

Estatística I

Licenciatura em Gestão do Desporto (LGD) 2.º Ano/1.º Semestre 2025/2026

Aulas Teórico-Práticas N.ºs 19 e 20 (Semana 10)

Docente: Elisabete Fernandes

E-mail: efernandes@iseg.ulisboa.pt

https://basiccode.com.br/produto/informatica-basica/

Conteúdos Programáticos

Aulas TP (Semanas 1 e 3)

- Capítulo 1: Análise Descritiva
- Capítulo 2:
 Probabilidades

Aulas TP (Semanas 3 a 6)

 Capítulo 3: Variáveis Aleatórias Unidimensionais

Aulas TP (Semanas 7 a 9)

 Capítulo 4: Variáveis Aleatórias Multidimensionais

Aulas TP (Semanas 10 a 12)

 Capítulo 5: Variáveis Aleatórias Especiais

Material didático: Exercícios do Livro Murteira et al (2015), Formulário e Tabelas Estatísticas

Bibliografia: B. Murteira, C. Silva Ribeiro, J. Andrade e Silva, C. Pimenta e F. Pimenta;

Introdução à Estatística, 2ª ed., Escolar Editora, 2015.

https://cas.iseg.ulisboa.pt

5. Variáveis aleatórias especiais

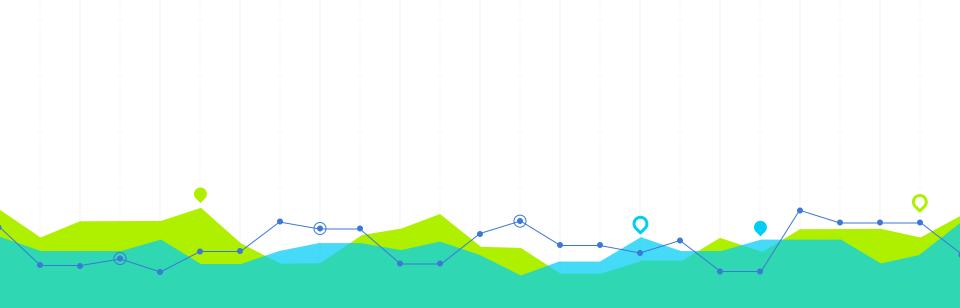
5.1. Variáveis aleatórias discretas

- 5.1.1. A distribuição uniforme discreta
- 5.1.2. A variável aleatória de Bernoulli
- 5.1.3. A variável aleatória binomial
- 5.1.4. A variável aleatória de Poisson

5.2. Variáveis aleatórias contínuas

- 5.2.1. A variável aleatória uniforme contínua
- 5.2.2. A variável aleatória normal
- 5.2.3. A variável aleatória exponencial
- 5.2.4. As variáveis aleatórias gama e chi-quadrado

5.3.0 Teorema Limite Central



Distribuição Binomial: Exercícios do Murteira et al (2015)

Variáveis Aleatórias Discretas

- Um produtor de refrigerantes resolveu lançar uma campanha publicitária, oferecendo prémios impressos nas cápsulas das garrafas. Durante a campanha, 5% das garrafas distribuídas para venda tinham prémio. Ao adquirir 15 garrafas, calcule a probabilidade de
 - a) existirem somente duas garrafas com prémio.
 - b) receber pelo menos um prémio.

Exercício 1 (a)

_ X_	٠.٧.٥	L. hº	garrajas	premiadas	huin	Con	mup	de	15	uni	لممل	ده	= フ	_ X	۸	B (15	, 0 .	25)	
					17 MORTH - MARCHAN	~~			-	- 4						-	'n	θ.	gar Ray premio	ção as ida:
							— (a)	-	-										-
P	(x =	2)	= 0, 134	8					-		ver									<u>.</u>

Exercício 1 (b)

2. Da produção diária de uma máquina retiram-se, para efeitos de controlo, 10 peças. Da experiência passada sabe-se que 80% das peças podem considerar-se "boas". Calcule a probabilidade de, nas 10 peças, haver mais que 8 peças "boas".

Exercício 2

$$P(X>8) = 1 - P(X \le 8) = 1 - 0.6242 = 0.3758 \rightarrow máquina$$

Pela Tabela 18:

$$P(x>8) = P(x-x<10-8) = P(y<2) = P(y<1) = 0.3758$$

$$B(10,0.2)$$

- 3. Sabe-se, por experiência, que a probabilidade de uma máquina necessitar de ser afinada em cada período de trabalho de 30 minutos é de 0.05 (períodos independentes). Em cada período só pode haver, no máximo uma afinação. Determine:
 - a) O número médio de afinações numa semana em que a máquina trabalha 20horas.
 - b) A probabilidade de em 8 horas de trabalho se verificar pelo menos uma afinação, e a de se verificarem 2 a 5 afinações.

Exercício 3 (a)

$$X = \begin{cases} 1, & \text{se máquina afinada am 30 min} \\ 0, & \text{case contaixio} \end{cases} \times NB(1,0.05)$$

20 horas =
$$20 \times 2 = 40$$
 periodos de 30 minutos
Sija $\sum_{i=1}^{40} X_i \rightarrow h^2$ afinações num conjunto de 40 periodos $\rightarrow \sum_{i=1}^{40} X_i \sim B(40,0.05)$

$$E\left(\sum_{i=1}^{40} x_i\right) = 40 \times 0.05 = 2$$

Então,

Exercício 3 (b)

- 4. A produção de parafusos em certa unidade fabril é assegurada por duas máquinas $(M_1 \ e \ M_2)$ de funcionamento independente. Da experiência passada pode concluir-se que a proporção de parafusos com defeito, em cada uma das máquinas, é de 5%. Atendendo à capacidade das máquinas, e para efeitos de controlo de qualidade, colhe-se diariamente uma amostra de quatro parafusos da máquina M_1 e uma de oito da máquina M_2 .
 - a) Calcule a probabilidade de se encontrarem dois parafusos com defeito no conjunto das duas amostras.
 - b) Os parafusos são vendidos em embalagens de 20, garantindo o fabricante que 90% são de boa qualidade. Calcule a probabilidade de essa garantia ser violada, isto é, de haver mais que dois parafusos defeituosos numa embalagem.

Exercício 4 (a)

$$X_1 - y.a.$$
 h^2 pass fusos de feituosos num conjunto de 4 unidades de $M_1 = > X_1 \sim B(4,0.05)$
 $X_2 - y.a.$ h^2 pass fusos de feituosos num conjunto de 8 unidades de $M_2 = > X_2 \sim B(8,0.05)$
 $X_1 + X_2 = Y \implies y.a.$ h^2 pass fusos de feituosos nos dois conjuntos

 $X_1 + X_2 = Y \implies y.a.$ h^2 pass fusos de feituosos nos dois conjuntos

 $X_1 + X_2 = Y \implies y.a.$ h^2 pass fusos de feituosos nos dois conjuntos

 $X_1 + X_2 = Y \implies y.a.$ h^2 pass fusos de feituosos nos dois conjuntos

Exercício 4 (b)

$$P(2 > 2) = 1 - P(2 \le 2) = 1 - 0.9245 = 0.0755$$

8. Sabe-se que 1% dos parafusos de determinado fabricante são defeituosos. Os parafusos são vendidos em caixas de 12 unidades com a garantia de devolução do valor pago caso existam dois ou mais parafusos defeituosos.

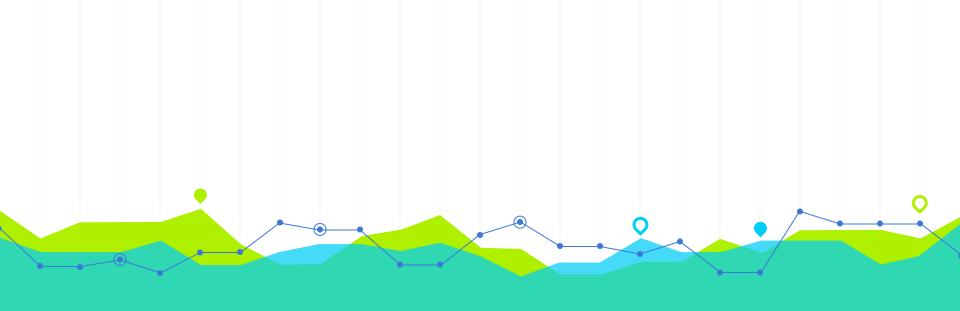
- a) Qual a probabilidade de ocorrer uma devolução?
- b) Se se comprar dez caixas, qual a probabilidade de haver devoluções?

Exercício 8 (a)

Exercício 8 (b)

$$y - n^{\circ}$$
 de coixos devolvidas, num conjunto de 10
 $y \sim B(10, \theta)$, onde $\theta = P(coixa devolvida) = P(x>z) = 0.0062
Logo, $y \sim B(10, 0.0062)$$

$$P(y>0) = 1 - P(y \le 0) = 1 - P(y=0) = 1 - 0.9397 = 0.0603$$



Distribuição Poisson

Variáveis Aleatórias Discretas

Distribuição de Poisson

Representa a distribuição de probabilidade de uma variável aleatória que registra o número de ocorrências num determinado intervalo de tempo ou espaço.

- Carros que passam por minuto num cruzamento, durante uma dada hora do dia.
- Erros tipográficos por página num material impresso.
- ➤ Defeitos numa peça fabricada por unidade (m², m, etc).
- Lâmpadas queimadas numa cidade por dia.
- Problemas de filas de espera.

Cálculo das Probabilidades e Estatística I (ufpb.br)

Distribuição de Poisson

Se X é uma v.a. que regista o número de ocorrências num determinado intervalo e a probabilidade de uma ocorrência é independente e a mesma para quaisquer dois intervalos de tempo, então a v.a. X tem **Distribuição de Poisson** com parâmetro λ e a sua função massa de probabilidade é dada por:

Formulário

• **POISSON** $X \sim Po(\lambda)$, $(\lambda > 0)$

$$f(x \mid \lambda) = \frac{e^{-\lambda} \lambda^{x}}{x!}, \ x = 0,1,2,... \quad ; \quad E(X) = \lambda \; ; \; \operatorname{Var}(X) = \lambda \; ; \ M_{X}(s) = \exp\{\lambda(e^{s} - 1)\} \; ; \quad \gamma_{1} = \lambda^{-1/2}$$

Propriedades:

- $X_1 \sim \text{Po}(\lambda_1)$, $X_2 \sim \text{Po}(\lambda_2)$, $X_1 \in X_2$ independentes $\Rightarrow X_1 + X_2 \sim \text{Po}(\lambda_1 + \lambda_2)$
- Se $X \sim B(n; \theta)$, com n grande θ pequeno então $X \sim Po(n\theta)$

λ = valor esperado ou número médio de ocorrências num dado intervalo.

e = 2,71828 (Número de Euler)

Cálculo das Probabilidades e Estatistica I (ufpb.br)

Distribuição de Poisson

- Notação: X ~ Poisson(λ) indica que v.a. X tem Distribuição
 de Poisson com parâmetro λ.
- ➤ Uma v.a de Poisson não tem limite superior: x = 0, 1, 2, 3, . . .
- P(X = x | λ) = à probabilidade de x ocorrências num determinado intervalo, sendo λ o número médio de ocorrências em tal intervalo.
- > O valor médio e a variância de X são:

Média:
$$E(X) = \lambda$$

Variância: $Var(X) = \lambda$

Gálculo das Probabilidades e Estatística I (ufpb.br)

Processo de Poisson e Distribuição de Poisson

Num **processo de Poisson**, os acontecimentos ocorrem a uma taxa média de λ por unidade de tempo, o número de ocorrências num intervalo de amplitude t tem distribuição de Poisson de parâmetro λt

$$f(x \mid \lambda t) = \frac{e^{-\lambda t} (\lambda t)^x}{x!}, \qquad x = 0,1,2,... \quad (\lambda > 0).$$

Soma de Poisson independentes

• Teorema 5.3 – Sejam X_1 e X_2 duas v.a. independentes. Então,

$$X_1 \sim \text{Po}(\lambda_1), \ X_2 \sim \text{Po}(\lambda_2) \Rightarrow X = X_1 + X_2 \sim \text{Po}(\lambda) \text{ onde } \lambda = \lambda_1 + \lambda_2.$$

Distribuição de Poisson: Exemplo 1

Em média há 2 chamadas por hora em um certo telefone. Calcule a probabilidade de:

- a) receber nenhuma chamada em 1 horas.
- b) receber uma chamada em 1 horas.
- c) receber uma chamada em 2 horas.
- d) receber no máximo 1 chamadas em 2 horas.
- e) receber pelo menos 1 chamadas em 2 horas.

Distribuição de Poisson: Exemplo 1

X=número chamadas por hora em um certo telefone $\lambda=2$ chamadas por hora

a)
$$P(X = 0 | \lambda = 2) = \frac{2^0 e^{-2}}{0!} = 0,1353$$

b)
$$P(X = 1 | \lambda = 2) = \frac{2^1 e^{-2}}{1!} = 0,2706$$

c)
$$P(X = 1 | \lambda = 4) = \frac{4^1 e^{-4}}{1!} = 0,0732$$

d)
$$P(X \le 1 | \lambda = 4) = P(X = 0 | \lambda = 4) + P(X = 1 | \lambda = 4)$$

= $\frac{4^0 e^{-4}}{0!} + \frac{4^1 e^{-4}}{1!} = 0,0183 + 0,0732 = 0.0915$

e)
$$P(X \ge 1 | \lambda = 4) = 1 - P(X < 1 | \lambda = 4)$$

= $1 - P(X = 0 | \lambda = 4) = 1 - 0,0183 = 0,9817$

Distribuição de Poisson: Exemplo 2

```
Ouro exemplo:
          X= nt de daenses que claser a la servico
de une cir nune hora
                       X ~ Poi 550 (30)
          J= m= de clae-ies que chegen e un servico
de unce-vic en 4 hores (20h-24h)
                   yn Poisson (30x 4) = Poisson (120)
[Ennado: y=4x] y~Poisso(4x)
```

Distribuição de Poisson: Resumindo...

A distribuição de Poisson é uma distribuição discreta que se aplica quando ocorre um acontecimento num *intervalo especificado*. A variável aleatória *X* representa o nº de ocorrências num determinado intervalo. O intervalo pode se referir a tempo, distância, área, volume, ou algum tipo de medida similar.

Distribuição de Poisson vs. Distribuição Binomial

A distribuição de Poisson difere da distribuição binomial nos seguintes aspectos fundamentais:

- A distribuição binomial é caracterizada pela dimensão da amostra n e pela probabilidade de sucesso p, enquanto que a distribuição de Poisson é caracterizada apenas pela média μ.
- Numa distribuição binomial, os valores que a variável aleatória X pode tomar são 0, 1, . . . n, enquanto que na distribuição de Poisson a variável X toma os valores 0, 1, . . . , sem limite superior.

Lei dos Acontecimentos Raros: Binomial para a Poisson

Quando $\theta = \lambda / n \rightarrow 0$, mantendo-se fixo $n\theta = \lambda$, a binomial tende para a Poisson,

$$\lim_{n\to\infty} \binom{n}{x} \theta^x (1-\theta)^{n-x} = \lim_{n\to\infty} \binom{n}{x} \left(\frac{\lambda}{n}\right)^x \left(1-\frac{\lambda}{n}\right)^{n-x} = \frac{e^{-n\theta} (n\theta)^x}{x!}.$$

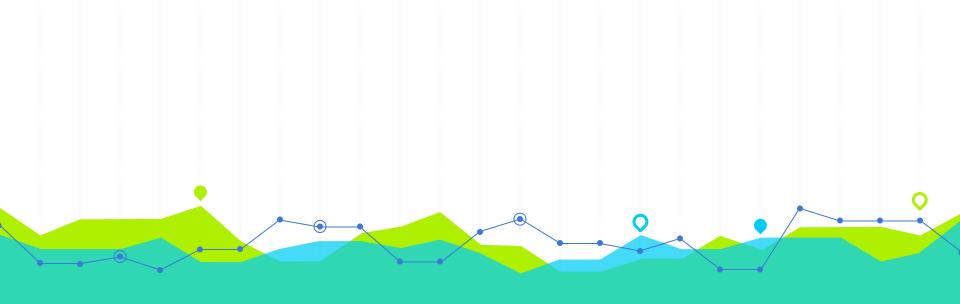
A **regra prática** para utilizar esta "lei" baseia-se no pressuposto de que se tem um acontecimento raro e um número "elevado" de observações.

Assim, não é aconselhável fazer a aproximação quando:

 $0.1 < \theta < 0.9$ (quando $\theta \ge 0.9$, evidentemente que o acontecimento em causa não é "raro", mas sim o seu complementar)

 $n \leq 20$

(que são os valores de *n* considerados na tabela 1).



Distribuição Poisson: Exercícios do Murteira et al (2015)

Variáveis Aleatórias Discretas

3

- 20. O número de erros de ortografia que um aluno dá por página, numa prova escrita de Estatística, segue um processo de Poisson com taxa média de 1.5 erros.
 - a) Qual a percentagem de provas de duas páginas sem erros de ortografia?
 - b) Se um aluno escreveu quatro páginas, qual a probabilidade de ter cometido mais de 8 erros?
 - c) Escolhidas ao acaso cinco provas de quatro páginas cada, qual a probabilidade de apenas uma delas não ter erros de ortografia?
 - d) Numa prova com seis páginas contaram-se dez erros, qual a probabilidade de metade deles estarem nas duas primeiras páginas?

Exercício 20 (a)

	X N Po (1.5)	1.5 → média: E(x)	= ' - 1
	(a) -		

P(y=0) = 0.0498

Exercício 20 (b)

$$Z - V.a.n^{2}$$
 erros em 4 páginas $\rightarrow Z \sim Po(4\lambda) = Po(6)$

$$P(2>8) = 1 - P(2 \le 8) = 1 - 0.8472 = 0.1528$$

Exercício 20 (c)

Num conjunto de 5 prova	s (de 4 paíginas) apena	s_uma não .	ter erros	→ Binomial
				4 F
W - V.a. nº provas sem	erres num conjunto de	5		
M N B (N 0) onde:	n = 5 $\theta = P(z=0) = 0.002$	₩ 5 W	~ B(5,0.00	25_)
W ~ B (n, 0), onde:	prova: 4 pag.			
P(W=1) = 0.0124				

Exercício 20 (d)

$$X_{i} = h^{2} \text{ error pagina} \quad (i=1,2,...,6) \rightarrow X_{i} \times P_{0}(1.5)$$

$$P\left(\frac{2}{2}X_{i}=5 \middle| \sum_{i=1}^{6}X_{i}=10\right) = \frac{P\left(\frac{2}{2}X_{i}=5\right)}{P\left(\frac{2}{2}X_{i}=5\right)} = \frac{P\left(\frac{2}{2}X_{i}=5\right)}{P\left(\frac{2}{2}X_{i}=5\right)}$$

$$= \frac{P\left(\frac{2}{2}X_{i}=5\right) P\left(\frac{2}{2}X_{i}=5\right)}{P\left(\frac{2}{2}X_{i}=5\right)}$$

$$= \frac{P\left(\frac{2}{2}X_{i}=5\right) P\left(\frac{2}{2}X_{i}=5\right)}{P\left(\frac{2}{2}X_{i}=10\right)}$$

Exercício 20 (d)

$$\sum_{i=1}^{2} X_{i} \sim P_{0}(1.5+1.5) = P_{0}(3) \rightarrow P(\sum_{i=1}^{2} X_{i} = 5) = 0.1008.$$

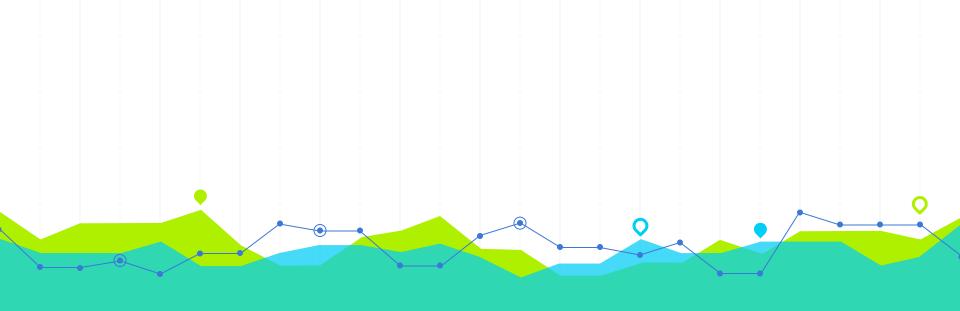
$$\sum_{i=3}^{6} X_{i} \sim P_{0}(1.5+1.5+1.5+1.5) = P_{0}(6) \rightarrow P(\sum_{i=1}^{6} X_{i} = 5) = 0.1606$$

$$\sum_{i=3}^{6} X_{i} \sim P_{0}(1.5+1.5+1.5+1.5) = P_{0}(6) \rightarrow P(\sum_{i=1}^{6} X_{i} = 10) = 0.1186$$

$$\sum_{i=3}^{6} X_{i} \sim P_{0}(1.5+1.5+1.5+1.5) = P_{0}(6) \rightarrow P(\sum_{i=1}^{6} X_{i} = 10) = 0.1186$$

$$\sum_{i=3}^{6} X_{i} \sim P_{0}(1.5+1.5+1.5+1.5) = P_{0}(6) \rightarrow P(\sum_{i=1}^{6} X_{i} = 10) = 0.1186$$

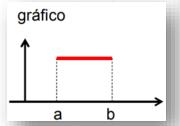
$$\sum_{i=3}^{6} X_{i} \sim P_{0}(1.5+1.5+1.5+1.5) = P_{0}(6) \rightarrow P(\sum_{i=1}^{6} X_{i} = 10) = 0.1186$$



Distribuição Uniforme Contínua

Variáveis Aleatórias Contínuas

Uma v.a. contínua X tem distribuição uniforme com parâmetros a e b, a < b, se sua função densidade de probabilidade é dada por



$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{c.c.} \end{cases}$$

Notação: X ~ U(a,b)

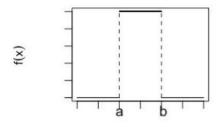
Formulário

• UNIFORME (CONTÍNUA) $X \sim U(\alpha, \beta)$, $(\alpha < \beta)$

$$f(x \mid \alpha, \beta) = \frac{1}{\beta - \alpha} \quad \alpha < x < \beta \quad ; \quad E(X) = \frac{\alpha + \beta}{2} \; ; \quad Var(X) = \frac{(\beta - \alpha)^2}{12} \; ; \quad M_X(s) = \frac{e^{s\beta} - e^{s\alpha}}{s(\beta - \alpha)}, \quad s \neq 0$$

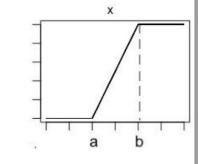
A função densidade de probabilidade de uma variável aleatória com Distribuição Uniforme pode ser escrita destas duas formas.

Função densidade de probabilidade



Função distribuição acumulada

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x \le b, \\ 1, & x > b \end{cases}$$



Valor esperado e variância

$$E(X) = \frac{a+b}{2}$$

$$E(X) = \frac{a+b}{2}$$
 e $V(X) = \frac{(a-b)^2}{12}$ desvio padrão: $\sigma = \sqrt{\frac{a+b}{12}}$

desvio padrão:
$$\sigma = \sqrt{\frac{1}{2}}$$

Uniforme (0, 1)

O caso $\alpha = 0, \beta = 1$, isto é, $X \sim U(0,1)$, é o de **maior interesse**

$$f(x) = \begin{cases} 1 & (0 < x < 1) \\ 0 & (\text{outros } x) \end{cases}$$

$$F(x) = \begin{cases} 0 & (x < 0) \\ x & (0 \le x < 1) \\ 1 & (x \ge 1) \end{cases}$$

$$E(X^{k}) = \frac{1}{(k+1)} \log E(X) = \frac{1}{2}, \quad Var(X) = \frac{1}{12}, \quad \gamma_{1} = 0$$

https://fenix.iseg.ulisboa.pt/downloadFile/281608120794416/

• Teorema 5.4 – Transformação uniformizante – resultado particularmente importante em problemas de simulação.

Este resultado mostra que, em certas condições, $Y = F_X(X) \sim U(0,1)$ e inversamente que se $Y \sim U(0,1)$ então $X = F_X^{-1}(Y) \sim F_X(X)$

https://fenix.iseg.ulisboa.pt/downloadFile/281608120794416/

Distribuição Uniforme: Resumindo...

i)
$$\times N$$
 Uniforme (a,b) [$lb-g: \times Ten distribution de temporar no intervelo (a,b)]

$$f_X(x) = \frac{1}{b-a}, a \le x \le b$$

$$E(X) = \frac{b+a}{2} \quad Var(X) = \frac{(b-a)^2}{12}$$

$$\left(\int_a^b \int_{b-c}^{b-c} dx = 1\right) \Rightarrow c \text{ for } des \text{ for } b = 0 \text{ definite}$$

$$f_X(x) = \begin{cases} 0 & \text{ as } a \\ \int_a^b \int_{b-c}^{b-c} dy = \frac{x-a}{b-c} & \text{ as } x \le b \end{cases}$$

$$E(X) = \begin{cases} 0 & \text{ as } a \\ \int_a^b \int_{b-c}^{b-c} dy = \frac{x-a}{b-c} & \text{ as } x \le b \end{cases}$$

$$E(X) = \begin{cases} 1 & \text{ as } x \le b \\ \int_a^b \int_{b-c}^{b-c} dy = \frac{x-a}{b-c} & \text{ as } x \le b \end{cases}$$

$$E(X) = \begin{cases} 1 & \text{ as } x \le b \\ \int_a^b \int_{b-c}^{b-c} dx = \frac{b}{b-c} & \text{ as } x \le b \end{cases}$$

$$E(X) = \begin{cases} 1 & \text{ as } x \le b \\ \int_a^b \int_{b-c}^{b-c} dx = \frac{b}{b-c} & \text{ as } x \le b \end{cases}$$

$$E(X) = \begin{cases} 1 & \text{ as } x \le b \\ \int_a^b \int_{b-c}^{b-c} dx = \frac{b}{b-c} & \text{ as } x \le b \end{cases}$$

$$E(X) = \begin{cases} 1 & \text{ as } x \le b \\ \int_a^b \int_{b-c}^{b-c} dx = \frac{b}{b-c} & \text{ as } x \le b \end{cases}$$

$$E(X) = \begin{cases} 1 & \text{ as } x \le b \\ \int_a^b \int_{b-c}^{b-c} dx = \frac{b}{b-c} & \text{ as } x \le b \end{cases}$$

$$E(X) = \begin{cases} 1 & \text{ as } x \le b \\ \int_a^b \int_{b-c}^{b-c} dx = \frac{b}{b-c} & \text{ as } x \le b \end{cases}$$

$$E(X) = \begin{cases} 1 & \text{ as } x \le b \\ \int_a^b \int_{b-c}^{b-c} dx = \frac{b}{b-c} & \text{ as } x \le b \end{cases}$$

$$E(X) = \begin{cases} 1 & \text{ as } x \le b \\ \int_a^b \int_a^b dx = \frac{b}{b-c} & \text{ as } x \le b \end{cases}$$

$$E(X) = \begin{cases} 1 & \text{ as } x \le b \\ \int_a^b \int_a^b dx = \frac{b}{b-c} & \text{ as } x \le b \end{cases}$$

$$E(X) = \begin{cases} 1 & \text{ as } x \le b \\ \int_a^b \int_a^b dx = \frac{b}{b-c} & \text{ as } x \le b \end{cases}$$

$$E(X) = \begin{cases} 1 & \text{ as } x \le b \\ \int_a^b \int_a^b dx = \frac{b}{b-c} & \text{ as } x \le b \end{cases}$$

$$E(X) = \begin{cases} 1 & \text{ as } x \le b \\ \int_a^b \int_a^b dx = \frac{b}{b-c} & \text{ as } x \le b \end{cases}$$

$$E(X) = \begin{cases} 1 & \text{ as } x \le b \\ \int_a^b \int_a^b dx = \frac{b}{b-c} & \text{ as } x \le b \end{cases}$$

$$E(X) = \begin{cases} 1 & \text{ as } x \le b \\ \int_a^b \int_a^b dx = \frac{b}{b-c} & \text{ as } x \le b \end{cases}$$

$$E(X) = \begin{cases} 1 & \text{ as } x \le b \\ \int_a^b \int_a^b dx = \frac{b}{b-c} & \text{ as } x \le b \end{cases}$$

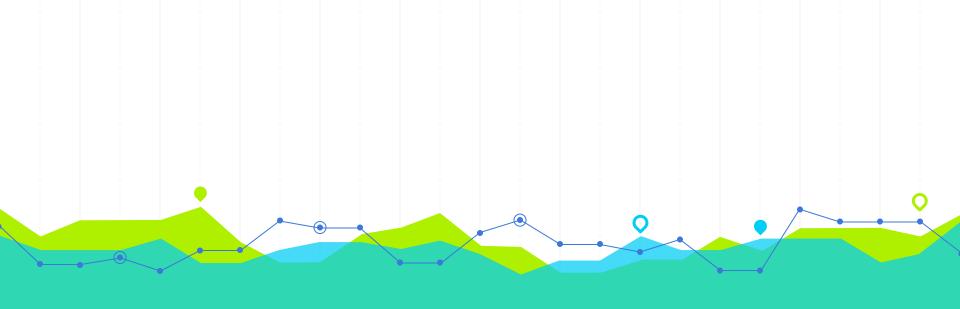
$$E(X) = \begin{cases} 1 & \text{ as } x \le b \\ \int_a^b \int_a^b dx = \frac{b}{b-c} & \text{ as } x \le b \end{cases}$$

$$E(X) = \begin{cases} 1 & \text{ as } x \le b \\ \int_a^b \int_a^b dx = \frac{b}{b-c} & \text{ as } x \le b \end{cases}$$

$$E(X) = \begin{cases} 1 & \text{ as } x \le b \\ \int_a^b \int_a^b dx = \frac{b}{b-c} & \text{ as } x \le b \end{cases}$$

$$E(X) = \begin{cases} 1 & \text{ as } x \le b \\ \int_a^b \int_a^b dx = \frac{b}{b-c} & \text{ as } x \le b \end{cases}$$

$$E(X) = \begin{cases} 1 & \text{ as } x \le b \\ \int_a^b \int_a^b dx = \frac{$$$



Distribuição Uniforme Contínua: Exercícios do Murteira et al (2015)

Variáveis Aleatórias Contínuas

5

- 34. A duração de pequenos anúncios (entre 5 e 12 segundos) numa cadeia de televisão pode considerar-se uma variável aleatória com distribuição uniforme.
 - a) Indique a função de distribuição.
 - b) Qual a probabilidade de um pequeno anúncio ter duração superior a 7 segundos.
 - c) Calcule e interprete: $P(X > 6 | X \le 10)$.
 - d) Calcule a média e o desvio padrão da duração dos pequenos anúncios.

Exercício 34 (a) X-1.a. dupação arruncios (entre 5 e 12 segundos)

$$X \sim U(5,12) = f(x) = \frac{1}{12-5} = \frac{1}{7} \quad (5 < x < 12)$$

$$F(x) = \int_{-\infty}^{x} f(u) du = \int_{5}^{x} \frac{1}{7} du = \left[\frac{\pi}{7}\right]_{5}^{x} = \frac{x}{7} - \frac{5}{7} = \frac{x-5}{7}$$
Assim,
$$F(x) = \begin{cases} 0 & (x < 5) \\ \frac{x-5}{7} & (5 \le x < 12) \\ 1 & (x > 12) \end{cases}$$

Exercício 34 (b)

$$P(X>7) = \int_{7}^{7} f(x) dx = 1 - F_{x}(7) = 1 - \frac{7.5}{7} = \frac{5}{7} \approx 0.7143$$

Exercício 34 (c)

$$P(x>6|x\leq 10) = \frac{P(x>6 \cap x\leq 10)}{P(x\leq 10)} = \frac{P(6< x\leq 10)}{P(x\leq 10)} = \frac{F_x(10) - F_x(6)}{F_x(10)} = \frac{F_x(10) - F_x(6)}{F_x(10)}$$

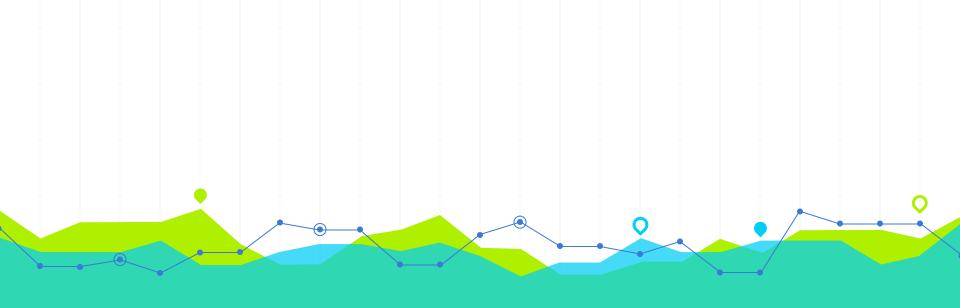
$$\frac{5}{5}$$
 $\frac{5}{5}$ $\frac{4}{5}$ $\frac{4}{5}$ $\frac{2}{5}$ 0.8

- . Sabendo que um anúncio não dura mais de 10 segundos, a probabilidade de dura, mais de 6 segundos é de 0.8
- . 80% des avuncios com duração não superior o 10 segundos, duram mais de 6 segundos.

Exercício 34 (d)

$$E(x) = \frac{x+\beta}{2} = \frac{5+12}{2} = \frac{17}{2} = 8.5$$

$$Var(x) = \frac{(\beta - x)^2}{12} = \frac{(12.5)^2}{12} = \frac{49}{12} = 75 = \sqrt{Var(x)} = \sqrt{\frac{49}{12}} \approx 2.0207$$



Distribuição Normal

Variáveis Aleatórias Contínuas

Distribuição Normal ou Gaussiana

A v. a. X tem distribuição Normal com parâmetros μ e σ^2 se sua função densidade de probabilidade é dada por:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, \quad -\infty < x < \infty.$$

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}, x \in \mathbb{R}$$

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}, x \in \mathbb{R}$$

$$E(X) = \mu, Var(X) = \sigma^2$$

Pode ser mostrado que:

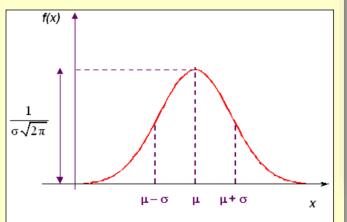
- 1. μ é o valor esperado (média) de X, com - ∞ < μ < ∞ ;
- 2. σ^2 é a variância de X, com $\sigma^2 > 0$.

Distribuição Normal (usp.br)

Notação : $X \sim N(\mu ; \sigma^2)$

Distribuição Normal: Propriedades

Propriedades de $X \sim N(\mu; \sigma^2)$



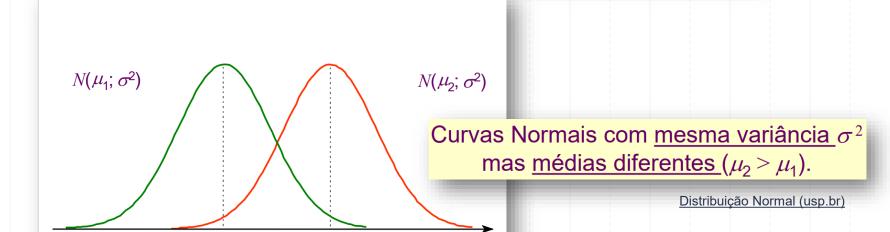
- $E(X) = \mu$ (média ou valor esperado);
- $Var(X) = \sigma^2$ (e portanto, $DP(X) = \sigma$);
- $f(x) \to 0$, quando $x \to \pm \infty$;
- $x = \mu$ é ponto de máximo de f(x);
- μ σ e μ + σ são pontos de inflexão de f(x);
- a curva Normal é simétrica em torno da média μ .

Distribuição Normal: Valor Médio

A distribuição Normal depende dos parâmetros μ e σ^2

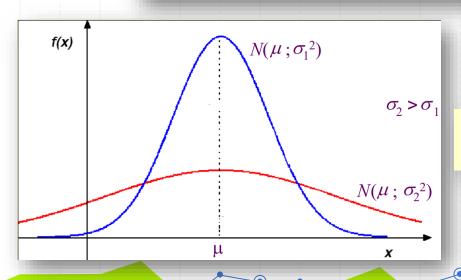
 μ_1

 μ_2



Distribuição Normal: Variância

Influência de σ^2 na curva Normal

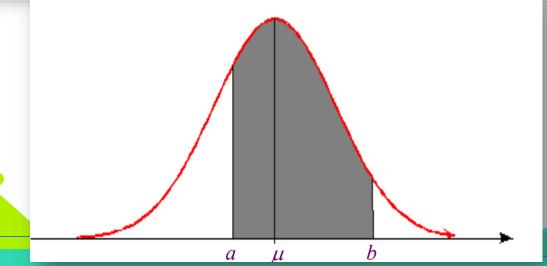


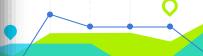
Curvas Normais com <u>mesma média μ </u> mas com <u>variâncias diferentes ($\sigma_2 > \sigma_1$).</u>

Distribuição Normal: Cálculo de Probabilidades

$$P(a < X < b) = P(a \le X \le b)$$

Área sob a curva e acima do eixo horizontal (x) entre a e b.

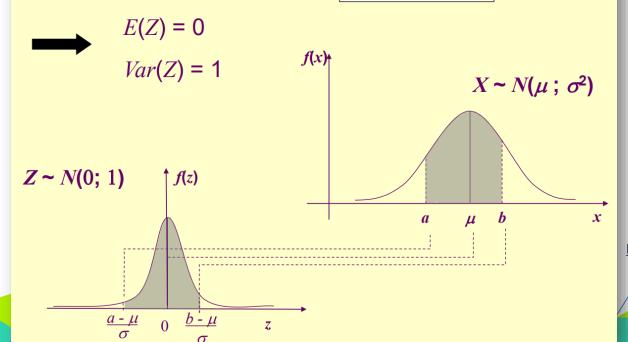




Distribuição Normal Padrão: Z ~ N(0,1)

Se $X \sim N(\mu; \sigma^2)$, definimos

$$Z = \frac{X - \mu}{\sigma}$$



Distribuição Normal Padrão: Z ~ N(0,1)

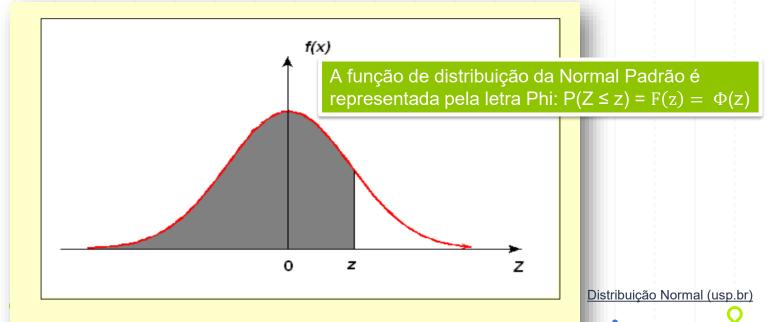
A v.a. Z ~ N(0;1) denomina-se normal padrão ou reduzida.

Portanto,

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{b - \mu}{\sigma}\right) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$

Dada a v.a. $Z \sim N(0;1)$ podemos obter a v.a. $X \sim N(\mu; \sigma^2)$ através da transformação inversa

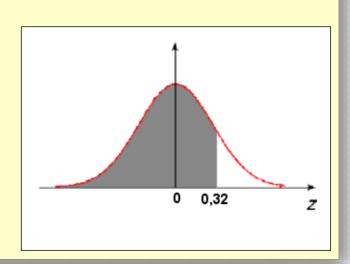
$$X = \mu + Z \times \sigma$$
.



Denotamos : $A(z) = P(Z \le z)$, para $z \ge 0$.

Exemplo: Seja $Z \sim N(0; 1)$, calcular

a)
$$P(Z \le 0.32)$$



$$P(Z \le 0.32) = A(0.32) = 0.6255.$$

Distribuição Normal Padrão: Tabela

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5971	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.0020	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357						0.7549
0.7	0.7580	0.7611	0.7642	0.7673	P(7 < N	,32) =	= 0.61	255	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	(1 (0	,02)	0,02	200	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.020-	0.0200	0.0010	0.0040	0.0000	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.998650	0.998694	0.998736	0.998777	0.998817	0.998856	0.998893	0.998930	0.998965	0.99899
3.1	0.999032	0.999064	0.999096	0.999126	0.999155	0.999184	0.999211	0.999238	0.999264	0.99928
3.2	0.999313	0.999336	0.999359	0.999381	0.999402	0.999423	0.999443	0.999462	0.999481	0.99949
3.3	0.999517	0.999533	0.999550	0.999566	0.999581	0.999596	0.999610	0.999624	0.999638	0.99965
3.4	0.999663	0.999675	0.999687	0.999698	0.999709	0.999720	0.999730	0.999740	0.999749	0.99975
3.5	0.999767	0.999776	0.999784	0.999792	0.999800	0.999807	0.999815	0.999821	0.999828	0.99983
3.6	0.999767	0.999776	0.999784 0.999853	0.999792 0.999858	0.999800 0.999864	0.999869	0.999815 0.999874	0.999821 0.999879	0.999828	0.99988
3.7	0.999892	0.999847	0.999900	0.999904	0.999904	0.999912	0.999915	0.999918	0.999922	0.99992
3.8	0.999928	0.999930	0.999933	0.999904	0.999938	0.999912	0.999913	0.999916	0.999948	0.99995
3.9	0.999952	0.999954	0.999956	0.999958	0.999959	0.999941	0.999963	0.999940	0.999966	0.99996
4.0	0.999968	0.999970	0.999971	0.999972	0.999973	0.999974	0.999975	0.999976	0.999977	0.99997

b)
$$P(0 < Z \le 1,71)$$

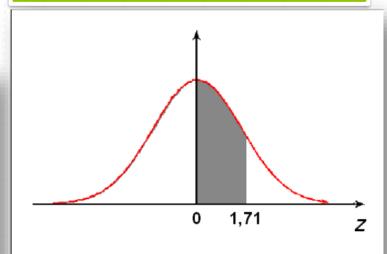
$$= P(Z \le 1,71) - P(Z \le 0)$$

$$= A(1,71) - A(0)$$

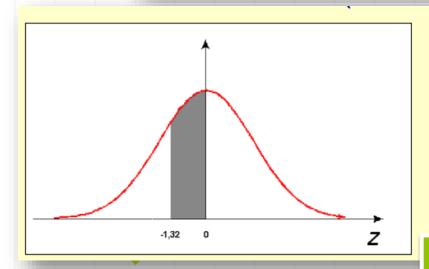
$$= 0.9564 - 0.5 = 0.4564.$$

Obs.: A(0)=P(Z < 0)=P(Z > 0)=0,5.

P(-a < Z < a) = Φ (a) $-\Phi$ (-a) P(Z < -a) = Φ (-a) = 1- Φ (a) sendo "a" uma constante positiva e Φ (Phi) a fd da Distribuição Normal Padrão



c)
$$P(-1,32 < Z < 0) = P(0 < Z < 1,32)$$



$$= P(Z \le 1,32) - P(Z \le 0)$$

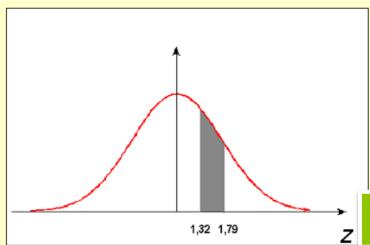
$$= A(1,32) - 0,5$$

$$= 0.9066 - 0.5 = 0.4066.$$

<u>Tabela</u>

Alternativa, P(-1,32 < Z < 0) = $\Phi(0) - \Phi(-1,32) = \Phi(0) - [1 - \Phi(1,32)] = 0.5 - 1 + 0.9066 = 0.4066$

d)
$$P(1,32 < Z \le 1,79)$$



$$= P(Z \le 1,79) - P(Z \le 1,32)$$

$$= A(1,79) - A(1,32)$$

$$= 0.9633 - 0.9066 = 0.0567.$$

Alternativa, $P(1,32 < Z \le 1,79) = \Phi(1,79) - \Phi(1,32)$ = 0,9633 - 0,9066 = 0,0567

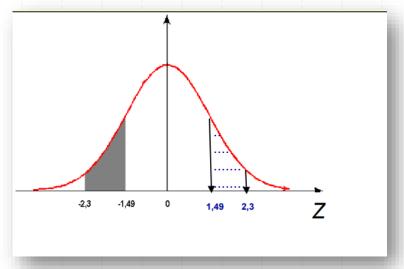
e)
$$P(-2,3 < Z \le -1,49)$$

$$= P(1,49 \le Z < 2,3)$$

$$= A(2,3) - A(1,49)$$

$$= 0.9893 - 0.9319$$

= 0.0574.



Distribuição Normal (usp.br)

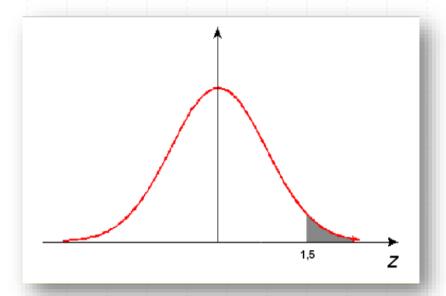
Alternativa, P(-2,3 < Z \leq -1,49) = $\Phi(-1,49) - \Phi(-2,3)$ = $[1 - \Phi(1,49)] - [1 - \Phi(2,3)] = 0,0574$

f)
$$P(Z \ge 1,5)$$

$$= 1 - P(Z \le 1,5)$$

$$= 1 - A(1,5)$$

$$= 1 - 0.9332 = 0.0668.$$



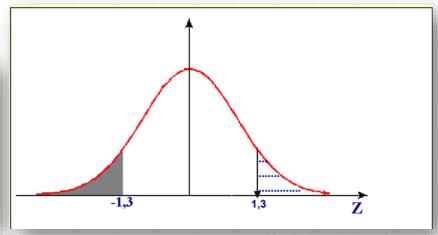
Alternativa, $P(Z \ge 1.5) = 1-\Phi(1.5) = 0.0668$

g)
$$P(Z \le -1,3)$$

$$= P(Z \ge 1,3) = 1 - P(Z \le 1,3)$$

$$= 1 - A(1,3)$$

$$= 1 - 0.9032 = 0.0968.$$



Distribuição Normal (usp.br)

Obs.: Pela simetria, $P(Z \le -1,3) = P(Z \ge 1,3)$.

h)
$$P(-1,5 \le Z \le 1,5)$$

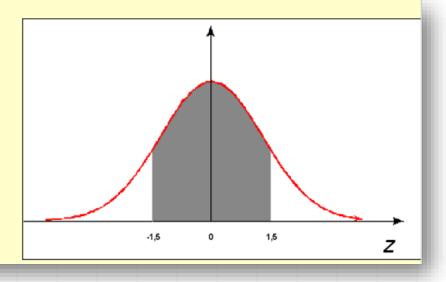
$$= P(Z \le 1,5) - P(Z \le -1,5)$$

$$= P(Z \le 1,5) - P(Z \ge 1,5)$$

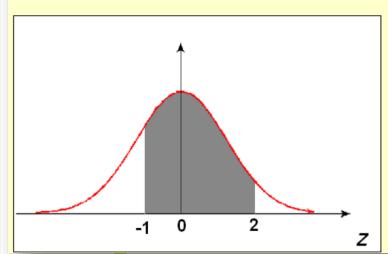
$$= P(Z \le 1,5) - [1-P(Z \le 1,5)]$$

$$= 2 \times P(Z \le 1,5) - 1 = 2 \times A(1,5) - 1$$

$$= 2 \times 0,9332 - 1 = 0,8664.$$



i)
$$P(-1 \le Z \le 2)$$



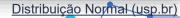
$$= P(Z \le 2) - P(Z \le -1)$$

$$= A(2) - P(Z \ge 1) = A(2) - (1 - A(1))$$

$$= 0.9773 - (1 - 0.8413)$$

$$= 0.9773 - 0.1587 = 0.8186.$$

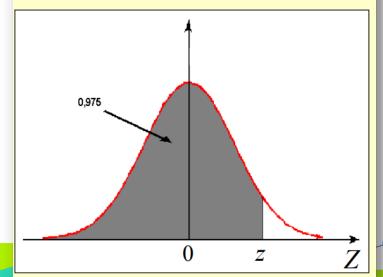
<u>Tabela</u>



Distribuição Normal Padrão: Quantis

Como encontrar o valor z da distribuição N(0;1) tal que:

(i)
$$P(Z \le z) = 0.975$$



z é tal que A(z) = 0,975.

Pela tabela, z = 1,96.

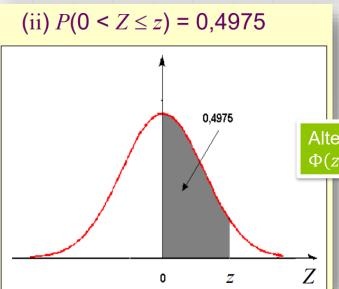
Alternativa, $P(Z \le z) = 0.975 \Leftrightarrow \Phi(z) = 0.975$ $\Leftrightarrow z = \Phi(0.975)^{-1} = 1.96$

Distribuição Normal Padrão: Tabela

	z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09				
	.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359				
	.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753				
	.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141				
0 (.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517				
Quantis	.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879				
	.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224				
	.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549				
	.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852				
	.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133				
	.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389				
	1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621				
	1.1	.8643	2665	8686	8708	8720	8740	8770	2790	8810	8830				
	1.2	.8849	D/-	7 / _\		075	44 47/		0.07		本	<u>/</u> 0 0	751	1 _ 4	00
	1.3	.9032	P(2	∠ ≤ Z,) = U	ໟ/ວ [‹]	⇒ Ψ((Z) = 0	0,973	5 <⇒ .	$z = \Phi$	(U,9	/ b)⁻	= 1	,90
	1.4	.9192					_		/						
	1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441				
	1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545				
	1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633				
	1.8	.9641	.9649	.9656	.9664	.9671	.9678	0.86	.9693	.9699	.9706				
	1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767				
	2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817				
	2.1	.9821	.9826	.9830	0834	0838	9842	9846	.9850	.9854	.9857				
	2.2	.9861	.9864	.986	D I-	- 1- 212 -1		381	.9884	.9887	.9890				
	2.3	.9893	.9896		Prop:	abilid	lades	909	.9911	.9913	.9916				
	2.4	.9918	.9920	.992)31	.9932	.9934	.9936				
	2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952				
	2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964				
	2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974				
	2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981				/ _
	2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986		•	- /.	
	3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990				
	3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993				
	3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995				
	~ ~	0005	0005	0005	0006	0006	0000	0006	0000	0006	000=				

Distribuição Normal Padrão: Quantis

Como encontrar o valor z da distribuição N(0;1) tal que:



z é tal que A(z) = 0.5 + 0.4975 = 0.9975. Pela tabela z = 2.81.

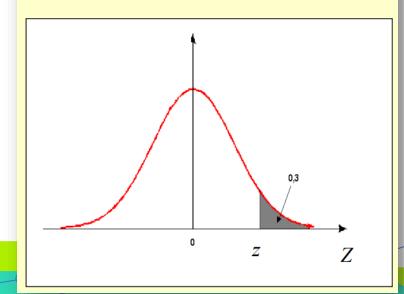
Alternativa, $P(0 < Z \le z) = 0.4975 \Leftrightarrow \Phi(z) - \Phi(0) = 0.4975 \Leftrightarrow \Phi(z) = 0.4975 + 0.5 \Leftrightarrow z = \Phi(0.9975)^{-1} = 2.81$

<u>Distribuição Normal (usp.br)</u>

Distribuição Normal Padrão: Quantis

Como encontrar o valor z da distribuição N(0;1) tal que:

(iii)
$$P(Z \ge z) = 0.3$$



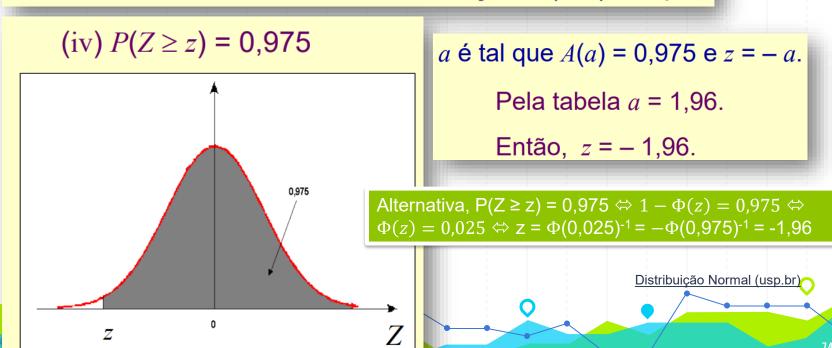
z é tal que A(z) = 0,7.

Pela tabela, z = 0.53.

Alternativa, $P(Z \ge z) = 0.3 \Leftrightarrow 1 - \Phi(z) = 0.3$ $\Leftrightarrow \Phi(z) = 0.7 \Leftrightarrow z = \Phi(0.7)^{-1} = 0.53$

Distribuição Normal Padrão: Quantis

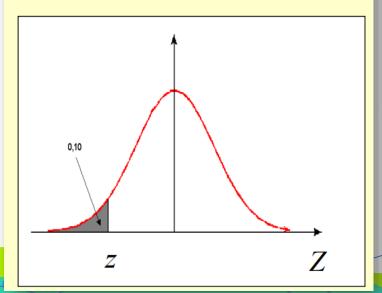
Como encontrar o valor z da distribuição N(0;1) tal que:



Distribuição Normal Padrão: Quantis

Como encontrar o valor z da distribuição N(0;1) tal que:

(v)
$$P(Z \le z) = 0.10$$



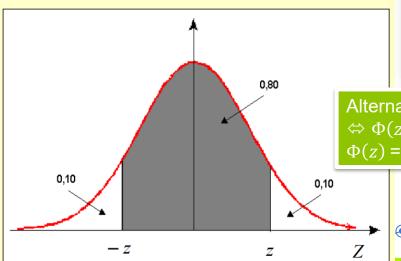
a é tal que A(a)=0,90 e z = -a. Pela tabela, a = 1,28e, assim, z = -1,28.

Alternativa, $P(Z \le z) = 0.10 \Leftrightarrow \Phi(z) = 0.10 \Leftrightarrow z = \Phi(0.1)^{-1} = -\Phi(0.9)^{-1} = -1.28$

Distribuição Normal Padrão: Quantis

Como encontrar o valor z da distribuição N(0;1) tal que:

(vi)
$$P(-z \le Z \le z) = 0.80$$



z é tal que P(Z < -z) = P(Z > z) = 0,1.Isto é, P(Z < z) = A(z) = 0,90 $\Rightarrow z = 1,28$ (pela tabela).

Alternativa, $P(-z \le Z \le z) = 0.80 \Leftrightarrow \Phi(z) - \Phi(-z) = 0.80$ $\Leftrightarrow \Phi(z) - [1 - \Phi(z)] = 0.80 \Leftrightarrow 2\Phi(z) - 1 = 0.80 \Leftrightarrow \Phi(z) = 0.9 \Leftrightarrow z = \Phi(0.9)^{-1} = 1.28$

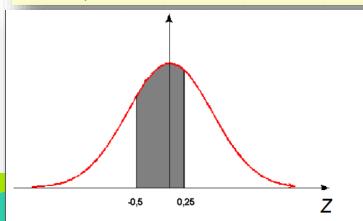
Distribuição Normal (usp.br)

Distribuição Normal: Probabilidades

Exemplo: Seja $X \sim N(10; 64)$ ($\mu = 10, \sigma^2 = 64 \text{ e } \sigma = 8$)

Calcular: (a) $P(6 \le X \le 12)$

$$= P\left(\frac{6-10}{8} < \frac{X-10}{8} < \frac{12-10}{8}\right) = P\left(-0.5 < Z < 0.25\right)$$



$$= A(0,25) - (1 - A(0,5))$$

$$= 0,5987 - (1 - 0,6915)$$

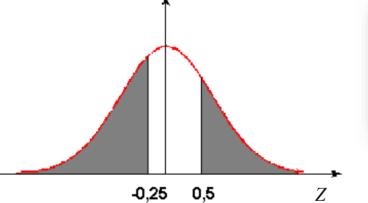
$$= 0,5987 - 0,3085 = 0,2902$$

Distribuição Normal (usp.br)

Distribuição Normal: Probabilidades

(b) $P(X \le 8 \text{ ou } X > 14)$

$$P(X \le 8) + P(X > 14) = P\left(Z \le \frac{8 - 10}{8}\right) + P\left(Z > \frac{14 - 10}{8}\right)$$
$$= P\left(Z < -0.25\right) + P\left(Z > 0.5\right)$$



$$= 1 - A(0,25) + 1 - A(0,5)$$

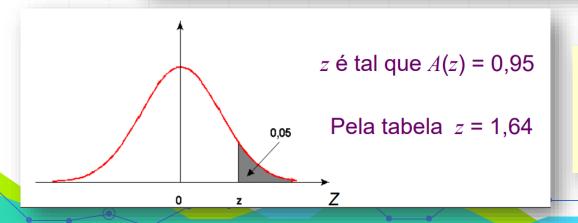
$$= 1 - 0,5987 + 1 - 0,6915$$

$$= 0,7098$$

Distribuição Normal: Quantis

c) k tal que $P(X \ge k) = 0.05$

$$P(X \ge k) = 0.05 \Rightarrow P\left(\frac{X - 10}{8} \ge \frac{k - 10}{8}\right) = P\left(Z \ge \frac{k - 10}{8}\right) = 0.05.$$



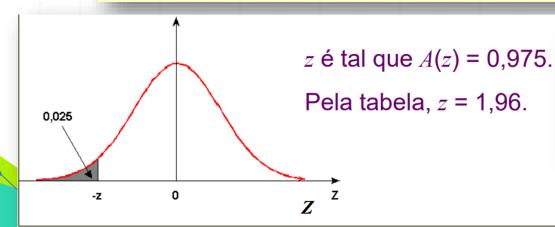
Então,
$$z = \frac{k-10}{8} = 1,64.$$

Logo
$$k = 10 + 1,64 \times 8 = 23,12$$
.

Distribuição Normal: Quantis

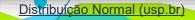
d) k tal que $P(X \le k) = 0.025$

$$P(X \le k) = 0.025 \Rightarrow P\left(\frac{X-10}{8} \le \frac{k-10}{8}\right) = P\left(Z \le \frac{k-10}{8}\right) = 0.025.$$



Então,
$$\frac{k-10}{8} = -z = -1,96.$$

Logo
$$k = 10 - 1,96 \times 8 = -5,68$$
.



Distribuição Normal: Probabilidades

Observação : Se $X \sim N(\mu ; \sigma^2)$, então

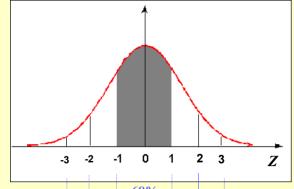
(i)
$$P(\mu - \sigma \le X \le \mu + \sigma) = P\left(\frac{\mu - \sigma - \mu}{\sigma} \le Z \le \frac{\mu + \sigma - \mu}{\sigma}\right)$$

$$= P(-1 \le Z \le 1)$$

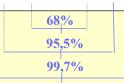
$$= 2 \times (A(1) - 0.5)$$

$$= 2 \times (0.8413 - 0.5)$$

= 0.6826



ou seja, $P(\mu - \sigma \le X \le \mu + \sigma) = 0.683$.



(ii)
$$P(\mu - 2\sigma \le X \le \mu + 2\sigma) = P(-2 \le Z \le 2) = 0.955$$
.

(iii)
$$P(\mu - 3\sigma \le X \le \mu + 3\sigma) = P(-3 \le Z \le 3) = 0.997$$
.

Tabela

Distribuição Normal: Resumo...

Formulário

• **NORMAL** $X \sim N(\mu, \sigma^2)$, $(-\infty < \mu < +\infty, 0 < \sigma < +\infty)$

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (x - \mu)^2\right\}, \quad -\infty < x < +\infty$$

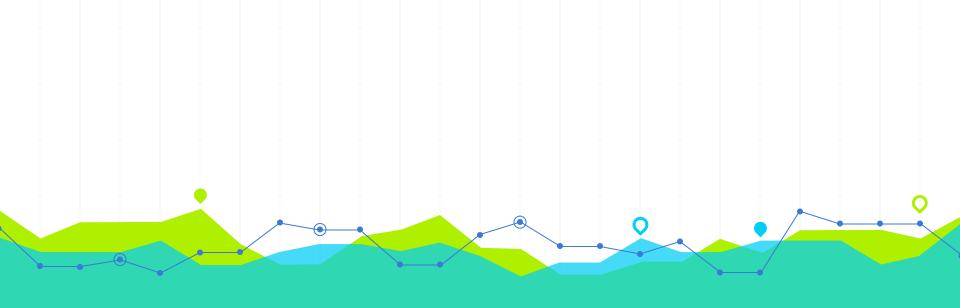
$$E(X) = \mu$$
; $Var(X) = \sigma^2$; $M_X(s) = exp\left\{\mu s + \frac{\sigma^2 s^2}{2}\right\}$; $\gamma_1 = 0$; $\gamma_2 = 3$

Propriedades:

- Normal estandardizada $Z = \frac{X \mu}{\sigma} \sim N(0,1)$; $\phi(z) = \phi(-z)$ e $\Phi(z) = 1 \Phi(-z)$
- $X_i \sim N(\mu, \sigma^2)$ (i = 1, 2, ..., k) independentes $\Rightarrow Y = \sum_{i=1}^k X_i \sim N(k\mu, k\sigma^2)$ e $\overline{X} = \frac{1}{k} \sum_{i=1}^k X_i \sim N(\mu, \frac{\sigma^2}{k})$
- $X_i \sim N(\mu_i, \sigma_i^2)$ (i = 1, 2, ..., k) independentes $\Rightarrow \sum_{i=1}^k \alpha_i X_i \sim N(\mu_Y, \sigma_Y^2)$ com $\mu_Y = \sum_{i=1}^k \alpha_i \mu_i$ e $\sigma_Y^2 = \sum_{i=1}^k \alpha_i^2 \sigma_i^2$

Função geradora de momentos

$$\mathsf{M}_X(t) = \mathsf{E}(\mathrm{e}^{\mathrm{tX}}), \qquad \mathsf{M}_X^{(n)}(t)\Big|_{t=0} = \mathsf{E}(X^n)$$



Distribuição Normal: Exercícios

Variáveis Aleatórias Contínuas

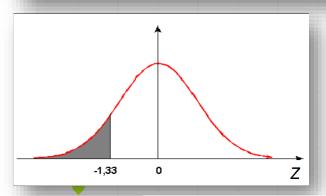
Exemplo: O tempo gasto no exame vestibular de uma universidade tem distribuição Normal, com média 120 *min* e desvio padrão 15 *min*.

- a) Sorteando-se um aluno ao acaso, qual é a probabilidade dele terminar o exame antes de 100 minutos?
- b) Qual deve ser o tempo de prova, de modo a permitir que 95% dos vestibulandos terminem no prazo estipulado?
 - c) Qual é o intervalo de tempo, simétrico em torno da média (intervalo central), tal que 80% dos estudantes gastam para completar o exame?

Exercício 1 (a): Probabilidades

X: tempo gasto no exame vestibular $\Rightarrow X \sim N(120; 15^2)$

$$P(X \le 100) = P\left(Z \le \frac{100 - 120}{15}\right) = P(Z \le -1,33)$$



$$= 1 - A(1,33)$$

$$= 1 - 0.9082 = 0.0918.$$

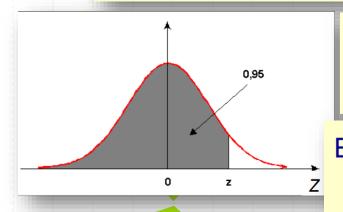
Distribuição Normal (usp.br)

Alternativa, $P(Z \le -1.33) = \Phi(-1.33) = 1 - \Phi(1.33) = 1 - 0.9082 = 0.0918$

Exercício 1 (b): Distribuição Normal - Quantis

X: tempo gasto no exame vestibular $\Rightarrow X \sim N(120; 15^2)$

$$P(X \le x) = 0.95 \Rightarrow P\left(Z \le \frac{x - 120}{15}\right) = 0.95$$



$$z = ?$$
 tal que $A(z) = 0.95$.

Pela tabela z = 1,64.

Então,
$$z = 1,64 = \frac{x - 120}{15}$$

$$\Rightarrow$$
 x = 120 +1,64 ×15

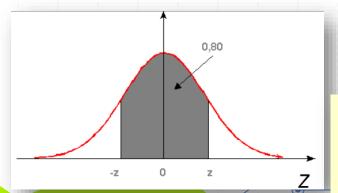
$$\Rightarrow$$
 x = 144,6 min.

Alternativa, $P(Z \le (x-120)/15) = 0.95 \Leftrightarrow \Phi((x-120)/15) = 0.95 \Leftrightarrow (x-120)/15 = \Phi(0.95)^{-1} \Leftrightarrow (x-120)/15 = 1.64 \Leftrightarrow x = 144.6 minutos$

Exercício 1 (c): Distribuição Normal - Quantis

X: tempo gasto no exame vestibular $\Rightarrow X \sim N(120, 15^2)$

$$P(x_1 \le X \le x_2) = 0.80 \Rightarrow P\left(\frac{x_1 - 120}{15} \le Z \le \frac{x_2 - 120}{15}\right) = 0.80$$



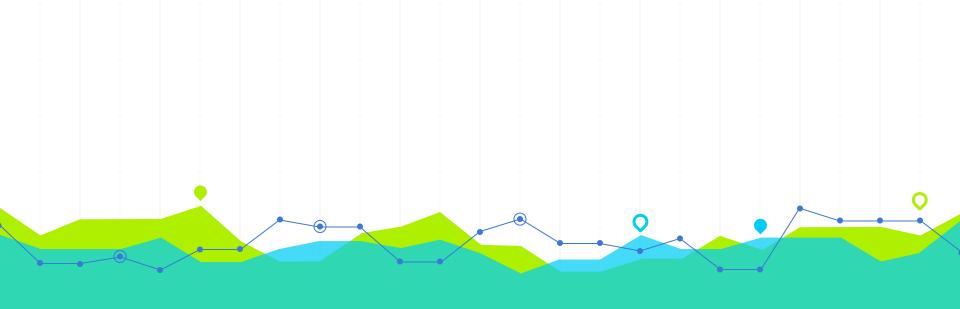
$$z = ?$$
 tal que $A(z) = 0.90$.

Pela tabela, z = 1,28.

Distribuição Normal (usp.br)

$$-z = \frac{x_1 - 120}{15} = -1,28 \implies x_1 = 120 - 1, 28 \times 15 \implies x_1 = 100,8 \text{ min.}$$

$$z = \frac{x_2 - 120}{15} = 1,28 \implies x_2 = 120 + 1,28 \times 15 \implies x_2 = 139,2 \text{ min.}$$



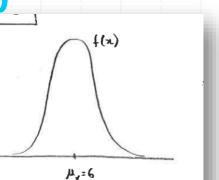
Distribuição Normal: Exercícios do Murteira et al (2015)

Variáveis Aleatórias Contínuas

39. Se *X* tem distribuição normal com média 6 e variância 25, calcule:

- a) $P(6 < X \le 12)$.
- b) $P(0 \le X < 8)$.
- c) P(X < -4).
- d) P(|X-6|>10).
- e) O valor de k tal que P(X > k) = 0.90.

Exercício 39 (a)



$$P(6< X \le 12) \rightarrow \text{ hormolod}_{G} \left(6,12,6,5\right) \approx 0.38493$$

$$P(6< X \le 12) = P\left(\frac{6-6}{\sqrt{25}} < \frac{X-\mu_{X}}{\sigma_{X}} \le \frac{12-6}{\sqrt{25}}\right) = P(0< 2 \le 1.2) = \Phi(1.2) - \Phi(0) = \frac{12-6}{\sqrt{25}}$$

Exercício 39 (b)

$$P(0 \le X < 8) = P(\frac{0-6}{\sqrt{25}} \le \frac{X-\mu_X}{\sigma_X} < \frac{8-6}{\sqrt{25}}) = P(-1.2 \le 2 < 0.4) = \Phi(0.4) - \Phi(-1.2) =$$

$$= \overline{\Phi}(0.4) - \left[1 - \overline{\Phi}(4.2)\right] = 0.6554 - \left(1 - 0.8849\right) = 0.5403$$

Exercício 39 (c)

$$P(X < -4) \rightarrow hamalcdf(-10^{99}, -4, 6, 5) \approx 0.02275$$

$$P(X < -4) = P\left(\frac{x \cdot \mu_x}{\sigma_x} < \frac{-4 - 6}{\sqrt{25}}\right) = P(\frac{2}{5} < -2) = \Phi(-2) = 1 - \Phi(2) = 1 - 0.9772 = 0.022$$

Exercício 39 (d)

$$P(1x-6|>10) = 1 - P(1x-6|\le10) = 1 - P(-10 \le x-6 \le 10) = 1 - P(-4 \le x \le 16) \approx 1 - 0.9545 = 0.0455$$

$$P(1x-6|>10) = 1 - P(1x-6|\le10) = 1 - P(-10 \le x-6 \le 10) = 1 - P(\frac{-10}{\sqrt{25}} \le \frac{x-\mu_x}{\sigma_x} \le \frac{10}{\sqrt{25}}) = 1 - P(\frac{-10}{\sqrt{25}} \le \frac{10}{\sqrt$$

$$= 1 - P\left(-2 \le \overline{z} \le 2\right) = 1 - \left[\underline{\Phi}(z) - \underline{\Phi}(-2)\right] = 1 - \underline{\Phi}(2) + \left[1 - \underline{\Phi}(2)\right] =$$

$$= 1 - \underline{\Phi}(z) + 1 - \underline{\Phi}(z) = 2 - 2\underline{\Phi}(z) = 2\left[1 - \underline{\Phi}(z)\right] = 2\left(1 - 0.9772\right) =$$

$$= 2 \times 0.0228 = 0.0456$$

Exercício 39 (e)

$$K: P(x) = 0.90$$
 $k: P(x) \times K = 0.90$
 $k:$

Exercício 39 (e)

$$P(X > K) = 0.90 \iff P\left(\frac{X - \mu_X}{\sigma_X} > \frac{K - 6}{5}\right) = 0.90 \iff P\left(\frac{2}{2} > \frac{K - 6}{5}\right) = 0.90$$

$$P(2 \le \frac{k-6}{5}) = 0.10 = 0$$

$$P(2 \le \frac{k-6}{5}) = 0.10 = 0$$

$$P(2 \ge \frac{k-6}{5}) = 0.10 = 0$$

$$P(2 \ge \frac{k-6}{5}) = 0.10 = 0$$

$$P(2 \ge \frac{6-k}{5}) = 0.10$$

Pela tabela 5:
$$\frac{6 - K}{5} = 1.282 = 6 - K = 1.282 \times 5 = 1.282 \times 5 - 6 = 1.282 \times 5 = 1.2$$

- 43. Considere que o tempo gasto numa visita à feira do livro é uma variável aleatória com distribuição normal, de média igual a duas horas. Suponha que apenas 2.5% dos visitantes permanecem mais de três horas.
 - a) Qual o desvio padrão da variável?
 - b) Sabendo que um visitante já chegou há uma hora, qual a probabilidade de se ir embora nos próximos 30 minutos?
 - c) Calcule a mediana e o intervalo interquartil de X, e interprete o seu significado.
 - d) Calcule a probabilidade de em 20 visitantes seleccionados ao acaso haver no máximo um que permaneça mais de três horas.

Obrigada!

Questões?