

STATISTICS I

Economics / Finance/ Management 2nd Year/2nd Semester 2024/2025

LESSON 11

Professor: Elisabete Fernandes

E-mail: efernandes@iseg.ulisboa.pt

Roadmap:

- Probability
- Random variable and two dimensional random variables:
 - Distribution
 - Joint distribution
 - Marginal distribution
 - Conditional distribution functions
- Expectations and parameters for a random variable and two dimensional random variables
- Discrete Distributions
- Continuous Distributions

Bibliography: Miller & Miller, John E. (2014) Freund's Mathematical Statistics with applications, 8th Edition, Pearson Education, [MM]

Continuous Distributions: Exercises

Exponential Distribution, Gamma Distribution and Chi-Square Distribution

Chapter 6

8. (Lack of memory of the exponential random variable) Let $X \sim Exp(\lambda)$, prove that P(X > x + s | X > x) = P(X > s) for any $x \ge 0$ and $s \ge 0$.

Gamma distribution: The gamma cumulative distribution function is defined for x > 0, a > 0, b > 0, by the integral

$$F_X(x) = \frac{1}{b^a \Gamma(a)} \int_0^x u^{a-1} e^{-\frac{u}{b}} du$$
 2025

where $\Gamma(t) = \int_0^\infty e^{-u} u^{t-1} du$ is the Gamma function. The parameters a and b are called the shape parameter and scale parameter, respectively.

The probability density function for the gamma distribution is

$$f_X(x) = \frac{1}{b^a \Gamma(a)} x^{a-1} e^{-\frac{x}{b}}$$

Let
$$X_i \sim Exp(\lambda_i)$$
, $i = 1, 2, ..., k$, be independent random variables, then $Y = \min\{X_1, X_2, ..., X_k\} \sim Exp(\sum_{i=1}^k \lambda_i)$

Exercise 8

$$\begin{cases}
\chi \sim \mathcal{E}_{X}(\lambda), & \lambda > 0 \\
\downarrow_{X}(x|\lambda) = \lambda e^{-\lambda x} & (x > 0)
\end{cases}$$

$$\begin{cases}
\chi \sim \mathcal{E}_{X}(\lambda), & \lambda > 0 \\
\downarrow_{X}(x|\lambda) = \lambda e^{-\lambda x} & (x > 0)
\end{cases}$$

$$\begin{cases}
\chi \sim \mathcal{E}_{X}(\lambda), & \lambda > 0 \\
\downarrow_{X}(x|\lambda) = \lambda e^{-\lambda x} & (x > 0)
\end{cases}$$

$$\begin{cases}
\chi \sim \mathcal{E}_{X}(\lambda), & \lambda > 0 \\
\downarrow_{X}(x|\lambda) = \lambda e^{-\lambda x} & (x > 0)
\end{cases}$$

$$\begin{cases}
\chi \sim \mathcal{E}_{X}(\lambda), & \lambda > 0 \\
\downarrow_{X}(x|\lambda) = \lambda e^{-\lambda x} & (x > 0)
\end{cases}$$

$$\begin{cases}
\chi \sim \mathcal{E}_{X}(\lambda), & \lambda > 0 \\
\downarrow_{X}(x|\lambda) = \lambda e^{-\lambda x} & (x > 0)
\end{cases}$$

$$\begin{cases}
\chi \sim \mathcal{E}_{X}(\lambda), & \lambda > 0 \\
\downarrow_{X}(x|\lambda) = \lambda e^{-\lambda x} & (x > 0)
\end{cases}$$

$$\begin{cases}
\chi \sim \mathcal{E}_{X}(\lambda), & \lambda > 0 \\
\downarrow_{X}(x|\lambda) = \lambda e^{-\lambda x} & (x > 0)
\end{cases}$$

$$\begin{cases}
\chi \sim \mathcal{E}_{X}(\lambda), & \lambda > 0 \\
\downarrow_{X}(x|\lambda) = \lambda e^{-\lambda x} & (x > 0)
\end{cases}$$

$$\begin{cases}
\chi \sim \mathcal{E}_{X}(\lambda), & \lambda > 0 \\
\downarrow_{X}(x|\lambda) = \lambda e^{-\lambda x} & (x > 0)
\end{cases}$$

$$\begin{cases}
\chi \sim \mathcal{E}_{X}(\lambda), & \lambda > 0 \\
\downarrow_{X}(x|\lambda), & \lambda > 0
\end{cases}$$

$$\begin{cases}
\chi \sim \mathcal{E}_{X}(\lambda), & \lambda > 0 \\
\downarrow_{X}(x|\lambda), & \lambda > 0
\end{cases}$$

$$\begin{cases}
\chi \sim \mathcal{E}_{X}(\lambda), & \lambda > 0 \\
\downarrow_{X}(x|\lambda), & \lambda > 0
\end{cases}$$

$$\begin{cases}
\chi \sim \mathcal{E}_{X}(\lambda), & \lambda > 0 \\
\downarrow_{X}(x|\lambda), & \lambda > 0
\end{cases}$$

$$\begin{cases}
\chi \sim \mathcal{E}_{X}(\lambda), & \lambda > 0 \\
\downarrow_{X}(\lambda), & \lambda > 0
\end{cases}$$

$$\begin{cases}
\chi \sim \mathcal{E}_{X}(\lambda), & \lambda > 0 \\
\downarrow_{X}(\lambda), & \lambda > 0
\end{cases}$$

$$\begin{cases}
\chi \sim \mathcal{E}_{X}(\lambda), & \lambda > 0 \\
\downarrow_{X}(\lambda), & \lambda > 0
\end{cases}$$

$$\begin{cases}
\chi \sim \mathcal{E}_{X}(\lambda), & \lambda > 0 \\
\downarrow_{X}(\lambda), & \lambda > 0
\end{cases}$$

$$\begin{cases}
\chi \sim \mathcal{E}_{X}(\lambda), & \lambda > 0 \\
\downarrow_{X}(\lambda), & \lambda > 0
\end{cases}$$

$$\begin{cases}
\chi \sim \mathcal{E}_{X}(\lambda), & \lambda > 0 \\
\downarrow_{X}(\lambda), & \lambda > 0
\end{cases}$$

$$\begin{cases}
\chi \sim \mathcal{E}_{X}(\lambda), & \lambda \sim \mathcal{E}_{X}(\lambda), & \lambda > 0
\end{cases}$$

$$\begin{cases}
\chi \sim \mathcal{E}_{X}(\lambda), & \lambda \sim \mathcal{E}_{X}(\lambda), & \lambda$$

9. Let $X_i \sim Exp(\lambda_i)$, i=1,2, be independent random variables. Prove that $Y=\min\{X_1,X_2\}\sim Exp(\lambda_1+\lambda_2)$.

(**Hint:** Note that $P(Y > y) = P(X_1 > y, X_2 > y)$).

Exercise 9

$$X \sim \mathcal{E}_{X}(\lambda_{\lambda}), \ \lambda_{\lambda} > 0 \ (i = 1, 2) \qquad X_{1} \perp X_{2}$$

$$\oint_{X_{\lambda}} (x_{\lambda} | \lambda_{\lambda}) = \lambda_{\lambda} e^{-\lambda_{\lambda} x_{\lambda}}, \ x_{\lambda} > 0 \ (i = 1, 2)$$

$$F_{X_{\lambda}}(x_{\lambda} | \lambda_{\lambda}) = 1 - e^{-\lambda_{\lambda} x_{\lambda}} (x_{\lambda} > 0)$$

$$Y = \min(X_{1}, X_{2})$$

$$P(Y > Y) = P(X_{1} > Y, X_{2} > Y) = P(X_{1} > Y) P(X_{2} > Y) =$$

$$= (1 - F_{X_{1}}(Y))(1 - F_{X_{2}}(Y)) =$$

$$= (1 - (1 - e^{-\lambda_{1} Y}))(1 - (1 - e^{-\lambda_{2} Y})) = e^{-\lambda_{1} Y} e^{-\lambda_{2} Y} =$$

$$= e^{-(\lambda_{1} + \lambda_{2}) Y}$$

Exercise 9

$$F_{Y}(y) = P(Y \le y) = 1 - P(Y > y) = 1 - e^{-(\lambda_1 + \lambda_2)y}$$

This is the C.D.F. of a $E_{X}(\lambda_1 + \lambda_2)$ random variable.
Therefore $Y \sim E_{X}(\lambda_1 + \lambda_2)$, $Q \in D$.

10. Let $X_i \sim Exp(\lambda)$, i = 1, 2, be independent random variables.

- (a) Find the distribution of $Y_1 = \min\{X_1, X_2\}$ and $Y_2 = \max\{X_1, X_2\}$.
- (b) Find the expected value of $Z = \lambda^2 Y_1 \frac{2}{3} Y_2$.

Exercise 10 a)

$$\begin{cases} \chi_{i} \sim \mathcal{E}(\lambda); i = 1, 2 \quad \chi_{i} \perp \chi_{2} \\ \downarrow_{\chi_{i}}(x \mid \lambda) = \lambda e^{-\lambda x} \quad (x > 0); \quad i = 1, 2 \end{cases}$$

$$F_{\chi_{i}}(x \mid \lambda) = 1 - e^{-\lambda x} \quad (x > 0); \quad i = 1, 2 \end{cases}$$

$$a)$$

$$Y_{1} = \min\{\chi_{1}, \chi_{2}\}$$

$$\text{Evan at } 9 \text{ wat Know that } Y_{1} \sim \text{at}(2\lambda)$$

$$Y_{2} = \max\{\chi_{1}, \chi_{2}\}$$

$$F_{Y_{2}}(y) = P(Y_{2} \leq y) = P(\chi_{1} \leq y, \chi_{2} \leq y) = \\ = P(\chi_{1} \leq y) P(\chi_{2} \leq y) = F_{\chi_{1}}(y) F_{\chi_{2}}(y) = \\ = (1 - e^{-\lambda y})(1 - e^{-\lambda y}) = (1 - e^{-\lambda y})^{2} = \\ = 1 + e^{-2\lambda y} - 2e^{-\lambda y} \quad (y > 0)$$

$$f_{Y_{2}} = \begin{cases} F_{Y_{2}}(y) = 2\lambda e^{-\lambda y} - 2\lambda e^{-2\lambda y} = 2\lambda (e^{-\lambda y} - e^{-2\lambda y}) \quad (y > 0) \end{cases}$$

$$f_{Y_{2}} = \begin{cases} F_{Y_{2}}(y) = 2\lambda e^{-\lambda y} - 2\lambda e^{-2\lambda y} = 2\lambda (e^{-\lambda y} - e^{-2\lambda y}) \quad (y > 0) \end{cases}$$

Exercise 10 b)

$$\begin{aligned} & \begin{array}{l} Y_{1} \sim \mathcal{E}_{X}\left(2\,\lambda\right) = \begin{array}{l} = \left(\left(Y_{1}\right) = \frac{1}{2\lambda}\right) \\ \mathcal{E}\left(\left(Y_{2}\right) = \int_{-\infty}^{\sqrt{N}} \int_{Y_{2}}^{\sqrt{N}}\left(y\right) dy = \int_{0}^{+\infty} 2\,\lambda y \left(e^{-\lambda y} - e^{-2\lambda y}\right) dy = \\ & = \int_{0}^{+\infty} 2\,\lambda y e^{-\lambda y} dy - \int_{0}^{+\infty} 2\,\lambda y e^{-2\lambda y} dy = \\ & = 2\int_{0}^{+\infty} y \lambda e^{-\lambda y} dy - \int_{0}^{+\infty} y \left(2\lambda\right) e^{-2\lambda\lambda y} dy = \\ & = 2\int_{0}^{+\infty} y \lambda e^{-\lambda y} dy - \int_{0}^{+\infty} y \left(2\lambda\right) e^{-2\lambda\lambda y} dy = \\ & = 2\int_{0}^{+\infty} y \lambda e^{-\lambda y} dy - \int_{0}^{+\infty} y \left(2\lambda\right) e^{-2\lambda\lambda y} dy = \\ & = 2\int_{0}^{+\infty} y \lambda e^{-\lambda y} dy - \int_{0}^{+\infty} y \left(2\lambda\right) e^{-2\lambda\lambda y} dy = \\ & = 2\int_{0}^{+\infty} y \lambda e^{-\lambda y} dy - \int_{0}^{+\infty} y \left(2\lambda\right) dx = \int_{0}^{+\infty} x \lambda e^{-\lambda x} dx = \\ & = 2\int_{0}^{+\infty} y \lambda e^{-\lambda y} dy - \int_{0}^{+\infty} y \left(2\lambda\right) dx = \int_{0}^{+\infty} x \lambda e^{-\lambda x} dx = \\ & = 2\int_{0}^{+\infty} y \lambda e^{-\lambda y} dy - \int_{0}^{+\infty} y \left(2\lambda\right) dx = \int_{0}^{+\infty} x \lambda e^{-\lambda x} dx = \\ & = 2\int_{0}^{+\infty} y \lambda e^{-\lambda y} dy - \int_{0}^{+\infty} y \left(2\lambda\right) dx = \int_{0}^{+\infty} x \lambda e^{-\lambda x} dx = \\ & = 2\int_{0}^{+\infty} y \lambda e^{-\lambda y} dy - \int_{0}^{+\infty} y \lambda e^{-\lambda y} dy = \\ & = 2\int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy - \int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy = \\ & = 2\int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy - \int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy = \\ & = 2\int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy - \int_{0}^{+\infty} y \lambda y e^{-\lambda y} dy = \\ & = 2\int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy - \int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy = \\ & = 2\int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy - \int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy = \\ & = 2\int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy - \int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy = \\ & = 2\int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy - \int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy = \\ & = 2\int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy - \int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy = \\ & = 2\int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy - \int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy = \\ & = 2\int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy - \int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy = \\ & = 2\int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy - \int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy = \\ & = 2\int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy - \int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy = \\ & = 2\int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy - \int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy = \\ & = 2\int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy - \int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy = \\ & = 2\int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy - \int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy = \\ & = 2\int_{0}^{+\infty} x \lambda y e^{-\lambda y} dy - \int_{0}^{+\infty} x \lambda$$

Exercise 10 b)

(*) Alternatively, we could have used integration by parts:

$$\int y e^{-2\lambda y} = -\frac{y e^{-2\lambda y}}{2\lambda} - \int -\frac{e^{-2\lambda y}}{2\lambda} dy = -\frac{y e^{-2\lambda y}}{2\lambda} + \frac{1}{2\lambda} \int e^{-2\lambda y} =$$

$$= -\frac{y e^{-2\lambda y}}{2\lambda} + \frac{1}{2\lambda} \left(-\frac{e^{-2\lambda y}}{2\lambda} \right) = -\frac{y e^{-2\lambda y}}{2\lambda} - \frac{e^{-2\lambda y}}{4\lambda^2}$$

$$u = y \qquad u' = 1 \qquad u = -y = \frac{-2\lambda y}{2\lambda}$$

$$v' = e^{-2\lambda y} \qquad v = -\frac{e}{2\lambda} \qquad vu' = v = -\frac{e}{2\lambda}$$

$$\int y e^{-\lambda y} = -\frac{y e^{-\lambda y}}{\lambda} - \int -\frac{e^{-\lambda y}}{\lambda} dy = -\frac{y e^{-\lambda y}}{\lambda} + \frac{1}{\lambda} \int e^{-\lambda y} =$$

$$= -\frac{y e^{-\lambda y}}{\lambda} + \frac{1}{\lambda} \left(-\frac{e^{-\lambda y}}{\lambda} \right) = -\frac{y e^{-\lambda y}}{\lambda} - \frac{e^{-\lambda y}}{\lambda^2}$$

$$u = y \qquad u' = 1 \qquad u = -y = -\lambda y$$

$$v' = e^{-\lambda y} \qquad v' = -\frac{e^{-\lambda y}}{\lambda} \qquad v'' = v' = -\frac{e^{-\lambda y}}{\lambda}$$

 $E(Y_2) = \int y f_{Y_2}(y) dy = \int 2\lambda y (e^{-\lambda y} - e^{-\lambda y}) dy =$

 $= \int_{0}^{+\infty} 2 \lambda y e^{-\lambda y} dy - \int_{0}^{+\infty} 2 \lambda y e^{-2\lambda y} dy =$

Exercise 10 b)
$$\frac{Auxiliary\ calculations:}{\lim_{a \to +\infty} ae} = \lim_{a \to +\infty} \frac{a}{e^{a\lambda}} = 0$$

$$\lim_{a \to +\infty} e^{-a\lambda} = \lim_{a \to +\infty} \frac{1}{e^{a\lambda}} = 0$$

$$\lim_{a \to +\infty} e^{-a\lambda} = \lim_{a \to +\infty} \frac{1}{e^{a\lambda}} = 0$$

$$\lim_{a \to +\infty} be^{-a\lambda} = \lim_{b \to +\infty} \frac{b}{e^{a\lambda b}} = 0$$

$$\lim_{a \to +\infty} e^{-a\lambda} = \lim_{b \to +\infty} \frac{b}{e^{a\lambda b}} = 0$$

$$\lim_{a \to +\infty} e^{-a\lambda} = \lim_{a \to +\infty} \frac{b}{e^{a\lambda b}} = 0$$

$$= 2\lambda \int_{0}^{+\infty} y e^{-\lambda y} dy - 2\lambda \int_{0}^{+\infty} y e^{-2\lambda y} dy =$$

$$= 2\lambda \lim_{b \to +\infty} \left[-\frac{y e^{-\lambda y}}{\lambda} - \frac{e^{-\lambda y}}{\lambda^{2}} \right]_{0}^{a} - 2\lambda \lim_{b \to +\infty} \left[-\frac{y e^{-2\lambda y}}{2\lambda} - \frac{e^{-2\lambda y}}{y \lambda^{2}} \right]_{0}^{b} =$$

$$= 2\lambda \lim_{a \to +\infty} \left(-\frac{a e^{-a\lambda}}{\lambda} - \frac{e^{-a\lambda}}{\lambda^{2}} - \left(-\frac{o}{\lambda} - \frac{e^{o}}{\lambda^{2}} \right) \right) - 2\lambda \lim_{b \to +\infty} \left(-\frac{b e^{-2\lambda b}}{2\lambda} - \frac{e^{-2\lambda b}}{y \lambda^{2}} - \left(-\frac{o}{2\lambda} - \frac{e^{o}}{y \lambda^{2}} \right) \right) =$$

$$= 2\lambda \left(0 - 0 + 0 + \frac{1}{\lambda^{2}} \right) - 2\lambda \left(0 - 0 + 0 + \frac{1}{y \lambda^{2}} \right) = \frac{2\lambda}{\lambda^{2}} - \frac{2\lambda}{y \lambda^{2}} = \frac{2}{\lambda} - \frac{1}{2\lambda} = \frac{4}{2\lambda} - \frac{1}{2\lambda} = \frac{3}{2\lambda}$$

11. The lifetime in years of an electronic component is a continuous random variable X that follows

$$X \sim Exp(1)$$

- (a) Find the lifetime L which a typical component is 60% certain to exceed.
- (b) If five components are sold to a manufacturer, find the probability that at least one of them will have a lifetime less than L years.

Exercise 11 a)

X = lifetime of a component (in years)

X ~
$$\in$$
 X (1)

$$f_{X}(x) = e^{-x} (x > 0)$$

a)

P(X > L) = 0.6 (=) 1 - $f_{X}(L) = 0.6$ (=)

(=) $1 - \int_{0}^{L} e^{-x} dx = 0.6$ (=)

(=) $1 - [-e^{-x}]_{0}^{L} = 0.6$ (=)

(=) $1 - (-e^{-L} + e^{0}) = 0.6$ (=)

(=) $1 - (1 - e^{-L}) = 0.6$ (=)

(=) $1 - 1 + e^{-L} = 0.6$ (=)

(=) $e^{-L} = 0.6$ (=) $e^{-L} = 0.6$ (=)

Answer: Aproximately 0.51 hours.

Exercise 11 b)

 $P(Y \gg 1) = 1 - P(Y < 1) = 1 - f_{Y}(0) = 1 - (5)0.4^{\circ} \times 0.6^{\circ} \approx 0.9222$

$$m = 5$$
 components
 $h = P(X < L) = 1 - 0.6 = 0.4$
 $Y = \#$ of components (in 5) with lifetime less than L.
 $Y \sim Bin(5, 0.4)$ $f_y(y) = {5 \choose y} 0.4^{y} \times 0.6^{5-y} (y = 0,1,2,3,4,5)$

- 12. The time intervals between successive trains stopping in a certain rail station have an exponential distribution with mean 6 minutes.
 - (a) Find the probability that the time interval between two consecutive trains is less than 5 minutes.
 - (b) Find a time interval t such that we can be 95% sure that the time interval between two successive trains will be greater than t.
 - (c) Assume that the number of trains arriving in one hour is modeled by a Poisson random variable. Compute the probability that in a random hour 5 trains stop at the train station.
 - (d) If we have counted 8 trains in the first hour, what is the probability that two of them arrived in the first 30 minutes?

Exercise 12 a)

$$X = \text{Time (in minutes) between successive trains}$$

$$X \sim \mathcal{E}_{X}(1/6) \quad \mathcal{E}(X) = 6 \qquad \qquad f_{X}(X) = \frac{1}{6}e^{-\frac{X}{6}}(X>0)$$

$$F_{X}(X) = 1 - e^{-\frac{X}{6}}(X>0)$$

$$P(X<5) = F_{X}(5) = 1 - e^{-\frac{5}{6}} \approx 0.5654$$

Exercise 12 b)

$$P(x>t) = 0.95 (=) 1 - F_x(t) = 0.95 (=)$$

$$(=) 1 - (1 - e^{-\frac{t}{6}}) = 0.95 (=)$$

$$(=) e^{-\frac{t}{6}} = 0.95 (=)$$

$$(=) -\frac{t}{6} = \text{lm}(0.95) (=)$$

$$(=) t = -6 \text{lm}(0.95) \approx 0.308$$

Exercise 12 c)

Time (in minutes) between successive trains ~
$$\varepsilon_{x}(1/6)$$
 # trains per minute ~ $\varepsilon_{y}(\frac{1}{6})$ # trains per hour ~ $\varepsilon_{y}(\frac{1}{6})$ = $\varepsilon_{y}(10)$

Y = # of trains arriving in one brown ~ $\varepsilon_{y}(10)$
 $\varepsilon_{y}(y) = \frac{e^{-10}}{y!}$ (y = 0, 1, 2, ...)

P(Y = 5) = $\varepsilon_{y}(5) = \frac{e^{-10}}{10}$ = 0.0378

Exercise 12 d)

$$M = 8$$
 trains (in 1 how)
 $W = \#$ of trains arriving in the first 30 min ~ $Bi(\frac{10}{2}) = Bi(5)$
 $Z = \#$ of trains arriving in the last 30 min ~ $Bi(5)$
 $P(W = 2 \mid Y = 8) = \frac{P(W = 2 \land Y = 8)}{P(Y = 8)} = \frac{P(W = 2 \land Z = 6)}{P(Y = 8)} = \frac{10^{-5} \text{ s}}{4!} \times \frac{e^{-5} \text{ s}}{6!} \simeq 0.1099$

13. Compute the following probabilities:

- (a) If Y is distributed $\chi^2(4)$ find $P(Y \le 7.78)$.
- (b) If Y is distributed $\chi^2(10)$ find P(Y > 18.31).
- (c) If Y is $\chi^2(1)$ find $P(Y \le 3.8416)$.

Chi-squared Distribution

Adriana, 2025

In the case of the chi-squared random variables we have:

- **1** E(X) = v.
- **2** Var(X) = 2v.
- **3** Let $X_1, X_2,...,X_k$ be independent random variables with Chi-squared distribution $X_1 \sim \chi^2(v_1)$ and

$$X_2 \sim \chi^2(v_2), ..., X_k \sim \chi^2(v_k), \text{ then } \sum_{i=1}^k X_i \sim \chi^2\left(\sum_{i=1}^k v_i\right).$$

Exercise 13 a)

Table 5:
$$\chi_{\alpha, \sigma}$$
: $P(\chi_{\sigma} > \chi_{\alpha, \sigma}) = \alpha$

$$(\chi_{\alpha, \sigma} \in \mathbb{R}^{+})$$

$$Y \sim \chi(y) \qquad P(Y \leqslant 7.78) = 0.9$$

$$\chi_{(y)}^{2} \qquad \text{using excel, because } 7.78$$

$$\text{is not on table } V$$

$$(\chi_{\alpha, \sigma} \in \mathbb{R}^{+})$$

$$\chi_{(y)}^{2} \qquad \text{using excel, because } 7.78$$

Exercise 13 b)

Y ~
$$\chi^{2}_{(10)}$$
 P(Y > 18.31) \simeq P(Y > 18.307) = 0.05

18.307

Exercise 13 c)

e)
$$Y \sim \chi^{2}_{(1)} \qquad P(Y \leq 3.8416) \simeq P(Y \leq 3.841) = 1 - P(Y > 3.841)$$

$$= 1 - 0.05 = 0.95$$

14. Using the moment generating function, show that if $X \sim Gamma(a, b)$ and Y = 2X/b, then $Y \sim \chi^2(2a)$.

Gamma Distribution

Gamma distribution: The gamma cumulative distribution function is defined for x > 0, a > 0, b > 0, by the integral

$$F_X(x) = \frac{1}{b^a \Gamma(a)} \int_0^x u^{a-1} e^{-\frac{u}{b}} du$$

where $\Gamma(t) = \int_0^\infty e^{-u} u^{t-1} du$ is the Gamma function. The parameters a and b are called the shape parameter and scale parameter, respectively.

The probability density function for the gamma distribution is

$$f_X(x) = \frac{1}{b^a \Gamma(a)} x^{a-1} e^{-\frac{x}{b}}$$

Adriana, 2025

Exercise 14

$$X \sim Gamma(a, b) \qquad Y = \frac{2}{b} X$$

$$M_{X}(t) = (1 - bt)^{-a} (t < \frac{1}{b})$$

$$Q_{1} \sim \chi^{2}(K)$$

$$M_{Q_{1}}(t) = (1 - 2t)^{-\frac{K}{2}} (t < \frac{1}{2})$$

$$Q_1 \sim \chi^2(\kappa)$$

Eonsequently: $Q_2 \sim \chi^2(2a)$ $M_{Q_3}(t) = (1-2t)^{-\frac{2a}{2}} = (1-2t)^{-a} (t < \frac{1}{2})$ To demonstrate that $Y = \frac{2}{h} X \sim \chi^2(2a)$ we need to show that $M_{Y}(t) = M_{Q_{3}}(t) = (1-2t)^{-a}$ $(t < \frac{1}{2})$.

Exercise 14

$$M_{Y}(t) = E(e^{tY}) = E(e^{\frac{2}{b}tX}) = M_{X}(\frac{2}{b}t) =$$

$$= (1 - b \frac{2}{b}t)^{-a} = (1 - 2t)^{-a}(t < \frac{1}{2})$$

Conclusion: Y~ X(2a), QED.

15. Prove that if X_1 and X_2 are independent random variables with Gamma distribution $X_1 \sim Gamma(a_1, b)$ and $X_2 \sim Gamma(a_2, b)$, then $X_1 + X_2 \sim Gamma(a_1 + a_2, b)$. (**Hint:** Recall that if $X \sim Gamma(a, b)$, then $M_X(t) = (1 - bt)^{-a}$ for t < 1/b).

Exercise 15

$$X_{1} \perp X_{2}$$
 $X_{1} \sim Gamma(a_{1}, b)$
 $M_{X_{1}}(t) = (1 - b t)$
 $M_{X_{2}}(t) = (1 - b t)$
 $M_{X_{1} + X_{2}}(t) = E(e^{t(X_{1} + X_{2})}) = E(e^{t(X_{1} +$

- 16. Suppose customers arrive at a store according to a Poisson process, where the expected number of customers per hour is 0.5.
 - (a) Knowing that 4 customers arrived at the store during the morning (4 hours) what is the probability that in this day (8 hours) the store receives more than 15 customers?
 - (b) Compute the probability that the first customer does not arrive during the first hour (since the opening hour of the store).
 - (c) What is the distribution of the time until the second customer arrives?
 - (d) Find the probability that one has to wait at least half an hour until the second customer arrives.
 - (e) Find the probability that one has to wait at least five hours until the fourth customer arrives.

Exercise 16 a)

$$X = \# \text{ of costumes in 1 how } \sim \text{Bi}(0.5)$$
 $E(X) = 0.5$
a)

 $Y_{M} = \# \text{ of costumes in one moving } (Y \text{ hows}) \sim \text{Bi}(Y \times 0.5) = \text{Bi}(Z)$
 $Y_{A} = \% \otimes \% \otimes \% \otimes \text{afternoon} (\% \otimes) \sim \text{Bi}(Z) \qquad \text{f}_{Y_{A}}(Y) = \frac{e^{-2}Z^{Y}}{Y!} \qquad (Y = 0,1,2,...)$
 $Y_{D} = \% \otimes \text{hows} \sim \text{Bi}(X \times 0.5) = \text{Bi}(Y)$

$$P(Y_{D} > 15 | Y_{M} = Y) = \frac{P(Y_{A} > 11, Y_{M} = Y)}{f_{Y_{M}}(Y)} = \frac{(1 - F_{W}(11)) f_{Y_{M}}(Y)}{f_{Y_{M}}(Y)} = \frac{f_{Y_{M}}(Y)}{f_{Y_{M}}(Y)} = \frac{f_{Y_{M}}(Y)}{$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!} \approx 0$$

$$= 1 - F_{A}(11) = 1 - \sum_{y=0}^{11} \frac{e^{-2} y}{y!$$

J_X =1-DISI.POISSON(11;2;VERDADEIRO A B C D

1,3646E-06

Eálculo mo excel

Exercise 16 b)

$$T = time until the first customer (in hours) ~ 6x(0.5)$$
 $F_{T}(t) = 1 - e^{-\frac{t}{2}}(t>0)$
 $P(T>1) = 1 - F_{T}(1) = 1 - (1 - e^{-\frac{t}{2}}) \simeq 0.61$

Exercise 16 c) and d)

$$T_2$$
 = time until the second customer arrives (in hours) ~ Gamma (2,0.5) = χ^2 (4)

d)

 T_2 = time until the second customer arrives (in hours) ~ Gamma (2,0.5) = χ^2 (4)

 T_2 = time until the second customer arrives (in hours) ~ Gamma (2,0.5) = χ^2 (4)

 T_2 = time until the second customer arrives (in hours) ~ Gamma (2,0.5) = χ^2 (4)

Exercise 16 e)

Ty = time until the fourth curtomer arrives (in hours) ~ Gamma (4,0.5) = X (8)

$$P(T_4 \gg 5) \simeq P(T_4 \gg 5.071) = 0.75$$

3	.995	.990	.975	.950	.900	.750	.500	.250	.100	.050	.025	.010	.005	.001
n														
1	.000	.000	.001	.004	.016	.102	.455	1.323	2.706	3.841	5.024	6.635	7.879	10.827
2	.010	.020	.051	.103	.211	.575	1.386	2.773	4.605	5.991	7.378	9.210	10.597	13.815
3	.072	.115	.216	.352	.584	1.213	2.366	4.108	6.251	7.815	9.348	11.345	12.838	16.266
4	.207	.297	.484	.711	1.064	1.923	3.357	5.385	7.779	9.488	11.143	13.277	14.860	18.466
5	.412	.554	.831	1.145	1.610	2.675	4.351	6.626	9.236	11.070	12.832	15.086	16.750	20.515
6	.676	.872	1.237	1.635	2.204	3.455	5.348	7.841	10.645	12.592	14.449	16.812	18.548	22.457
7	.989	1.239	1.690	2.167	2.833	4.255	6.346	9.037	12.017	14.067	16.013	18.475	20.278	24.321
8	1.344	1.647	2.180	2.733	3.490	5.071	7.344	10.219	13.362	15.507	17.535	20.090	21.955	26.124
9	1.735	2.088	2.700	3.325	4.168	5.899	8.343	11.389	14.684	16.919	19.023	21.666	23.589	27.877
10	2.156	2.558	3.247	3.940	4.865	6.737	9.342	12.549	15.987	18.307	20.483	23.209	25.188	29.588

O1:

f_X	=1-DIST.CHIQ(5;8;VERDADEIRO())								
\mathbf{A}	A		С	D					
1	0,75757613)							
2									
	D	P(T	` ≽ ⊆)						

Continuous Distributions: Exercises

Normal Distribution, Uniforme Distribution and Central Limite Theorem

Chapter 6

2

Normal Distribution

The most famous continuous distribution is the *normal distribution* (introduced by Abraham de Moivre, 1667-1754). The normal probability density function is given by

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

The cumulative distribution function does not have a close form solution:

$$F_X(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$

When a random variable X follows a normal distribution with parameters μ and σ^2 we write $X \sim N\left(\mu, \sigma^2\right)$.

Properties:

- **1** Moment generating function $M_X(t) = e^{\left(\mu t + 0.5\sigma^2 t^2\right)}$
- **2** $E(X) = \mu$.
- **3** $Var(X) = \sigma^2$

Adriana, 2025

$$X \sim \mathit{N}(\mu, \sigma^2) \Rightarrow rac{X - \mu}{\sigma} \sim \mathit{N}(0, 1)$$

17. Compute the following probabilities:

- (a) If Y is distributed N(1,4), find $P(Y \le 3)$.
- (b) If Y is distributed N(3,9), find P(Y>0).
- (c) If Y is distributed N(50, 25), find $P(40 \le Y \le 52)$.
- (d) If Y is distributed N(0,1), find P(|Y| > 1.96).

Exercise 17 a), b), c) and d)

(a) 0.841

(b) 0.841

(c) 0.633

(d) 0.05

18. Prove that if the random variables X_i , i=1,2 have a normal distribution, $X_i \sim N(\mu_i, \sigma_i^2)$, and are independent and if $Y = aX_1 + bX_2 + c$, then $Y \sim N(\mu_Y, \sigma_Y^2)$, where $\mu_Y = a\mu_1 + b\mu_2 + c$ and $\sigma_Y^2 = a^2\sigma_1^2 + b^2\sigma_2^2$.

(**Hint:** Recall that if $X \sim N(\mu, \sigma^2)$, then $M_X(t) = e^{(\mu t + 0.5\sigma^2 t^2)}$ and note that functions of independent random variables are also independent).

Exercise 18

$$X_{i} \sim N(\mu_{i}, \nabla_{i}^{2}), \quad M_{X_{i}}(t) = E(e^{t \times X_{i}}) = e^{\mu_{i}t + 0.5\nabla_{i}^{2}t^{2}} \quad (i=1,2)$$

$$X_{i} \perp X_{i} \quad (i \neq i)$$

$$Y = a \times_{1} + b \times_{2} + e \qquad \text{because of independence} \qquad = E(e^{ct}) = e^{ct}, \quad \text{because } cteR$$

$$M_{Y}(t) = M_{a \times_{1} + b \times_{2} + e}(t) = M_{a \times_{1}}(t) M_{b \times_{2}}(t) M_{c}(t) =$$

$$= M_{X_{1}}(at) M_{X_{2}}(bt) e^{ct} = e^{\mu_{1}at + 0.5\nabla_{1}^{2}(at)^{2}} e^{\mu_{2}bt + 0.5\nabla_{2}^{2}(bt)^{2}} ct$$

$$= e^{(\mu_{1}a + \mu_{2}b + e)t} + 0.5(a^{2}\nabla_{1}^{2} + b^{2}\nabla_{2}^{2})t^{2} = e^{\mu_{Y}t + 0.5\nabla_{Y}^{2}t^{2}}$$

$$= e^{(\mu_{1}a + \mu_{2}b + e)t} + 0.5(a^{2}\nabla_{1}^{2} + b^{2}\nabla_{2}^{2})t^{2} = e^{\mu_{Y}t + 0.5\nabla_{Y}^{2}t^{2}}$$
This is the M.G.F. of a $N(\mu_{Y}, \nabla_{Y}^{2})$, where $\mu_{Y} = a\mu_{1} + b\mu_{2} + c$ and $\sigma_{Y}^{2} = a^{2}\nabla_{1}^{2} + b^{2}\nabla_{2}^{2}$. It is therefore demonstrated that $1 \sim N(\mu_{Y}, \nabla_{Y}^{2}) = N(a\mu_{1} + b\mu_{2} + c, a^{2}\nabla_{1}^{2} + b^{2}\nabla_{2}^{2})$.

Exercise 18

Note: $M(t) = \epsilon(e^{(a X_1 + b X_2 + c)t}) = \epsilon(e^{(a X_1 + b X_2$

- 19. Suppose that diameter of a certain component produced in a factory can be modeled by a normal distribution with mean 10cm and standard deviation 3cm.
 - (a) Find the probability that the diameter of a random component is larger than 13cm.
 - (b) Find the probability that the diameter of a random component is less than 7cm.
 - (c) Selecting randomly 10 components, what is the probability that 2 of them have a diameter less than 7cm?
 - (d) What is the expected number of components that we have to inspect to find 1 with a diameter less than 7cm?

Exercise 19 a) and b)

(a) Let X be the diameter of a certain component produced in a factory.

$$X \sim N(\mu = 10, \sigma^2 = 9).$$

Then,

$$P(X > 13) = P\left(\frac{X - 10}{3} > \frac{13 - 10}{3}\right) = P(Z > 1) = 1 - \Phi(1) = 0.159$$

where $Z \sim N(0, 1)$.

(b)

$$P(X < 7) = P\left(\frac{X - 10}{3} < \frac{7 - 10}{3}\right) = P(Z < -1) = 1 - \Phi(1) = 0.159$$

the last equality following in light of the symmetry of the normal distribution.

Exercise 19 c) and d)

(c) Let Y be the random variable that represents the number of components that have a diameter less than 7cm, in a set of 10 components.

$$Y \sim Bin(n = 10, p = 0.159)$$

because p = P(X < 7). The requested probability is

$$P(Y=2) = {10 \choose 2} \cdot 0.159^2 (1 - 0.159)^8 = 0.285.$$

(d) Let Z be the random variable that we have to inspect to find 1 with a diameter less than 7cm.

$$Z \sim Geo(p)$$
, where $p = P(X < 7) = 0.159$

Then,

$$E(Z) = 1/p \approx 6.3,$$

which means that, in average, one has to inspect 7 components.

20. A baker knows that the daily demand for a specific type of bread is a random variable X such that $X \sim N(\mu = 50, \sigma^2 = 25)$. Find the demand which has probability 1% of being exceeded.

Exercise 20

61.65

21. Assume that X_i , with i = 1, 2, 3 represent the profit, in million of euros, of 3 different companies located in 3 different countries. If

$$X_1 \sim N(1, 0.01), \quad X_2 \sim N(1.5, 0.03), \quad X_3 \sim N(2, 0.06)$$

- (a) Which company is more likely to have a profit greater than 1.5 millions?
- (b) What is the probability of the profit of these 3 companies does not exceed 4 millions of euros? (Assume independence.)

Exercise 21 a)

(a) Due to the symmetry of the normal distributions, we know that

$$P(X_1 > 1.5) < P(X > 1) = 0.5, \quad P(X_2 > 1.5) = 0.5$$

 $P(X_3 > 1.5) > P(X_3 > 2) = 0.5.$

Therefore, company 3 is more likely to exceed a profit of 1.5 million.

Exercise 21 b)

(b) From the properties of independent normal random variables, we know that

$$X_1 + X_2 + X_3 \sim N(\mu = 1 + 1.5 + 2, \sigma^2 = 0.01 + 0.02 + 0.06).$$

Therefore, if $Z \sim N(0, 1)$, then

$$P(X_1 + X_2 + X_3 < 4) = P\left(\frac{X_1 + X_2 + X_3 - 4.5}{0.3} < \frac{4 - 4.5}{0.3}\right)$$
$$= P(Z < -5/3) \approx 0.05.$$

- 22. The time elapsed since failure until repair (designated as repair time) of a certain type of machines is a random variable with exponential distribution with mean of 2 hours.
 - (a) What is the probability that a broken machine has a repair time of 1 hour or less?
 - (b) If 10 broken machines were randomly selected, what is the probability of the fastest repair be performed in less than 15 minutes? (assume independence)
 - (c) What is the probability that the total repair time of 50 broken machines does not exceed 90 hours? (assume independence)

Exercise 22 a)

Let X be the random variable that represents the time (in hours) elapsed since failure until repair.

$$X \sim Exp(\lambda), \quad \lambda = 1/E(X) = 0.5.$$

Then,

$$P(X \le 1) = F_X(1) = 1 - e^{-1 \times 0.5} = 0.393.$$

Exercise 22 b)

Let X_i , with $i = 1 \cdots, 10$, be the random variable that represents the time (in hours) elapsed since failure until repair of the i^{th} machine.

$$X_i \sim Exp(\lambda), \quad \lambda = 1/E(X) = 0.5.$$

and the the random variables X_1, \dots, X_{10} are independent. From what we already saw $\min\{X_1, \dots, X_{10}\} \sim Exp(5)$. Then,

$$P(\min\{X_1, \dots, X_{10}\} < 1/4) = 1 - e^{-5/4} \approx 0.713$$

The Central Limit Theorem

Theorem: (*The Central Limit Theorem* - Lindberg-Levy)

Adriana, 2025

Assume that X_i , i=1,...,n are independent, $E(X_i)=\mu_X$, and $Var(X_i)=\sigma_X<+\infty$, then the distribution of

$$Z = \frac{\sum_{i=1}^{n} X_i - n\mu_X}{\sigma_X \sqrt{n}} = \frac{\sqrt{n} (\overline{X} - \mu_X)}{\sigma_X}$$

converges to a standard normal distribution as n tends to infinity. We write $Z \stackrel{a}{\sim} N(0,1)$ where the symbol $\stackrel{a}{\sim}$ reads "distributed asymptotically"

Normal Distribution: Results

If $X_1, X_2, \dots X_n \stackrel{i.i.d}{\sim} N(\mu, \sigma^2)$ then the following holds true:

i)

$$\sum_{i=1}^n X_i \sim \mathcal{N}(\mu n, \sigma^2 n)$$
 or equivalently $\overline{X} \sim \mathcal{N}(\mu, \sigma^2/n)$

ii)

$$rac{\sum_{i=1}^{n} X_i - \mu n}{\sigma \sqrt{n}} \sim \mathcal{N}(0,1)$$
 or equivalently $rac{X - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0,1)$

Adriana, 2025

Exercise 22 c)

Let X_i , with $i = 1 \cdots, 50$, be the random variable that represents the time (in hours) elapsed since failure until repair of the i^{th} machine.

$$X_i \sim Exp(\lambda), \quad \lambda = 1/E(X) = 0.5.$$

and the the random variables X_1, \cdots, X_{50} are independent. Then the total repair time of 50 broken machines is given by

$$T_{50} = \sum_{i=1}^{50} X_i.$$

Due to the Limit Central Theorem, we get that

$$T_{50} = \sum_{i=1}^{50} X_i \stackrel{a}{\sim} N(\mu, \sigma^2)$$

Exercise 22 c)

where

$$\mu = \sum_{i=1}^{50} E(X_i) = \sum_{i=1}^{50} \frac{1}{\lambda} = 100$$

and

$$\sigma^2 = \sum_{i=1}^{50} Var(X_i) = \sum_{i=1}^{50} \frac{1}{\lambda^2} = 200.$$

Then,

$$P(T_{50} < 90) = P\left(\frac{T_{50} - 100}{10\sqrt{2}} < \frac{90 - 100}{10\sqrt{2}}\right) \approx P(Z < -0.71) = 0.239.$$

23. Suppose that you roll a balanced die 36 times. Let Y denote the sum of the outcomes in each of the 36 rolls. Estimate the probability that $108 \le Y \le 144$.

Exercise 23

0.858

- 24. Suppose that a book with 300 pages contains on average 1 misprint per page. Assume that the number of misprints per page is a Poisson random variable.
 - (a) What is the probability that a random page has 2 or more misprints?
 - (b) What is the probability that there will be at least 100 pages which contain 2 or more misprints? (assume independence)
 - (c) What is the probability that there will be no more than 200 misprints in the book?

Exercise 24 a), b) and c)

(a) 0.264(b) 0.0033

(c) ≈ 0

Uniforme Distribution

The probability density function of the *uniform random variable* on an interval (a, b), where a < b, is the function

$$f_X(x) = \begin{cases} 0 & \text{if} & x \le a \\ \frac{1}{b-a} & \text{if} & a < x < b \\ 0 & \text{if} & b \le x \end{cases}$$

Adriana, 2025

The cumulative distribution function is the function

$$F_X(x) = \begin{cases} 0 & \text{if} & x \le a \\ \frac{x-a}{b-a} & \text{if} & a \le x \le b \\ 1 & \text{if} & b \le x \end{cases}$$

3
$$E(X) = (a+b)/2$$
.

4
$$Var(X) = (b-a)^2/12$$
.

5 Skewness =
$$\gamma_1 = 0$$
.

Remark: If X is a *uniform random variable* in the interval (a, b) we write $X \sim U(a, b)$.

- 25. Assume that the number of hours per week that a student spends studying for the course of Statistics 1 follows a continuous uniform distribution in the interval (0,5).
 - (a) What is the probability that a random student spends more than 3 hours studying for the course of Statistics 1?
 - (b) In a group of 300 students, what is the probability that more than 100 spend more than 3 hours studying for the course of Statistics 1?
 - (c) In a group of 300 students, what is the probability that, on average, students spend more than 4 hours studying for the course of Statistics 1?

Exercise 25 a)

(a) Let X be the random variable that represents the number of hours that students spend studying for the course of Statistics 1.

$$X \sim U(0, 5)$$
.

Then,

$$P(X > 3) = \int_{3}^{5} \frac{3}{5} dx = \frac{2}{5}.$$

Exercise 25 b)

Let Y be the random variable that represents the number of students, in 300, that spend more than 3 hours studying for the course of Statistics 1.

$$Y \sim Bin(n = 300, p)$$
, with $p = P(X \ge 3) = \frac{2}{5}$.

As the number of trials is large enough, the central limit theorem allows us to say that

$$Y \stackrel{a}{\sim} N(\mu, \sigma^2)$$

where,

$$\mu = n \times p = 120$$
 and $\sigma^{=} n \times p \times (1 - p) = 72$.

Therefore,

$$P(Y > 100) = P\left(\frac{Y - 120}{\sqrt{72}} > \frac{100 - 120}{\sqrt{72}}\right) \approx P(Z > -2.36) = 0.99$$

Exercise 25 c)

Let X_i , with $i = 1, \dots, 300$, be the random variable that represents the number of hours that student i spends studying for the course of Statistics 1. Then

$$X_i \sim U(0,5), \text{ for } i = 1, \dots, 300$$

and X_i , with $i=1,\cdots,300$ are independent random variables. Therefore, the average number of hours spent by students studying for the course of statistics one is modeled by

$$\overline{X} = \frac{1}{300} \sum_{i=1}^{300} X_i.$$

From the properties of expected value and variance, we get

$$E(\overline{X}) = \frac{1}{300} \sum_{i=1}^{300} E(X_i) = E(X_i) = 2,5$$

and

$$Var(\overline{X}) = \underbrace{\left(\frac{1}{300}\right)^2 \sum_{i=1}^{300} Var(X_i)}_{\text{due to independence}} = \frac{1}{300} Var(X_i) = \frac{1}{300} \times \frac{25}{12}.$$

Therefore, from the central limit theorem, we get that

$$Z = \frac{\overline{X} - 2.5}{\sqrt{\frac{1}{300} \times \frac{25}{12}}} \stackrel{a}{\sim} N(0, 1).$$

Exercise 25 c)

The intended probability follows

$$P(\overline{X} > 4) \approx P\left(Z > \frac{4 - 2.5}{\sqrt{\frac{1}{300} \times \frac{25}{12}}}\right) = P(Z > 18) \approx 0.$$

Thanks!

Questions?