2

De (iii), se

$$(\mathbf{X}' \mathbf{X})^{-1} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & & a_{2k} \\ \vdots & & \ddots & \\ a_{k1} & a_{k2} & & a_{kk} \end{pmatrix}$$

então

$$Var(\hat{\beta}_{j}) = a_{jj}\sigma^{2}$$

$$Var(\hat{\beta}_j) = a_{jj}\sigma^2$$
 e $Cov(\hat{\beta}_i, \hat{\beta}_j) = a_{ij}\sigma^2$

Estimador da Variância

Teorema 3. Sob as suposições de Gauss-Markov (MLR.1 a MLR.5),

$$E(\hat{\sigma}^2) = E(MSE) = \sigma^2$$
.

<u>Observação</u>

 $\hat{\sigma} = \sqrt{MSE}$; erro padrão da regressão.

Eficiência dos Estimadores dos MQO

Teorema 4. (TEOREMA DE GAUSS-MARKOV)

Sob as suposições MLR.1 a MLR.5,

$$\hat{\beta}_0, \ \hat{\beta}_1, \ ..., \ \hat{\beta}_k$$

são os melhores estimadores, na classe dos lineares nãoviesados (BLUE) para β_0 , β_1 , ..., β_k , respectivamente.

Eficiência dos Estimadores dos MQO

⇒ Restringindo a classe de estimadores não viesados a todos os estimadores lineares em y, o teorema de Gauss-Markov prova que o estimador de mínimos quadrados é o "melhor" (no sentido em que apresenta variância mínima)

⇒ Diz-se que, sob as suposições MLR.1 a MLR.5, os estimadores de mínimos quadrados são BLUEs (best linear unbiased estimators)

Suposições e Propriedades

MLR.6 – O vetor de erro estocástico ϵ é independente dos regressores e segue uma distribuição normal multivariada, com vetor de médias igual a zero e matriz de variâncias e covariâncias igual a $\sigma^2 \, {\bf I}_n$.

Suposições e Propriedades

Observações

- Para aplicações de regressão com dados do tipo crosssectional, as suposições MLR.1 a MLR.6 são conhecidas como suposições do modelo linear clássico (suposições CLM).
- Uma maneira sucinta de resumir as suposições CLM na população é

$$y \mid (x_1, x_2, ..., x_k) \sim N(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k; \sigma^2).$$

3) Sob as suposições CLM os estimadores de mínimos quadrados são estimadores não-viesados de variância mínima. Index of /wp-content/uploads/2014/02 (hedibert.org)

Propriedades dos Estimadores

(iv) Sob as suposições clássicas do modelo de regressão linear e, também, sabendo que $\hat{\beta}$ é linear em y temos que

$$\hat{\boldsymbol{\beta}} \sim N_k \left(\boldsymbol{\beta}; \ \boldsymbol{\sigma}^2 \left(\mathbf{X}' \mathbf{X} \right)^{-1} \right)$$

Observação: O vetor de estimadores é normalmente distribuído devido ao fato de ser formado por uma combinação linear dos elementos do vetor resposta, que são normais e independentes, uma vez que os erros assim o são.

Propriedades dos Estimadores

Desta maneira, cada um dos componentes de **f**, tem a seguinte distribuição

$$\hat{\boldsymbol{\beta}}_{j} \sim N(\boldsymbol{\beta}_{j}; \sigma^{2}\boldsymbol{a}_{jj}),$$

em que

a_{jj} é o *j-ésimo* elemento da diagonal da matriz (x'x)⁻¹!

Teorema de Gauss-Markov: Resumo

Método de Mínimos Quadrados

Seja o modelo de regressão múltipla representado matricialmente por:

$$y = X\beta + e$$

O estimador de MQO para o vetor de coeficientes **β** que minimizará o erro quadrático total do modelo será dado por:

$$\hat{\boldsymbol{\beta}}_{p \times 1} = (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{y})$$

Caso os pressupostos do Teorema de Gauss-Markov sejam válidos, os estimadores de MQO serão os MELNV dos coeficientes de um modelo de RLM.

- **1.** A v.a. Y_i é uma função linear das variáveis explanatórias $(X_{ij}, j=1..k)$;
- **2.** Os valores de X_i são fixos;
- **3.** Os erros possuem esperança condicional zero, ou seja, $E(e_i)=0$;
- **4.** Os erros são homocedásticos, ou seja, $E(e_i^2) = \sigma^2$;

 $E(ee')=I\sigma^2$

5. Os erros são não-correlacionados, ou seja, $E(e_i e_j) = 0$, para $i \neq j$;

E, para que tenhamos um modelo clássico de regressão linear:

6. Os erros estão normalmente distribuídos;

Hipóteses Básicas: MRLM

Formulário

MODELO REGRESSÃO LINEAR

$$y_t = \beta_1 + \beta_2 x_{t2} + ... + \beta_k x_{tk} + u_t, t = 1, 2, ..., n.$$

Hipóteses básicas

- o **H1 Linearidade:** $Y = X\beta + U$ (ver definições anteriores de Y, X, β, U)
- **H2 Exogeneidade:** $E(u_t | X) = 0$ (t = 1, 2, ..., n). Os regressores são exógenos.
- **H3 Homocedasticidade condicionada:** $Var(u_t | X) = \sigma^2 > 0$ (t = 1, 2, ..., n).
- **H4 Ausência de autocorrelação Cov(u_t, u_s \mid X) = 0** $(t, s = 1, 2, ..., n; t \neq s)$.
- o H5 Não existência de multicolinearidade exacta A característica da matriz X é igual a k (número de coeficientes de regressão) e k < n.

<u>Nota</u>: Se o MRLM considerado for este, o número de coeficientes de regressão é p=k+1

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k + \varepsilon$$

Murteira et al (2015)

Propriedades dos Resíduos dos MQ

Propriedades dos resíduos MQ (ver livro):

a) A soma dos resíduos é igual a zero (papel do termo independente):

$$\sum_{t=1}^n \hat{u}_t = 0.$$

b) A soma dos produtos das observações de cada regressor pelos resíduos é igual a zero:

$$\sum_{t=1}^{n} x_{tj} \hat{u}_{t} = 0 \quad (j = 2, 3, ..., k).$$

c) A soma dos produtos dos valores ajustados pelos resíduos é igual a zero:

$$\sum_{t=1}^n \hat{\mathbf{y}}_t \hat{\mathbf{u}}_t = 0.$$

d) A soma dos quadrados das observações do regressando é igual à soma dos quadrados dos respectivos valores ajustados mais a soma dos quadrados dos resíduos:

Formulário

$$\sum_{t=1}^{n} y_{t}^{2} = \sum_{t=1}^{n} \hat{y}_{t}^{2} + \sum_{t=1}^{n} \hat{u}_{t}^{2}$$

Murteira et al (2015)

Propriedades:

$$\sum_{t=1}^{n} x_{tj} \hat{u}_{t} = 0 \quad (j = 1, 2, ..., k) \; ; \quad \sum_{t=1}^{n} \hat{y}_{t} \hat{u}_{t} = 0 \; ; \quad \sum_{t=1}^{n} y_{t}^{2} = \sum_{t=1}^{n} \hat{y}_{t}^{2} + \sum_{t=1}^{n} \hat{u}_{t}^{2} \; ; \quad r_{y\hat{y}}^{2} = \frac{\left(\sum_{t} (y_{t} - \overline{y}_{t})(\hat{y}_{t} - \overline{\hat{y}}_{t})\right)^{2}}{\sum_{t} (\hat{y}_{t} - \overline{y}_{t})^{2} \sum_{t} (\hat{y}_{t} - \overline{\hat{y}}_{t})^{2}}$$

Obrigada!

Questões?