STATISTICAL METHODS

Master in Industrial Management,
Operations and Sustainability (MIMOS)

2nd year/1st Semester 2025/2026

CONTACT

Professor: Elisabete Fernandes

E-mail: efernandes@iseg.ulisboa.pt

https://doity.com.br/estatistica-aplicada-a-nutricao

https://basiccode.com.br/produto/informatica-basica/

PROGRAM

Fundamental Concepts of Statistics

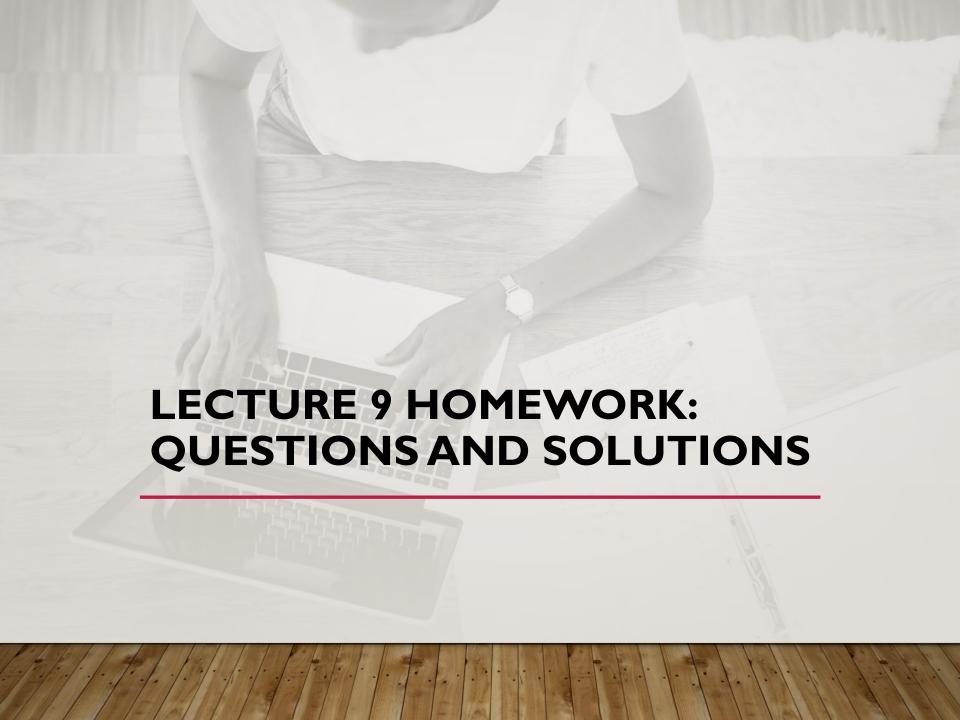
Descriptive Data
Analysis

Introduction to Inferential Analysis

Parametric
Hypothesis Testing

Non-Parametric
Hypothesis Testing

6 Linear Regression Analysis



EXERCISE 6.32

- 6.32 A record store owner finds that 20% of customers entering her store make a purchase. One morning 180 people, who can be regarded as a random sample of all customers, enter the store.
 - a. What is the mean of the distribution of the sample proportion of customers making a purchase?
 - b. What is the variance of the sample proportion?
 - c. What is the standard error of the sample proportion?
 - d. What is the probability that the sample proportion is less than 0.15?

EXERCISE 6.32 A): SOLUTION

Answer:

Given: population proportion p=0.20, sample size n=180.

For the sample proportion \hat{p} :

$$\hat{p} \sim N\Big(p, rac{p(1-p)}{n}\Big), \quad SE = \sqrt{rac{p(1-p)}{n}}$$

(a) Mean of the sampling distribution

$$E(\hat{p}) = p = 0.20$$

EXERCISE 6.32 B): SOLUTION

Answer:

Given: population proportion p=0.20, sample size n=180.

For the sample proportion \hat{p} :

$$\hat{p} \sim N\Big(p, rac{p(1-p)}{n}\Big), \quad SE = \sqrt{rac{p(1-p)}{n}}$$

(b) Variance of the sampling distribution

$$Var(\hat{p}) = \frac{p(1-p)}{n} = \frac{0.20 \cdot 0.80}{180} = \frac{0.16}{180} \approx 0.0008889$$

EXERCISE 6.32 C): SOLUTION

Answer:

Given: population proportion p=0.20, sample size n=180.

For the sample proportion \hat{p} :

$$\hat{p} \sim N\Big(p, rac{p(1-p)}{n}\Big), \quad SE = \sqrt{rac{p(1-p)}{n}}$$

(c) Standard error of the sample proportion

Standard Deviation of \widehat{p}

$$SE = \sqrt{0.0008889} \approx 0.0298$$

EXERCISE 6.32 D): SOLUTION

Answer:

Given: population proportion p=0.20, sample size n=180.

For the sample proportion \hat{p} :

Standard Deviation of \widehat{p}

$$\hat{p} \sim N\Big(p, rac{p(1-p)}{n}\Big), \quad SE = \sqrt{rac{p(1-p)}{n}}$$

(d) Probability that $\hat{p} < 0.15$

Compute z-score:

Standard Normal Distribution Table

$$z = \frac{0.15 - 0.20}{0.0298} = \frac{-0.05}{0.0298} \approx -1.6779$$

$$P(\hat{p} < 0.15) = \Phi(-1.6779) \approx 0.0467$$

EXERCISE 6.48

- 6.48 A random sample of size n=25 is obtained from a normally distributed population with a population mean of $\mu=198$ and a variance of $\sigma^2=100$.
 - a. What is the probability that the sample mean is greater than 200?
 - b. What is the value of the sample variance such that 5% of the sample variances would be less than this value?
 - c. What is the value of the sample variance such that 5% of the sample variances would be greater than this value?

EXERCISE 6.48 A): SOLUTION

Answer:

Given: $\mu = 198, \ \sigma^2 = 100 \ (\sigma = 10), \ n = 25.$

(a)
$$P(ar{X}>200)$$

 $\overline{X} \sim \text{Normal}(\mu, \sigma^2/n)$

$$ar{X} \sim Nigg(198, rac{\sigma^2}{n}igg) = Nigg(198, rac{100}{25}igg) = N(198, 4),$$

Standard Deviation of \overline{X}

so
$$\operatorname{sd}(ar{X})=2$$
.

$$P(ar{X} > 200) = P\Bigl(Z > rac{200-198}{2}\Bigr) = P(Z > 1) = 1 - \Phi(1) pprox 0.158655 \ (pprox 0.158$$

Answer (a): $P(\bar{X}>200) pprox 0.1587$.

Standard Normal Distribution Table

EXERCISE 6.48 B): SOLUTION

Answer:

Given:
$$\mu = 198, \; \sigma^2 = 100 \; (\sigma = 10), \; n = 25.$$

(b) Value $s_{ m low}^2$ such that $P(S^2 < s_{ m low}^2) = 0.05$

Let $\chi^2_{0.05,24}$ denote the 5th percentile of χ^2_{24} . Numerically

$$\chi^2_{0.05,24}pprox 13.8484$$
. Then

Chi-Square Distribution Table

$$s_{
m low}^2 = \sigma^2 rac{\chi_{0.05,24}^2}{n-1} = 100 \cdot rac{13.8484}{24} pprox 57.70.$$

(sample standard deviation $\sqrt{57.70} pprox 7.596$.)

Answer (b): $s_{
m low}^2 pprox 57.70$ (so S pprox 7.60).

Alternative Solution:

$$P(S^{2} < a) = 0.05 \Leftrightarrow P\left(\frac{(n-1)S^{2}}{\sigma^{2}} < \frac{(n-1)a}{\sigma^{2}}\right) = 0.05 \Leftrightarrow P\left(Q < \frac{24 \times a}{100}\right) = 0.05$$

 $Q = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{\text{(n-1)}}$

Then
$$\frac{24 \times a}{100} = \chi^2_{0.05;24} = 13.8484$$

 $\Leftrightarrow a = 100 \times 13.8484/24 = 57.70$

EXERCISE 6.48 C): SOLUTION

Answer:

Given: $\mu = 198, \; \sigma^2 = 100 \; (\sigma = 10), \; n = 25.$

(c) Value
$$s_{
m high}^2$$
 such that $P(S^2>s_{
m high}^2)=0.05$ Q = $\frac{(n-1)S^2}{\sigma^2}$ ~ $\chi^2_{
m (n-1)}$

$$Q = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)}$$

Let $\chi^2_{0.95,24}pprox 36.4150$. Then

Chi-Square Distribution Table

$$s_{ ext{high}}^2 = 100 \cdot rac{36.4150}{24} pprox 151.73.$$

(sample standard deviation $\sqrt{151.73} pprox 12.32$.)

Answer (c): $s_{
m high}^2 pprox 151.73$ (so S pprox 12.32).

Alternative Solution:

$$P(S^2 > a) = 0.05 \Leftrightarrow P\left(\frac{(n-1)S^2}{\sigma^2} > \frac{(n-1)a}{\sigma^2}\right) = 0.05 \Leftrightarrow$$

$$P\left(0 < \frac{24 \times a}{\sigma^2}\right) = 0.05$$

$$P\left(Q < \frac{24 \times a}{100}\right) = 0.95$$

Then
$$\frac{24 \times a}{100} = \chi^2_{0.95;24} = 36.4150$$

 $\Leftrightarrow a = 100 \times 36.4150/24 = 151.73$

EXERCISE 7.13

- 7.13 A personnel manager has found that historically the scores on aptitude tests given to applicants for entry-level positions follow a normal distribution with a standard deviation of 32.4 points. A random sample of nine test scores from the current group of applicants had a mean score of 187.9 points.
 - Find an 80% confidence interval for the population mean score of the current group of applicants.
 - b. Based on these sample results, a statistician found for the population mean a confidence interval extending from 165.8 to 210.0 points. Find the confidence level of this interval.

EXERCISE 7.13 A): SOLUTION

Answer:

Given: $\sigma = 32.4, \ n = 9, \ \bar{x} = 187.9.$

Because the population standard deviation σ is known and the population is assumed normal, we use the normal (z) distribution.

(a) 80% confidence interval for μ

Standard error:

$$IC_{(1-\alpha)}(\mu) = \left(\bar{x} - z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}\right)$$

$$SE = \frac{\sigma}{\sqrt{n}} = \frac{32.4}{\sqrt{9}} = \frac{32.4}{3} = 10.8.$$

Critical value for an 80% two-sided interval: z $Z_{0.90} = 1.28155$

$$1-\alpha = 0.80 \Leftrightarrow \alpha = 0.20$$

$$1 - \alpha/2 = 0.90$$

$$ME = Z_{0.90}$$
 $SE = 1.28155 \times 10.8 \approx 13.8427$.

Confidence interval:

$$z_{1-\frac{\alpha}{2}} = z_{0.90} = 1.28155$$

Standard Normal Distribution Table

$$\bar{x} \pm ME = 187.9 \pm 13.8427$$

80% CI: [174.06, 201.74] (approximately)

EXERCISE 7.13 B): SOLUTION

Answer:

Given: $\sigma = 32.4, \ n = 9, \ \bar{x} = 187.9.$

Because the population standard deviation σ is known and the population is assumed normal, we use the normal (z) distribution.

(b) Confidence level for the interval $[165.8,\ 210.0]$

The interval is centered at $\bar{x}=187.9$. Margin of error:

$$ME = 210.0 - 187.9 = 22.1.$$

Compute the corresponding z:

$$Z_{1-\frac{\alpha}{2}} = \frac{ME}{SE} = \frac{22.1}{10.8} \approx 2.0463.$$

$$IC_{(1-\alpha)}(\mu) = \left(\bar{x} - z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}\right)$$

Alternative Solution:

ME =
$$Z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$$
 = (210.0 – 165.8)/2 = 22.1

Then
$$z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} = 22.1 \Leftrightarrow z_{1-\frac{\alpha}{2}} = 22.1 \times \sqrt{n}/\sigma = 2.0463$$

Using Standard Normal Distribution Table:

$$z_{0.979636}$$
= 2.0463, then $1 - \frac{\alpha}{2} = 0.979636$

$$\Leftrightarrow \alpha = 0.04128$$

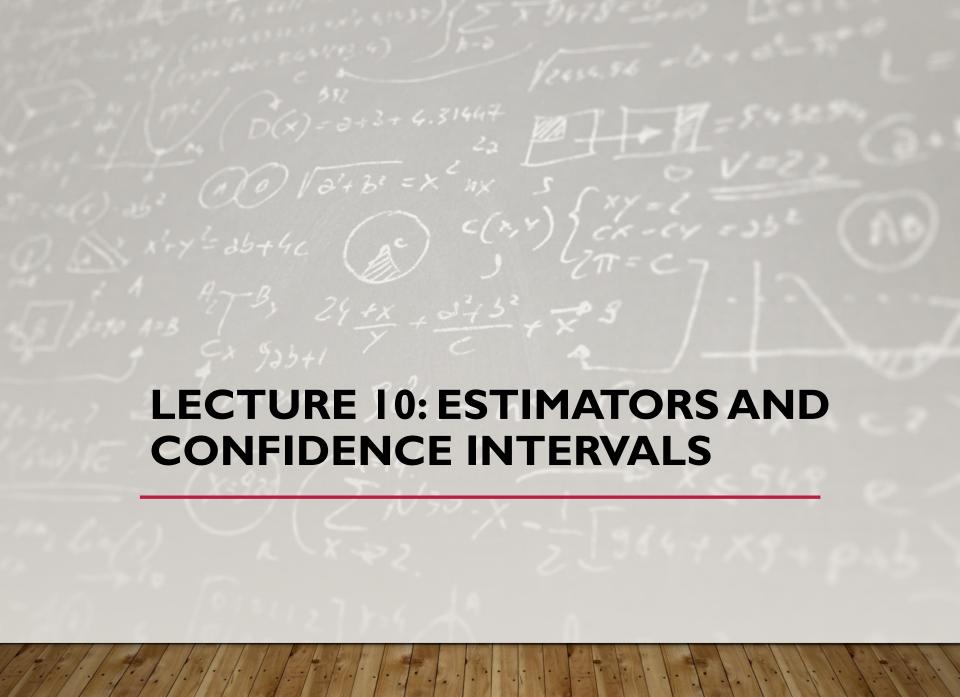
$$1-\alpha = 1-0.04128 = 0.95872 (95.87\%)$$

The central probability is $P(-z < Z < z) = 2\Phi(z) - 1$. Using $\Phi(2.0463) pprox 0.979636$,

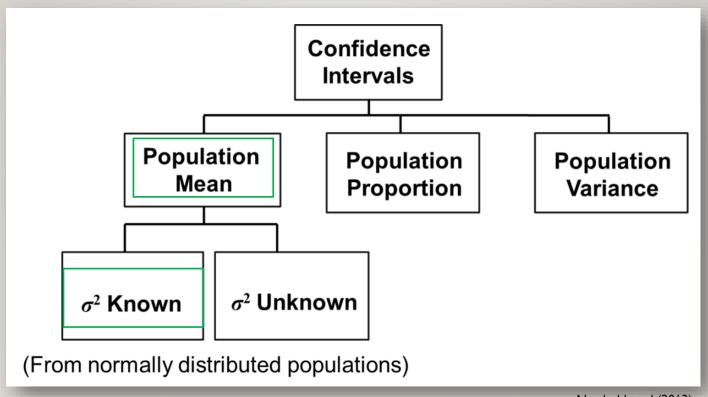
Confidence level = $2(0.979636) - 1 \approx 0.95927 \approx 95.93\%$.

Note:

The margin of error is half the width of the confidence interval.



CONFIDENCE INTERVALS WE WILL CONSIDER



CONFIDENCE INTERVAL ESTIMATE FOR THE MEAN (σ^2 KNOWN)

- Assumptions
 - Population variance σ^2 is known
 - Population is normally distributed
 - If population is not normal, use large sample
- Confidence interval estimate:

$$\overline{x} \pm z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$$

($z_1 - \frac{\alpha}{2}$ is the normal distribution value for a probability of $1 - \frac{\alpha}{2}$ in each tail)

CI ESTIMATE FOR THE MEAN (σ^2 KNOWN): **CONFIDENCE LIMITS**

The confidence interval is

$$\bar{x} \pm z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$$

The endpoints of the interval are

UCL =
$$\bar{x} + z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$$
 Upper confidence limit

$$LCL = \bar{x} - z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$$
 Lower confidence limit

CI ESTIMATE FOR THE MEAN (σ^2 KNOWN): MARGIN OF ERROR

The confidence interval,

$$\overline{x} \pm z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$$

• Can also be written as $\bar{x} \pm ME$ where ME is called the margin of error

$$ME = z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$$

Note:

The margin of error is half the width of the confidence interval. Equivalently, the width of the interval is twice the margin of error.

- Margin of error = (interval width) / 2
- Interval width = 2 × (margin of error)

Newbold et al (2013)

• The interval width, w, is equal to twice the margin of error

Width of Confidence Interval for the Mean (σ known)

$$ext{Width} = 2 \cdot z_{1-lpha/2} \cdot rac{\sigma}{\sqrt{n}}$$

Where:

- $z_{1-lpha/2}$ = critical value (quantile) from the standard normal distribution
- σ = population standard deviation
- n = sample size

CI ESTIMATE FOR THE MEAN (σ^2 KNOWN): REDUCING THE MARGIN OF ERROR

$$ME = Z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$$

Note:

The margin of error decreases when the standard deviation is smaller or the sample size is larger, and increases when the critical value (confidence level) is higher.

The margin of error can be reduced if

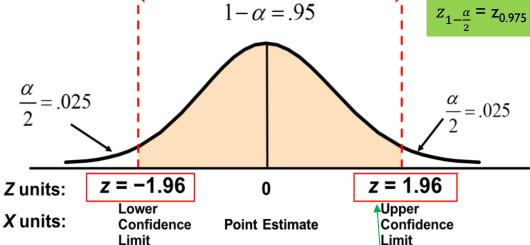
- the population standard deviation can be reduced $(\sigma \downarrow)$
- The sample size is increased (n ↑)
- The confidence level is decreased, $(1-\alpha)$

Z-QUANTILES FOR A 95% CONFIDENCE INTERVAL

$$1-\alpha = 0.95 \Leftrightarrow \alpha = 0.05$$

$$1 - \alpha/2 = 0.975$$

$$Z_{1-\frac{\alpha}{2}} = Z_{0.975} = 1.96$$



• Find $Z_{0.975} = 1.96$ from the standard normal distribution table

Newbold et al (2013)

 $z_{0.975}$ = 1.96 is the quantile of the standard normal distribution corresponding to a cumulative probability of 0.975.

COMMON LEVELS OF CONFIDENCE

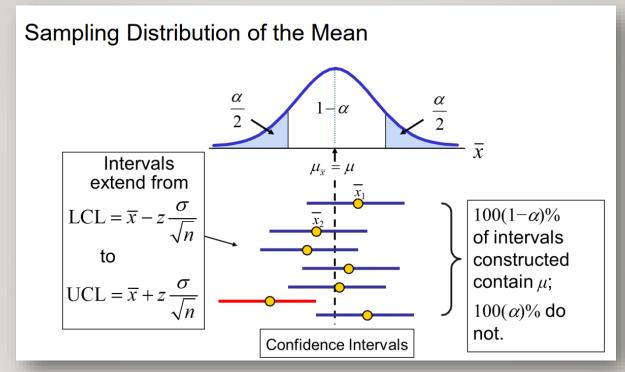
• Commonly used confidence levels are 90%, 95%, 98%, and 99%

Confidence Level	Confidence Coefficient, $1-\alpha$	Quantiles $Z_{1-\frac{\alpha}{2}}$
80%	.80	1.28
90%	.90	1.645
95%	.95	1.96
98%	.98	2.33
99%	.99	2.58
99.8%	.998	3.08
99.9%	.999	3.27

Note:

•The most commonly used confidence levels are 90%, 95%, and 99%.

INTERVALS AND LEVEL OF CONFIDENCE



Note:

•The confidence level is the probability that the interval, not the parameter, contains the true population value.

CI ESTIMATE FOR THE μ (σ^2 KNOWN): EXAMPLE

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms.
 We know from past testing that the population standard deviation is 0.35 ohms.
- Determine a 95% confidence interval for the true mean resistance of the population.

CI ESTIMATE FOR THE μ (σ^2 KNOWN): EXAMPLE

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms.
 We know from past testing that the population standard deviation is .35 ohms.
- Solution:

$$\bar{x} \pm z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$$
$$= 2.20 \pm 1.96 \left(\frac{.35}{\sqrt{11}}\right)$$

n = 11 (sample size) $\bar{x} = 2.20$ (sample mean) $\sigma = 0.35$ (population standard deviation) $1 - \alpha = 0.95$ (confidence level), then $\alpha = 0.05$ and $z_{1-\alpha/2} = z_{0.975} = 1.96$ (see previous slide)

 $=2.20\pm.2068$

 $1.9932 < \mu < 2.4068$

Newbold et al (2013)

 $CI_{0.95}(\mu) = (1.9932; 2.4068)$

- We are 95% confident that the true mean resistance is between 1.9932 and 2.4068 ohms
- Although the true mean may or may not be in this interval, 95% of intervals formed in this manner will contain the true mean

EXERCISE 7.14

- 7.14 It is known that the standard deviation in the volumes of 20-ounce (591-milliliter) bottles of natural spring water bottled by a particular company is 5 milliliters. One hundred bottles are randomly sampled and measured.
 - a. Calculate the standard error of the mean.
 - b. Find the margin of error of a 90% confidence interval estimate for the population mean volume.
 - c. Calculate the width for a 98% confidence interval for the population mean volume.

EXERCISE 7.14A): SOLUTION

Answer:

Given: $\sigma = 5$ ml, n = 100.

So the standard error is ${
m SE}=\sigma/\sqrt{n}=5/\sqrt{100}=5/10=0.5$ ml.

(a) Standard error of the mean

 $\overline{X} \sim \text{Normal}(\mu, \sigma^2/n)$

 $\mathrm{SE}=0.5\;\mathrm{ml}$

EXERCISE 7.14 B): SOLUTION

Answer:

Given: $\sigma = 5$ ml, n = 100.

So the standard error is ${
m SE}=\sigma/\sqrt{n}=5/\sqrt{100}=5/10=0.5$ ml.

$$\mathsf{ME} = Z_{1 - \frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$$

 $1-\alpha = 0.90 \Leftrightarrow \alpha = 0.10$

(b) Margin of error for a 90% confidence interval

$$1 - \alpha/2 = 0.95$$

For 90% two-sided CI, $Z_{0.95} = 1.645$

$$Z_{1-\frac{\alpha}{2}} = Z_{0.95} = 1.645$$

$$\mathrm{ME} = Z_{0.95} \cdot \mathrm{SE} = 1.645 \times 0.5 = 0.8225 \; \mathrm{ml}$$

Rounded sensibly:

EXERCISE 7.14 C): SOLUTION

$$CI_{(1-\alpha)}(\mu) = \left(\bar{x} - z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}\right)$$

Answer:

Given: $\sigma=5$ ml, n=100.

So the standard error is ${
m SE}=\sigma/\sqrt{n}=5/\sqrt{100}=5/10=0.5$ ml.

(c) Width of a 98% confidence interval

$$1-\alpha = 0.98 \Leftrightarrow \alpha = 0.02$$

For 98% two-sided CI,
$$Z_{0.99} = 2.3263$$

$$1 - \alpha/2 = 0.99$$

Margin of error:

$$Z_{1-\frac{\alpha}{2}} = Z_{0.99} = 2.3263$$

$$ext{ME}_{98\%} = 2.3263 imes 0.5 = 1.16315 ext{ ml}$$

Width of the interval (two-sided) = $2 \times$ ME:

→ Width_{98%} =
$$2 \times 1.16315 = 2.3263$$
 ml

Rounded:

 $\mathrm{Width}_{98\%} pprox 2.326 \mathrm{\ ml}$

Note:

The margin of error decreases when the standard deviation is smaller or the sample size is larger, and increases when the critical value (confidence level) is higher.

EXERCISE 7.15

- 7.15 A college admissions officer for an MBA program has determined that historically applicants have undergraduate grade point averages that are normally distributed with standard deviation 0.45. From a random sample of 25 applications from the current year, the sample mean grade point average is 2.90.
 - a. Find a 95% confidence interval for the population mean.
 - b. Based on these sample results, a statistician computes for the population mean a confidence interval extending from 2.81 to 2.99. Find the confidence level associated with this interval.

EXERCISE 7.15 A): SOLUTION

Problem data:

 $\sigma = 0.45, \ n = 25, \ \bar{x} = 2.90.$

Because the population standard deviation σ is known and the underlying distribution is normal, use the normal (z) distribution.

(a) 95% confidence interval for μ

Standard error:

$$SE=rac{\sigma}{\sqrt{n}}=rac{0.45}{\sqrt{25}}=rac{0.45}{5}=0.09.$$
 deviation)
 $I-\alpha=0.95$ (confidence level), then

n = 25 (sample size)

 $\bar{x} = 2.90$ (sample mean)

 $\sigma = 0.45$ (population standard deviation)

 $z_{1-\frac{\alpha}{2}} = z_{0.975} = 1.96$ (see previous slide)

Critical z for 95% (two-sided): $Z_{0.975} = 1.96$

Margin of error:

$$CI_{(1-\alpha)}(\mu) = \left(\bar{x} - z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}\right)$$

$$ME = Z_{0.975} \times SE = 1.96 \times 0.09 = 0.1764.$$

Confidence interval:

$$ar{x}\pm ME = 2.90\pm 0.1764 \Rightarrow extstyle extst$$

EXERCISE 7.15 B): SOLUTION

Answer:

Problem data:

$$\sigma = 0.45, \; n = 25, \; \bar{x} = 2.90.$$

Because the population standard deviation σ is known and the underlying distribution is normal, use the normal (z) distribution.

(b) Confidence level for the interval

$$CI_{1-\alpha}(\mu) = (2.81, 2.99)$$

$$ME = z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} \Leftrightarrow$$

$$(2.99 - 2.81)/2 = z_{1-\frac{\alpha}{2}} \times 0.45/5 \Leftrightarrow$$

$$z_{1-\frac{\alpha}{2}} = 1, \text{ then } 1 - \alpha/2 = 0.8413 \Leftrightarrow \alpha = 0.3174$$

$$1 - \alpha = 0.6826$$
Standard Normal Distribution Table

n = 25 (sample size)

 $\bar{x} = 2.90$ (sample mean)

 σ = 0.45 (population standard deviation)

 $I - \alpha = 0.95$ (confidence level), then

 $z_{1-\frac{\alpha}{2}} = z_{0.975} = 1.96$ (see previous slide)

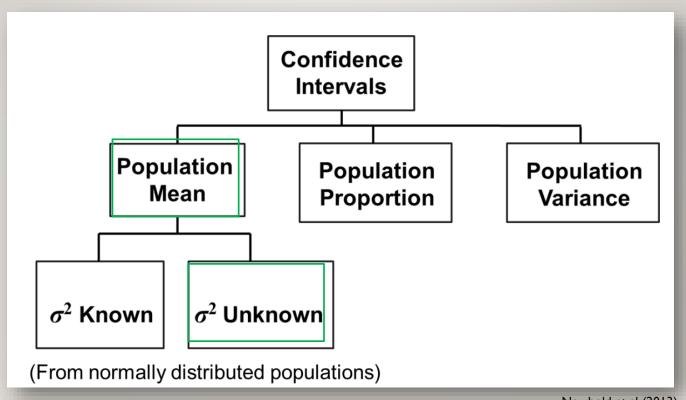
Thus, the confidence level is about 68.27%

Note:

• The margin of error is half the width of the confidence interval.

$$CI_{(1-\alpha)}(\mu) = \left(\bar{x} - z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}\right)$$

CONFIDENCE INTERVAL ESTIMATION FOR THE MEAN (σ^2 UNKNOWN)



CONFIDENCE INTERVAL ESTIMATION FOR THE MEAN (σ^2 UNKNOWN)

- If the population standard deviation σ is unknown, we can substitute the sample standard deviation, s
- This introduces extra uncertainty, since s is variable from sample to sample
- So we use the t distribution instead of the normal distribution

CONFIDENCE INTERVAL ESTIMATION FOR THE MEAN (σ^2 UNKNOWN)

Assumptions

$$CI_{(1-\alpha)}(\mu) = \left(\bar{x} - t_{1-\frac{\alpha}{2};n-1} \times \frac{s}{\sqrt{n}}, \bar{x} + t_{1-\frac{\alpha}{2};n-1} \times \frac{s}{\sqrt{n}}\right)$$

- Population standard deviation is unknown
- Population is normally distributed
- If population is not normal, use large sample
- Use Student's t Distribution
- Confidence Interval Estimate:

$$\bar{x} \pm t_{1-\frac{\alpha}{2};n-1} \times \frac{s}{\sqrt{n}}$$

 $t_{1-\frac{\alpha}{2};n-1}$ is the critical value of the *t* distribution with n-1 d.f.

and an area of
$$\frac{\alpha}{2}$$
 in each tail: $P\left(t_{n-1} > t_{1-\frac{\alpha}{2};n-1} = \frac{\alpha}{2}\right)$

CI ESTIMATE FOR THE MEAN $(\sigma^2 \text{ UNKNOWN})$: MARGIN OF ERROR

The confidence interval,

$$CI_{(1-\alpha)}(\mu) = \left(\bar{x} - t_{1-\frac{\alpha}{2};n-1} \times \frac{s}{\sqrt{n}}, \bar{x} + t_{1-\frac{\alpha}{2};n-1} \times \frac{s}{\sqrt{n}}\right)$$

$$\bar{x} \pm t_{1-\frac{\alpha}{2};n-1} \times \frac{s}{\sqrt{n}}$$

• Can also be written as $\bar{x} \pm ME$

where *ME* is called the margin of error:

$$\mathsf{MSE} = t_{1-\frac{\alpha}{2};n-1} \times \frac{s}{\sqrt{n}}$$

CI ESTIMATE FOR THE μ (σ^2 UNKNOWN): EXAMPLE

A random sample of n = 25 has \bar{x} = 50 and s = 8. Form a 95% confidence interval for μ

- d.f. =
$$n$$
 - 1 = 24, so $t_{1-\frac{\alpha}{2};n-1} = t_{0.975;24} = 2.0639$

The confidence interval is

$$CI_{(1-\alpha)}(\mu) = \left(\bar{x} - t_{1-\frac{\alpha}{2};n-1} \times \frac{s}{\sqrt{n}}, \bar{x} + t_{1-\frac{\alpha}{2};n-1} \times \frac{s}{\sqrt{n}}\right) \quad \bar{x} \pm t_{1-\frac{\alpha}{2};n-1} \times \frac{s}{\sqrt{n}}$$

n = 25 (sample size) $\bar{x} = 50$ (sample mean) s = 8 (sample standard deviation) I - α = 0.95 (confidence level), then t_{0.975;24} = 2.0639 (see Student's table)

$$50 \pm (2.0639) \frac{8}{\sqrt{25}}$$

$$46.698 < \mu < 53.302$$

7.28 A business school placement director wants to estimate the mean annual salaries 5 years after students graduate. A random sample of 25 such graduates found a sample mean of \$42,740 and a sample standard deviation of \$4,780. Find a 90% confidence interval for the population mean, assuming that the population distribution is normal.

EXERCISE 7.28: SOLUTION

Answer:

Given data

$$n = 25, \quad \bar{x} = 42,740, \quad s = 4,780$$

Because the **population standard deviation** is *unknown* and the **sample size is small** (n = **25**), we use the **t-distribution** with

$$df = n - 1 = 24$$

n = 25 (sample size)

 $\bar{x} = 42.740$ (sample mean)

s = 4.780 (sample standard deviation)

 $I - \alpha = 0.90$ (confidence level),

then $t_{1-\alpha/2; n-1} = t_{0.95;24} = 1.711$ (see Student's table)

Compute the standard error

$$SE = rac{s}{\sqrt{n}} = rac{4780}{\sqrt{25}} = rac{4780}{5} = 956$$

Find the critical t-value for a 90% confidence interval

m the t-table (or calculator):

$$t_{0.95;24} = 1.711$$

EXERCISE 7.28: SOLUTION

Answer:

Given data

$$n = 25$$
, $\bar{x} = 42,740$, $s = 4,780$

Because the **population standard deviation** is *unknown* and the **sample size is small** (n = 25), we use the **t-distribution** with

$$df = n - 1 = 24$$

n = 25 (sample size) $\bar{x} = 42.740$ (sample mean) s = 4.780 (sample standard deviation) I - α = 0.90 (confidence level), then $t_{1-\alpha/2; n-1} = t_{0.95; 24} = 1.711$ (see Student's table)

Compute the margin of error

$$ME = t_{0.95;24} \times SE = 1.711 \times SE = 1.711 \times 956 = 1636.82$$

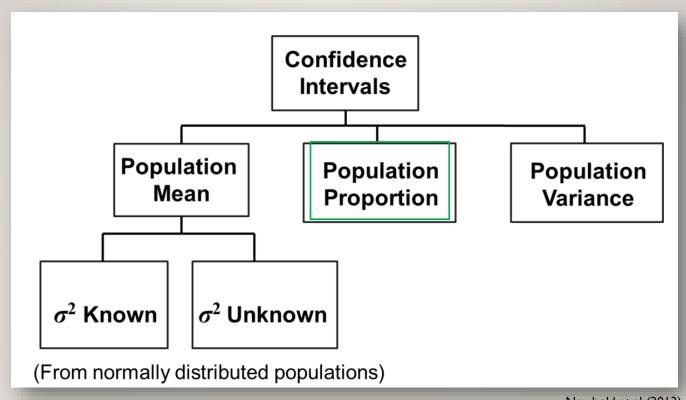
Construct the confidence interval

$$CI_{(1-\alpha)}(\mu) = \left(\bar{x} - t_{1-\frac{\alpha}{2};n-1} \times \frac{s}{\sqrt{n}}, \bar{x} + t_{1-\frac{\alpha}{2};n-1} \times \frac{s}{\sqrt{n}}\right)$$

$$ar{x} \pm ME = 42{,}740 \pm 1{,}637$$

$$90\%\ CI: [41{,}103,\ 44{,}377]$$

CONFIDENCE INTERVAL ESTIMATION FOR POPULATION PROPORTION



CONFIDENCE INTERVAL ESTIMATION FOR POPULATION PROPORTION

 An interval estimate for the population proportion (P) can be calculated by adding an allowance for uncertainty to the sample proportion (p̂)

CONFIDENCE INTERVALS FOR THE POPULATION PROPORTION

 Recall that the distribution of the sample proportion is approximately normal if the sample size is large, with standard deviation

$$\sigma_P = \sqrt{\frac{P(1-P)}{n}}$$

$$Z = \frac{\widehat{p} - P}{\sqrt{\frac{P(1-P)}{n}}} \sim \text{Normal}(0, 1)$$

We will estimate this with sample data:

$$\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

CONFIDENCE INTERVAL ENDPOINTS

The confidence interval for the population proportion is given by

$$\hat{p} \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

where

 $z_{1-rac{lpha}{2}}$ is the standard normal value for the level of confidence desired

- $-\hat{p}$ is the sample proportion
- n is the sample size
- _ n ≥ 25

$$CI_{(1-\alpha)}(p) = \left(\hat{p} - z_{1-\frac{\alpha}{2}} \times \sqrt{\frac{\hat{p}(\mathbf{1} - \hat{p})}{n}}, \hat{p} + z_{1-\frac{\alpha}{2}} \times \sqrt{\frac{\hat{p}(\mathbf{1} - \hat{p})}{n}}\right)$$

CONFIDENCE INTERVALS FOR THE POPULATION PROPORTION: EXAMPLE

- A random sample of 100 people shows that 25 are left-handed.
- Form a 95% confidence interval for the true proportion of left-handers

CONFIDENCE INTERVALS FOR THE POPULATION PROPORTION: EXAMPLE

 A random sample of 100 people shows that 25 are left-handed. Form a 95% confidence interval for the true proportion of left-handers.

n = 100 (sample size) $\hat{p}=25/100 \text{ (sample proportion)}$ I $-\alpha=0.95$ (confidence level), then $z_{1-\frac{\alpha}{2}}=z_{0.975}=1.96$ (see Standard Normal Distribution Table)

$$\hat{p} \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$\frac{25}{100} \pm 1.96 \sqrt{\frac{.25(.75)}{100}}$$

$$Cl_{95\%}(p) = (0.1651, 0.3349)$$

$$Cl_{95\%}$$
 (p) = (16.51%, 33.49%)

Newbold et al (2013)

Interpretation:

- We are 95% confident that the true proportion of left-handers in the population is between 16.51% and 33.49%.
- Although the interval from 0.1651 to 0.3349 may or may not contain the true proportion, 95% of intervals formed from samples of size 100 in this manner will contain the true proportion.

memer acc.

7.40 Suppose that the local authorities in a heavily populated residential area of downtown Hong Kong were considering building a new municipal swimming pool and leisure center. Because such a development

would cost a great deal of money, it first of all needed to be established whether the residents of this area thought that the swimming pool and leisure center would be a worthwhile use of public funds. If 243 out of a random sample of 360 residents in the local area thought that the pool and leisure center should be built, determine with 95% confidence the proportion of all the local residents in the area who would support the proposal.

EXERCISE 7.40: SOLUTION

Answer:

2. Standard error

$$SE = \sqrt{rac{\hat{p}(1-\hat{p})}{n}} = \sqrt{rac{(0.675)(0.325)}{360}} = \sqrt{0.000609375} pprox 0.0247$$

Sample information:

- ullet Sample size n=360
- ullet Number who support the proposal x=243
- 1. Sample proportion

$$\hat{p} = \frac{x}{n} = \frac{243}{360} = 0.675$$

3. 95% Confidence Interval

Use z=1.96 for 95% confidence:

$$\hat{p} \pm 1.96 \cdot SE = 0.675 \pm 1.96(0.0247)$$

= 0.675 ± 0.0484

Lower limit ≈ 0.6266 and Upper limit ≈ 0.7234

n = 300 (sample size) $\hat{p}=243/360$ (sample proportion) I - α = 0.95 (confidence level), then $z_{1-\frac{\alpha}{2}}=z_{0.975}=1.96$ (see

Standard Normal Distribution Table)

Final Answer (95% CI):

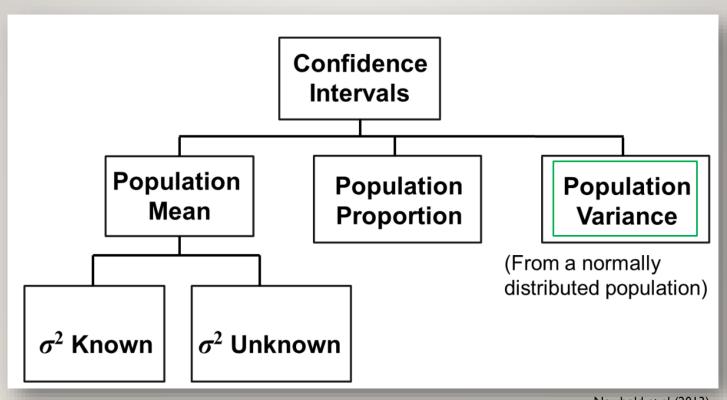
 $0.63 \le p \le 0.72$ (approximately)

 $CI_{(1-\alpha)}(p) = \left(\hat{p} - z_{1-\frac{\alpha}{2}} \times \sqrt{\frac{\hat{p}(\mathbf{1} - \hat{p})}{n}}, \hat{p} + z_{1-\frac{\alpha}{2}} \times \sqrt{\frac{\hat{p}(\mathbf{1} - \hat{p})}{n}}\right)$

 $Cl_{95\%}$ (p) = (0.63, 0.72)

So, we are 95% confident that **between 63% and 72%** of all local residents would support building the swimming pool and leisure center.

ESTIMATION FOR THE POPULATION VARIANCE



CONFIDENCE INTERVALS FOR THE POPULATION VARIANCE

- Goal: Form a confidence interval for the population variance, σ^2
 - The confidence interval is based on the sample variance, s²
 - Assumed: the population is normally distributed

CONFIDENCE INTERVALS FOR THE **POPULATION VARIANCE**

The random variable

$$Q = \frac{(n-1)s^2}{\sigma^2}$$

$$Q = \frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{(n-1)}$$

$$\mathbf{Q} = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{\text{(n-l)}}$$

follows a chi-square distribution with (n-1)degrees of freedom

Where the chi-square value $\chi^2_{n-1,1-\alpha}$ is the number for which

$$P(\chi_{n-1}^2 > \hat{\chi_{n-1,1-\alpha}^2}) = \alpha$$

CONFIDENCE INTERVALS FOR THE POPULATION VARIANCE

The $100(1-\alpha)\%$ confidence interval for the population variance is given by

$$LCL = \frac{(n-1)s^2}{\chi^2_{(1-\alpha/2, n-1)}}$$

$$UCL = \frac{(n-1)s^2}{\chi^2_{(\alpha/2, n-1)}}$$

$$CI_{(1-\alpha)}(\sigma^2) = \left(\frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}, \frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}}\right)$$

CONFIDENCE INTERVALS FOR THE POPULATION VARIANCE: EXAMPLE

You are testing the speed of a batch of computer processors. You collect the following data (in Mhz):

Sample size	17
Sample mean	3004
Sample std dev	74

Assume the population is normal.

Determine the 95% confidence interval for σ_x^2

FINDING THE CHI-SQUARE VALUES

- n = 17 so the chi-square distribution has (n 1) = 16 degrees of freedom
- $\alpha = 0.05$, so use the the chi-square values with area 0.025 in each tail:

n = 17 (sample size)
s = 74 (sample standard deviation)

$$\alpha$$
 = 0.05 (significance level)
 $I - \alpha$ = 0.95 (confidence level)
 $\chi^2_{(0.025, 16)}$ = 6.91
 $\chi^2_{(0.975, 16)}$ = 28.85 (see Chi-Square Distribution Table)

$$\chi^{2}_{(\alpha/2, \, \text{n-I})} = \chi^{2}_{(0.025, \, 16)} = 6.9 \, \text{I}$$

probability

 $\frac{\alpha}{2} = .025$
 $\chi^{2}_{16} = 6.91$

probability

 $\frac{\alpha}{2} = .025$
 $\chi^{2}_{16} = 28.85$

 $\chi^{2}_{(1-\alpha/2, n-1)} = \chi^{2}_{(0.975, 16)} = 28.85$

CALCULATING THE CONFIDENCE LIMITS

The 95% confidence interval is

$$CI_{(1-\alpha)}(\sigma^2) = \left(\frac{(n-1)s^2}{\chi_{1-\frac{\alpha}{2},n-1}^2}, \frac{(n-1)s^2}{\chi_{\frac{\alpha}{2},n-1}^2}\right) \qquad \frac{(n-1)s^2}{\chi_{(1-\alpha/2,\,n-1)}^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_{(\alpha/2,\,n-1)}^2}$$

$$\frac{(n-1)s^{2}}{\chi^{2}_{(1-\alpha/2, \, n-1)}} < \sigma^{2} < \frac{(n-1)s^{2}}{\chi^{2}_{(\alpha/2, \, n-1)}}$$

$$\frac{(17-1)(74)^2}{28.85} < \sigma^2 < \frac{(17-1)(74)^2}{6.91}$$

$$3037 < \sigma^2 < 12680$$
 $Cl_{95\%} (\sigma^2) = (3037, 12680)$

$$Cl_{95\%}$$
 (σ^2) = (3037, 12680)

Converting to standard deviation, we are 95% confident that the population standard deviation of CPU speed is between 55.1 and 112.6 Mhz

commune.

- 7.49 A manufacturer is concerned about the variability of the levels of impurity contained in consignments of raw material from a supplier. A random sample of 15 consignments showed a standard deviation of 2.36 in the concentration of impurity levels. Assume normality.
 - a. Find a 95% confidence interval for the population variance.
 - b. Would a 99% confidence interval for this variance be wider or narrower than that found in part a?

EXERCISE 7.49 A): SOLUTION

Answer:

We use the chi-square confidence interval for the population variance.

Given n=15, sample standard deviation s=2.36, so $s^2=5.5696$. Degrees of freedom u=n-1=14.

The 100(1-lpha)% CI for the variance σ^2 is

$$CI_{(1-\alpha)}(\sigma^2) = \left(\frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}, \frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}}\right)$$

$$\left(rac{(
u)s^2}{\chi^2_{1-lpha/2,
u}}\ , \ rac{(
u)s^2}{\chi^2_{lpha/2,
u}}
ight).$$

a) 95% confidence interval (lpha=0.05)

For $\nu=14$:

$$\chi^2_{0.975,14} pprox 26.11895, \qquad \chi^2_{0.025,14} pprox 5.62873.$$

Compute numerator $(
u)s^2=14 imes5.5696=77.9744$.

Thus

Lower bound for
$$\sigma^2 = rac{77.9744}{26.11895} pprox 2.9854,$$
 Upper bound for $\sigma^2 = rac{77.9744}{5.62873} pprox 13.8529.$

$$Cl_{95\%}(\sigma^2) = (2.99, 13.85)$$

So a 95% CI for the variance is approximately

$$2.99 \leq \sigma^2 \leq 13.85$$
 .

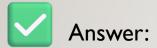
For interpretation it is common to also give the CI for the **standard deviation** by taking square roots:

$$\sqrt{2.9854} \approx 1.728, \qquad \sqrt{13.8529} \approx 3.722,$$

so a 95% CI for σ is approximately $1.73 \le \sigma \le 3.72$

$$Cl_{95\%}(\sigma) = (1.73, 3.72)$$

EXERCISE 7.49 B): SOLUTION



We use the chi-square confidence interval for the population variance.

Given n=15, sample standard deviation s=2.36, so $s^2=5.5696$. Degrees of freedom u=n-1=14.

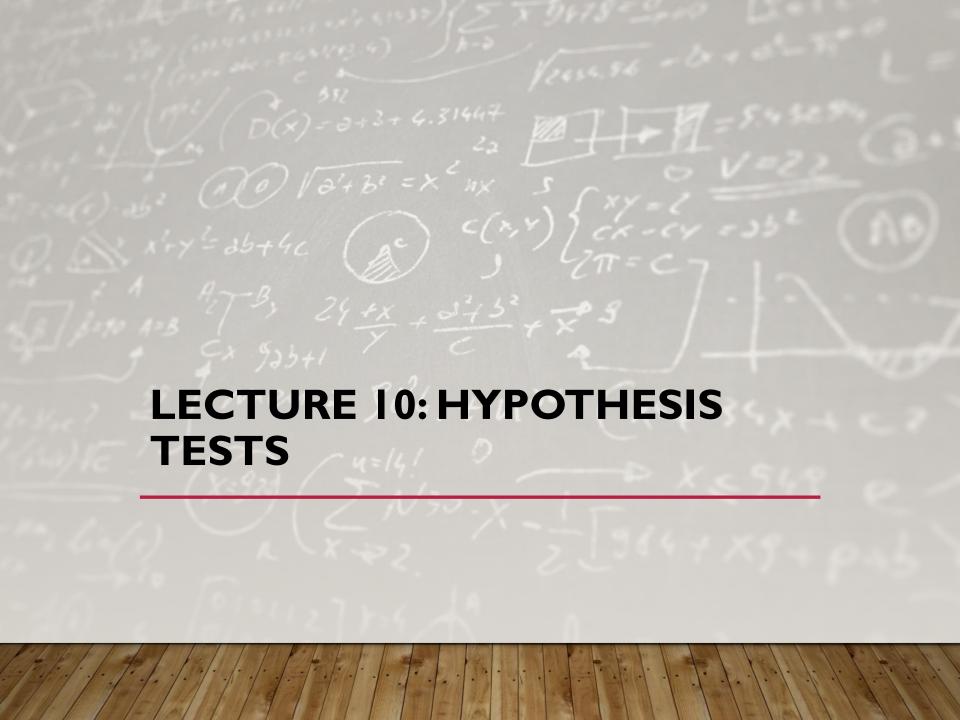
The 100(1-lpha)% CI for the variance σ^2 is

$$\left(rac{(
u)s^2}{\chi^2_{1-lpha/2,
u}}\ ,\ rac{(
u)s^2}{\chi^2_{lpha/2,
u}}
ight).$$

b) Would a 99% CI be wider or narrower?

A 99% confidence interval would be **wider**. (Greater confidence requires a larger interval: the chi-square quantiles move farther into the tails, which increases the spread of the interval.)

(For reference, the 99% CI for σ^2 would be about (2.49, 19.14), confirming it is wider than the 95% interval.) $\mathsf{Cl}_{99\%}(\sigma^2) = (2.49, 19.14)$



WHAT IS A HYPOTHESIS TEST?

 A hypothesis test is a statistical procedure used to make a decision or draw a conclusion about a population parameter, based on sample data.

It evaluates whether there is enough evidence to reject a claim (the **null hypothesis**) in favor of an alternative claim (the **alternative hypothesis**), using a test statistic and a significance level.

A hypothesis is an assumption about the population parameter (say population mean) which is to be tested.

For that we collect sample data, then we calculate sample statistics (say sample mean) and then use this information to judge/decide whether hypothesized value of population parameter is correct or not.

CONSTRUCTION OF A HYPOTHESIS TEST

Hipotheses P-value / **Decision Objectives** Conditions of Test and Critical and and Data **Applicability** Significance Statistic Value Conclusion Level

WHAT IS A HYPOTHESIS?

A hypothesis is a statement about a population parameter that can be tested using sample data. **Example:** The mean weight of this class is 58 kg?

Null and Alternative Hypotheses:

Examples for the population mean (μ) :

- The null hypothesis (H₀) is a statement of no effect or no difference. It represents the default or status quo.
- The alternative hypothesis (H₁ or H_a) is a statement that contradicts the null, representing the effect or difference we want to detect.

•	1 1		
Type of test	Null hypothesis (H ₀)	Alternative	e hypothesis (H ₁)
Two-tailed	$\mu = \mu_0$	μ ≠ μ ₀	Note:
Right-tailed	$\mu \leq \mu_0$	μ > μ ₀	Different null and alternative hypotheses can be considered
Left-tailed	$\mu \geq \mu_0$	μ < μ ₀	depending on the parameter of interest, and the type of test is

determined accordingly.

TYPES OF ERRORS VS. SIGNIFICANCE LEVEL

Types of Errors

 α = P (Type I error) = P (Reject Ho/Ho True) β = P (Type II error) = P (accept Ho/ Ho false)

Type I error (α): Rejecting H₀ when H₀ is true.

Type II error (β): Failing to reject H_0 when H_0 is false.

Power of a Test

Reject H ₀	Accept H ₀
Correct decision I-β	Incorrect decision (Typo II error) β
Incorrect decision (Type I error) α	Correct decision I- $lpha$
	Correct decision I-β Incorrect decision (Type I error)

Power of a Test:

The power of a test is the probability of correctly rejecting the null hypothesis (H_0) when it is false.

Mathematically, it is given by:

Power = $1 - \beta$

where β is the probability of a Type II error.

Significance Level ($0 \le \alpha \le 1$)

- The probability that the researcher sets a priori as the threshold to decide whether to reject H₀.
- Common significance levels: 1%, 5%, and 10%

REJECTION REGION VS. P-VALUE

Rejection Region

- The rejection region is also called the critical region, is the range of sample statistics values within which if values of sample statistics falls, then Ho rejected.
- It is outside the limit of acceptance region.
- The critical value is the cut off value of the sample statistics which acts as a boundary and separates the regions of acceptance or rejections

Rejection Region (RR) or Critical Region (CR): The set of values for which H₀ is rejected

- Left-Tailed Test: RR = $]-\infty$; z_{α}
- Right-Tailed Test: RR = [z_{1-α}; +∞[

• Two-Tailed Test : RR =] - ∞ ; - $z_{1-\alpha/2}$]U[$z_{1-\alpha/2}$; + ∞ [

"Decision Rule (using critical values):

- $z_0 \leq z_{lpha} \Rightarrow \mathsf{Reject}\;\mathsf{H_0}$
- $z_0 \geq z_{1-lpha} \Rightarrow {\sf Reject}\ {\sf H_0}$
- $|z_0| \geq z_{1-lpha/2} \Rightarrow$ Reject H $_0$ "

"Rule: $z_0 \in \mathrm{RR} \Rightarrow$ Reject H $_{ t 0}$ "

P-value: is the probability of obtaining a test statistic at least as extreme as the one observed, assuming that hull hypotesis H₀ is true.

- Left-Tailed Test: P-value = $P(Z \le z_0)$
- Right-Tailed Test: P-value = P(Z ≥ z₀)
- Two-Tailed Test: P-value = $P(Z \le -z_0 \text{ ou } Z \ge z_0) = 2 \times P(Z \ge |z_0|)$

Note:

If the value of the test statistic falls within the rejection region, then we reject H_0 at the chosen significance level.

"Rule: P-value $< \alpha \Rightarrow$ Reject H₀"

Note:

The **P-value** helps to determine whether the observed data are consistent with H₀:

- A small p-value (typically $\leq \alpha$) indicates strong evidence against H_0 , so we reject H_0 .
- A large p-value (> α) indicates weak evidence against H₀, so we fail to reject H₀.

Note:

If the p-value is smaller than the chosen significance level (α) , then we reject H_0 at that significance level.

TESTS OF THE MEAN OF A NORMAL DISTRIBUTION (σ^2 KNOWN)

1. Hypotheses

- Null hypothesis: $H_0: \mu = \mu_0$, $H_0: \mu \leq \mu_0$ OR $H_0: \mu \geq \mu_0$
- Alternative hypothesis: $H_1: \mu
 eq \mu_0$ (two-tailed)

or
$$H_1: \mu > \mu_0$$
 / $H_1: \mu < \mu_0$ (one-tailed)

2. Test Statistic

$$Z = rac{ar{X} - \mu_0}{\sigma/\sqrt{n}} \sim ext{Normal}(0,1)$$

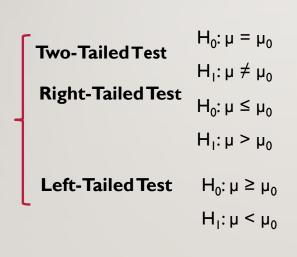
where $ar{X}$ is the sample mean, σ the population standard deviation, and n the sample size.

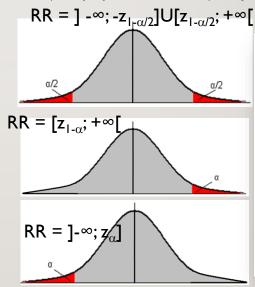
3. Decision Rule

- ullet Using critical value(s): Reject H_0 if $Z\in ext{Rejection Region}$
- ullet Using p-value: Reject H_0 if $p ext{-value} < lpha$

TESTS OF THE MEAN OF A NORMAL DISTRIBUTION (σ^2 KNOWN)

• A parametric hypothesis test for the parameter μ (the population mean) may be:





Two-tailed test:

- ullet Rejection Region: $|Z| \geq Z_{1-lpha/2}$
- P-value: $2 \cdot P(Z \geq |z_0|)$

Right-tailed test:

- Rejection Region: $Z \geq Z_{1-lpha}$
- P-value: $P(Z \geq z_0)$

Left-tailed test:

- Rejection Region: $Z \leq Z_{lpha}$
- P-value: $P(Z \leq z_0)$

where μ_0 is the specific numerical value considered in H_0 and H_1 .

9.11 A manufacturer of detergent claims that the contents of boxes sold weigh on average at least 16 ounces. The distribution of weight is known to be normal, with a standard deviation of 0.4 ounce. A random sample of 16 boxes yielded a sample mean weight of 15.84 ounces. Test at the 10% significance level the null hypothesis that the population mean weight is at least 16 ounces.

EXERCISE 9.11: SOLUTION

Answer:

Step 1: State the hypotheses

 $H_0: \mu \geq 16$ (the mean weight is at least 16 oz)

 $H_1: \mu < 16$ (the mean weight is less than 16 oz)

This is a left-tailed test.

Left-tailed Test

Step 2: Given information

$$\sigma = 0.4, \quad n = 16, \quad ar{x} = 15.84, \quad lpha = 0.10$$

EXERCISE 9.11: SOLUTION

Answer:

Step 3: Test Statistic

Since the population standard deviation is known and the population is normal, we use a **Z-test**:

$$Z=rac{ar{x}-\mu_0}{\sigma/\sqrt{n}}=rac{15.84-16}{0.4/\sqrt{16}}$$
 $Z=rac{-0.16}{0.1}=-1.6$

Step 4: Critical Value / p-value Left-Tailed Test: RR = $]-\infty$; z_{α}] = $]-\infty$; -1.282]

• Left-tailed test, lpha = 0.10 ightarrow $z_{0.10} pprox -1.282$

 $p ext{-value} = P(Z < -1.6) pprox 0.055$

Standard Normal Distribution Table

EXERCISE 9.11: SOLUTION

Answer:

Step 5: Decision Rule

Compare the test statistic to the critical value:

$$Z = -1.6$$
 is less than -1.28

• Calculated z = -1.6 < -1.282 \rightarrow reject H_0

• p-value $\approx 0.055 < 0.10 \rightarrow \text{reject } H_0$

$$-1.6 \in RR =]-\infty; z_{\alpha}] =]-\infty; -1.282]$$

Conclusion

There is **sufficient evidence at the 10% significance level** to conclude that the mean weight of the detergent boxes is **less than 16 ounces**. The manufacturer's claim is **not** supported.

Note:

In the following slides, we will examine both the right-tailed and two-tailed tests to compare the results.

EXERCISE 9.11:TYPES OF HYPOTHESIS TESTS FOR THE MEAN (σ^2 KNOWN)

Answer

Left-tailed

- $H_0: \mu \geq 16$
- $H_1: \mu < 16$

Test whether the mean weight is less than 16 ounces.

Right-tailed

- $H_0: \mu \leq 16$
- $H_1: \mu > 16$

Test whether the mean weight is greater than 16 ounces.

Two-tailed

- $H_0: \mu = 16$
- $H_1: \mu \neq 16$

Test whether the mean weight differs from 16 ounces.

EXERCISE 9.11: RIGHT-TAILED TEST

Answer:

Problem Setup:

- Population standard deviation: $\sigma = 0.4$
- Sample size: n = 16
- ullet Sample mean: $ar{x}=15.84$
- Hypotheses:

Right-tailed Test

$$H_0: \mu \leq 16$$
 , $H_1: \mu > 16$

• Significance level: $\alpha = 0.10$

Test statistic (z):

$$z = rac{ar{x} - \mu_0}{\sigma / \sqrt{n}} = rac{15.84 - 16}{0.4 / \sqrt{16}} = rac{-0.16}{0.1} = -1.6$$

Critical value: $z_{0.9} = 1.282$

Decision rule: Reje Right-Tailed Test: RR = $[z_{1-\alpha}; +\infty[$ = $[1.282, +\infty[$

Conclusion:

$$p$$
-value = $P(Z > -1.6) = 1 - P(Z < -1.6) \approx 1 - 0.0548 = 0.9452$

• Critical value: $z = -1.6 < 1.282 \rightarrow do not reject H_0$

- **p-value:** 0.945 > 0.10 ightarrow do not reject H_0
- Interpretation: Not enough evidence to conclude the mean weight is greater than 16 ounces.

EXERCISE 9.11: TWO-TAILED TEST

Answer

Problem Setup:

- Same data as above
- Hypotheses:

Two-tailed Test

$$H_0: \mu = 16$$
 , $H_1: \mu \neq 16$

• Significance level: $\alpha = 0.10$

Test statistic (z):

$$z=rac{ar{x}-\mu_0}{\sigma/\sqrt{n}}=-1.6$$

Critical values:

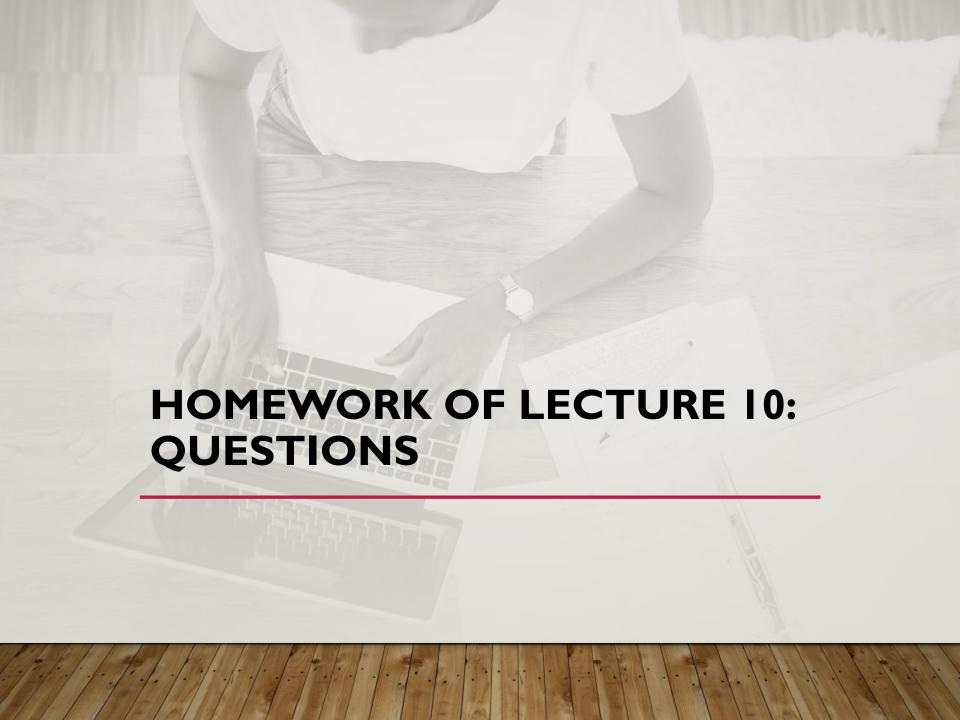
Two-Tailed Test : RR =] $-\infty$; $-z_{1-\alpha/2}$] $U[z_{1-\alpha/2}; +\infty[$ =] $-\infty$; -1.645] $U[1.645; +\infty[$

ullet Two-tailed: $z_{0.05}=\pm 1.645$

Decision p-value $= 2 \cdot P(Z < -1.6) pprox 2 \cdot 0.0548 = 0.1096$

Conclusion:

- Critical value: $|z| = 1.6 < 1.645 \rightarrow \text{do not reject } H_0$ -1.6 $\notin RR =] -\infty; -1.645] U[1.645; +\infty[$
- **p-value:** 0.110 > 0.10 \rightarrow do not reject H_0
- Interpretation: Not enough evidence to conclude the mean weight differs from 16 ounces.



7.29 A car-rental company is interested in the amount of time its vehicles are out of operation for repair work. State all assumptions and find a 90% confidence interval for the mean number of days in a year that all vehicles in the company's fleet are out of operation if a random sample of nine cars showed the following number of days that each had been inoperative:

16 10 21 22 8 17 19 14 19

7.41 It is important for airlines to follow the published scheduled departure times of flights. Suppose that

one airline that recently sampled the records of 246 flights originating in Orlando found that 10 flights were delayed for severe weather, 4 flights were delayed for maintenance concerns, and all the other flights were on time.

- a. Estimate the percentage of on-time departures using a 98% confidence level.
- b. Estimate the percentage of flights delayed for severe weather using a 98% confidence level.

7.50 A manufacturer bonds a plastic coating to a metal surface. A random sample of nine observations on the thickness of this coating is taken from a week's output, and the thicknesses (in millimeters) of these observations are as follows:

19.8 21.2 18.6 20.4 21.6 19.8 19.9 20.3 20.8 Assuming normality, find a 90% confidence interval for the population variance.

THANKS!

Questions?