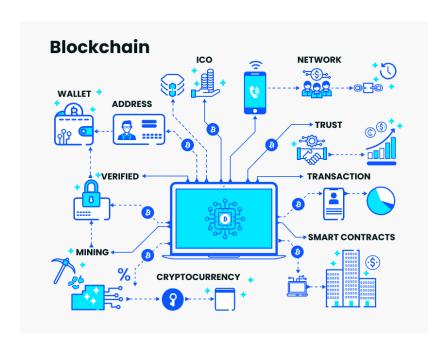


Blockchain

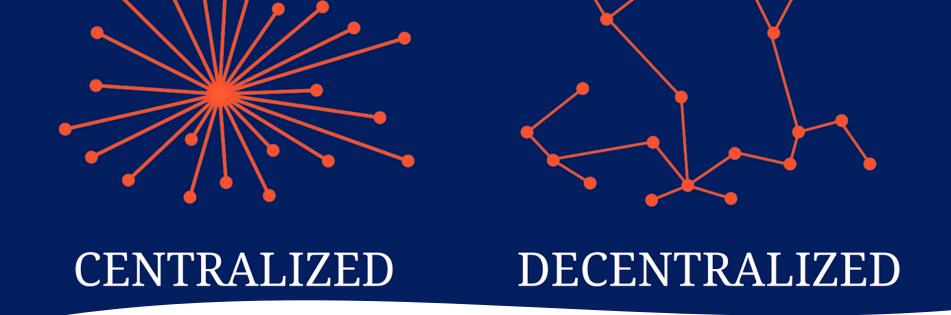
Carlos J. Costa

Nov. 2025


Blockchain

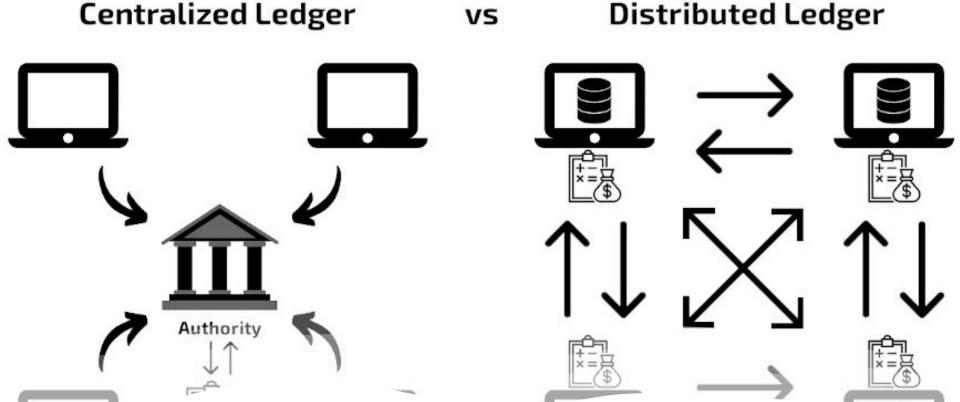
 Blockchain is a decentralized and distributed ledger technology that has gained prominence due to its application in cryptocurrencies like Bitcoin.

https://andersbrownworth.com/blockchain/



Blockchain

- The main concepts of blockchain include:
 - 1. Decentralization
 - 2. Distributed Ledger
 - 3. Consensus Mechanism
 - 4. Blocks and Transactions
 - 5. Cryptography
 - 6. Immutability
 - 7. Smart Contracts
 - 8. Public and Private Keys
 - 9. Permissioned and Permissionless Blockchains
 - 10. Mining (Proof of Work)
 - 11.Tokenization
 - 12. Usage and adoption



Decentralization

- Blockchain operates on a decentralized network of computers (nodes) rather than relying on a central authority.
- This decentralization ensures that no single entity has control or ownership over the entire network.

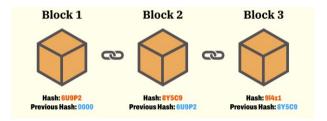
Distributed Ledger

- The ledger, or record of transactions, is distributed across all nodes in the network.
- Each node maintains its copy of the ledger, making it transparent and resistant to tampering.

Consensus Mechanism

- Consensus mechanisms are protocols that enable nodes in the network to agree on the state of the ledger.
- Common consensus mechanisms include Proof of Work (used in Bitcoin) and Proof of Stake.
- These mechanisms prevent malicious actors from manipulating the ledger

	Proof-of-work	Proof-of-stake
Power consumption	Huge amounts of electricity required to secure the blockchain due to the processing needed.	Much lower amounts of electricity required to secure the blockchain
Security	Required to have more than 50% of the processing power to hack.	Required to have more than 50% of the stake (coins) to hack. Can be more expensive to hack due penalties defined in the protocol such as loss of the stake.
Risk of centralisation	There is a risk of having mining pools, group of miners working together, controlling vast amounts of mining power. Currently, three different mining pools control more than 50% of the mining power [9].	Lower risk due to economies of scale being less of an issue. Not dependent on mining equipment.


Mining (Proof of Work):

- In Proof of Work-based blockchains like Bitcoin, miners compete to solve complex mathematical problems.
- The first miner to solve the problem adds a new block to the blockchain and is rewarded with newly created cryptocurrency and transaction fees.

Blocks and Transactions

- Transactions are grouped together in blocks, and each block contains a reference to the previous block, forming a chain.
- This chain of blocks ensures the chronological order and integrity of transactions.

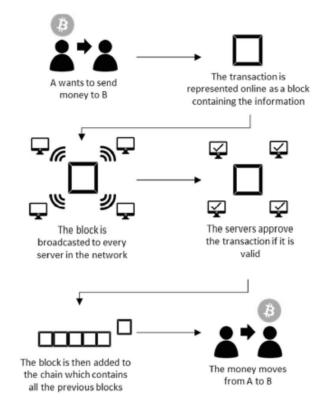
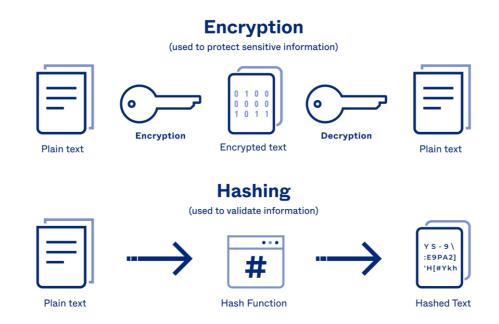
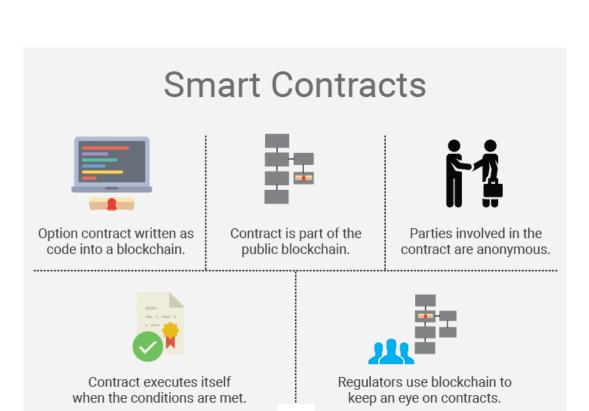



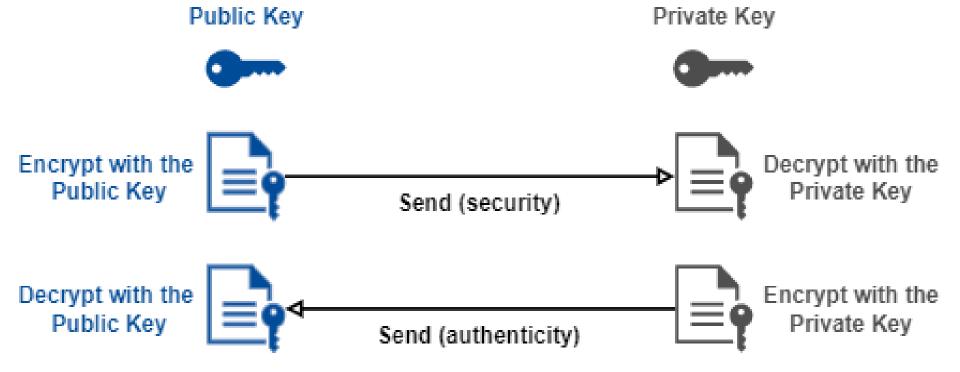
Figure 2: How does a transaction in the blockchain work?

Abreu, Aparicio & Costa (2019)

Cryptography

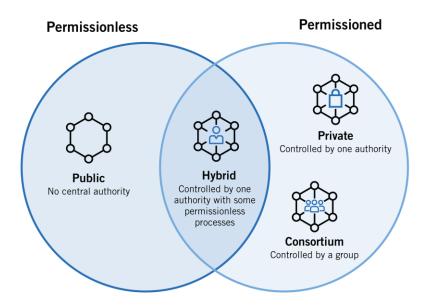
- Cryptographic techniques, such as hashing and digital signatures, are fundamental to blockchain security.
- Hash functions create unique identifiers for blocks, and digital signatures verify the authenticity of transactions.


Immutability

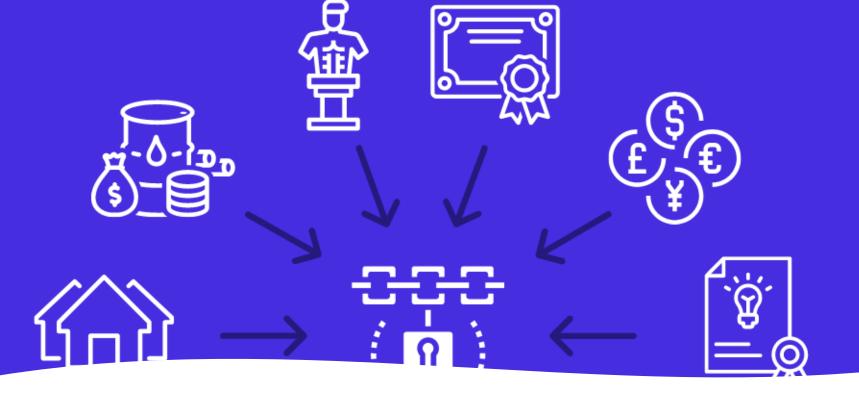

- Once a block is added to the blockchain, it is challenging to alter or remove.
- This immutability is achieved using cryptographic hashes and the consensus mechanism, making the blockchain a reliable and secure record of transactions.

Smart Contracts

- Smart contracts are selfexecuting contracts with the terms directly written into code.
- These contracts
 automatically execute
 predefined actions when
 specific conditions are
 met.
- Smart contracts are deployed on blockchain platforms like Ethereum.


Public and Private Keys

- Public and private key pairs are used for secure transactions and identity verification.
- The public key is shared openly, while the private key is kept secret.
- Cryptographic signatures, generated with private keys, verify the authenticity of transactions.



Permissioned and Permissionless Blockchains

- Permissionless blockchains, like Bitcoin, allow anyone to participate in the network.
- Permissioned blockchains restrict access to authorized participants, making them suitable for business and consortium use

• Blockchain enables the creation of tokens, representing assets or rights.

Tokenization

 Tokens can be traded on blockchain platforms and are often used in Initial Coin Offerings (ICOs) or tokenization of real-world assets

NFT

- non-fungible token:
- a unique digital identifier that cannot be copied, substituted, or subdivided,
- recorded in a blockchain,
- used to certify authenticity and ownership (as of a specific digital asset and specific rights relating to it)

Web 3.0

- an idea for a new iteration of the World Wide Web
- integrates concepts such as decentralization, blockchain technologies, and token-based economics

Web 1.0 read-only static

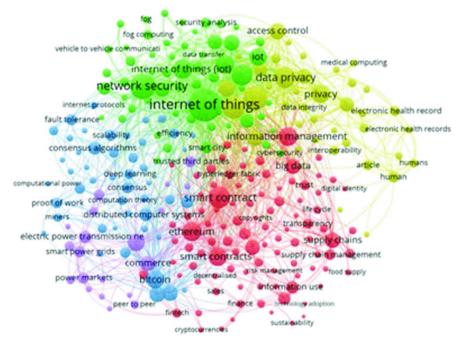
Web 2.0 read-write interactive

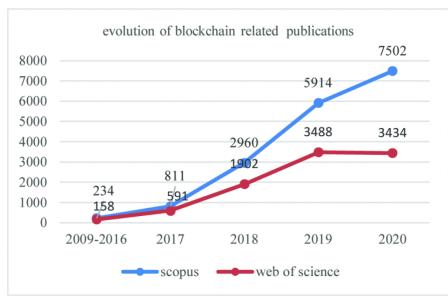
Web 3.0 read-write-trust verifiable

Web 3.0

Web 1.0

- Html
- Java & Javascript
- Basic Web Pages
- Ecommerce


Web 2.0


- Global Internet Access
- Apps
- Mobile Access
- User Generated Content
- Social Media
- High Quality Camera
- Corps Monetize Your Data
- High Speed Communication

Web 3.0

- Permissionless Blockchains
- dApps
- NFTs.
- VR & AR (Metaverse)
- Artificial Intelligence
- Interoperability
- Users Monetize Their Data

Bernardino, Costa, & Aparício, (2022)

Research

Research: **Smart Cities**

Analysing the state of the art of Blockchain application in Smart Cities: A bibliometric study

Soraya González-Mendes Rocio González-Sánchez Department of Business
Administration (ADO)
Universidad Rey Juan Carlos
Madrid, España
Madrid, España
Madrid, España

Carlos J. Costa Advance/ISEG (Lisbon School of Economics & Management) Universidade de Lisboa, Lisbon, Portugal cjcosta@iseg.ulisboa.pt

Department of Business Administration (ADO) Universidad Rey Juan Carlos Madrid, España

Advance—The to social Accounts, and environmental problems, the need anter to develop what is known as Smart CO; allowing to improve the quality of people's lives injective with the application of energing echnologies sock as Blockishin and providing improvement in different areas such as medical care, intelligent transport, or the supply chain management. The investigation analyses the association between Blockishin and Smart Cities using Blobinstrict, Analysis, collected data from 354 articles published between 2018 and October 2022 with the topics 'Blockchain' and 'Smart Cities' from the Web of Science database. It has executed the VOSviewer program to appreciate the Bibliometric Analysis. The work has identified six research trends related with these fields.

Keywords - blockchain; technology; smart cities; bibliometric.

I. INTRODUCTION

With the growing industrialisation of IoT, a large amount of data is produced in Smart Cities, the development of a useful Big Data analysis tool that uses AI has some challenges such as centralisation, security and privacy that can be solved with the

centralisation, security and gravacy that can be solved with the use of Blockshain that, bring a docentralised architecture, allows a secure eachange of data in IoT devices, in this way it is possible to converge Blockshain and Al for IoT III.

To improve the quality of life of people, Smart Cities are developed through the introduction of emerging technologies such as Blockshain that, given their characteristics such as decentralisation, trust, transparency, or automation, allow decentralization, trust, transparency, or automation, allow improving the services offered in these Smart Cities such as medical care, supply chain management or transport [2][3]. The concept of Smart Cities has been developed together with the use of IoT devices as a form of sustainable

wint the use or 101 services as a form or sustainance development, however, due to the growth in the volume of data and the number of connected devices, security, privacy, and establiship sizes arise that could be solved with a distributed, secure, and realable architecture based on Blockchain [4]. Blockchain (deemtralisation feature solves the problem of comistent and secure data replicas within a distribution [5].

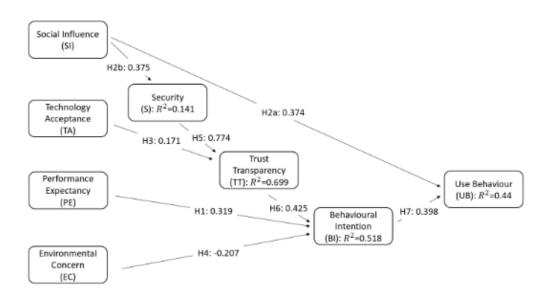
With Blockchain in IoT systems and devices, access is allowed in a secure, efficient, and low-cost way [6].

II BLOCKCHAIN IN THE SMART CITIES

A. Smart Cities The concept of Smart City was first used in the 1990s and The concept of Smart City was first used in the 1990s and focused primarily on the relevance of applying new technologies in modern infrastructures within cities (7) Other authoric consider that the term Smart City is no longer used only to focus on the use of ICL's but also seeks to improve the quality of life of communities and people (3) Smart Cities instances focus on improving urban performance using data, information, and information for Econologies (Til) in su what allower next-ties to be offered to citizene, optimizing infrastructure, resporting collaboration between different a consonir action, and promoting the creation of innovative business models in both the public and private sectors [9].

Blockchain is a distributed ledger [10] and it was born by Smart was born by Shart and Scott Stemetts who described a cryptographical secured chain of blocks in 1990 [11]. The real application of Blockchain was with the creation of Blocin Satochi Nakamoto in 2008 known as 1.0 stage [12]. Then, the creation of Smart Contracts in the Ethereum platform was creation of smart Contracts in the Euroreum partitions was created by Vitalik Buterin in 2014 known as 2.0 stage [13]. Blockchain 3.0 was created with project that use: "Proof of Stake" to oldve the interoperability, efficiency, or sustainability of the mechanism of consensus "Proof of Work", Currently, we are living in a context that pretend to use technologies to solve economic social and environmental issues in Smart Cities

This paper allows to detect the state of the art of research by investigative the influence on the research areas improving the definition of the body of study as did other authors [14]. The following parts contains the background of this work considering topics of Smart Cities and Blockchain. Following containing topics or smart Cinets and Dioceccanin Following the previous, it has examined the methodology and data analysis examining the growing trend about these terms, the most cired authors, institutions, countries and sources, the most relevant areas, and the most cired papers. To sum up, the investigation is completed with the principal conclusions.


TABLE VI. MOST RELEVANT KEYWORKS IN CLUSTERS

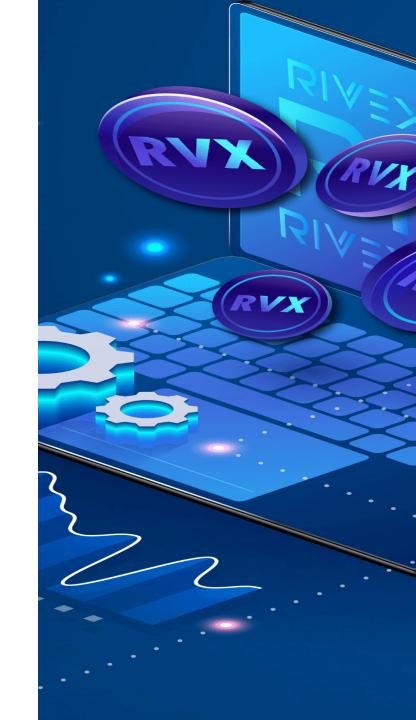
Cluster	Colors	Most Relevant Keywords	Application Area
Cluster 1	Security & Privacy in Management	Privacy; Security; Authentication; Smart Contracts; Ethereum; Protocol; Service; Scheme; Efficient; Access Control; Model; Trust; Management	Smart Contracts Security Management
Cluster 2	Sustainability & Renewable Energy in Smart Cities	Smart Cities; Big Data, System; Renewable Energy, System; Future; City; Sustainability; Platform	Sustainability Smart City
Cluster 3	Data Analytics & Cloud Computing	Cloud Computing; Data Analytics; Algorithm; Smart Grids; Vehicles; Medical Services; Intelligence; 5G	Cloud Analytics
Cluster 4	New Sensors Design with IoT & Blockchain	Blockchain; Internet of Things; Optimisation; Communication; Design; Sensors; Data Models; Data Privacy; Data Sharing; Task Analysis; Monitoring	Blockchain Internet of Things Data Optimisation
Cluster 5	Security & Privacy on the Internet	Internet; Deep Learning; Machine Learning; Security and Privacy, Selection	Machine Learning Security and Privacy
Cluster 6	Energy using Technology	Technology; Energy; Cybersecurity; Supply Chain; Logistics; Healthcare	Technology Energy Supply Chain

González-Mendes et al. (2023)

Research: Usage and Adoption

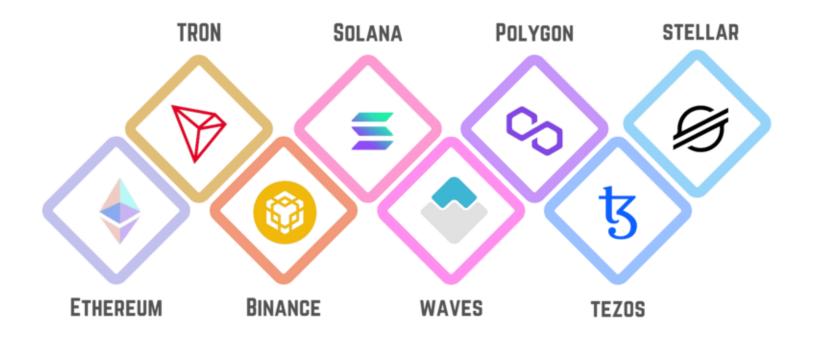
- Importance of Trust/Security
- Social Influence
- Environmental Concerns

Cesario et al. (2023)


Example

https://andersbrownworth.com/blockchain/

Decentralized Finance (DeFi)


 is a financial system built on blockchain technology that aims to recreate and improve upon traditional financial services in a decentralized manner.

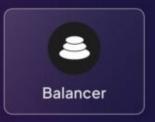
Decentralized Finance (DeFi)

- The key components of DeFi include:
- 1. Blockchain Platforms
- 2. Smart Contracts
- 3. Decentralized Exchanges (DEX)
- 4. Decentralized Lending and Borrowing Platforms
- 5. Stablecoins
- 6. Decentralized Asset Management
- 7. Insurance
- 8. Oracles
- 9. Cross-Chain Solutions
- 10.Wallets
- 11. Governance Tokens
- 12. Yield Farming and Liquidity Mining
- 13.Liquidity pool
- 14. liquidity providers,
- 15. liquidity tokens and
- 16.automated market makers.
- 17. Impermanent Loss

Blockchain Platforms

- DeFi applications are typically built on existing blockchain platforms, with Ethereum being the most popular.
- Other platforms also host various DeFi projects.

Smart Contracts


- Smart contracts are selfexecuting contracts with the terms directly written into code.
- They automate the execution of financial agreements, enabling decentralized applications (dApps) to operate autonomously.

```
ty ^0.8.0;
   mpleToken {
  g(address => uint256) public balanceOf;
  public name;
  public symbol;
  public decimals;
 56 public totalSupply;
tructor() public {
name = "Rohas Nagpal";
symbol = "ROHAS";
decimals = 18;
balanceOf[msg.sender] = totalSupply;
tion transfer(address payable to, uint256 value)
require(balanceOf[msg.sender] >= value && value
palanceOf[msg.sender] -= value;
alanceOf[to] += value;
```


Decentralized Exchanges (DEX)

- DEXs facilitate peer-to-peer trading of digital assets without the need for intermediaries.
- Users retain control of their private keys and assets during transactions.
- Examples include Uniswap,
 SushiSwap, and PancakeSwap

Decentralized Lending and Borrowing Platforms

- Platforms like Compound, Aave, and MakerDAO enable users to lend or borrow cryptocurrencies without intermediaries.
- Users can earn interest by providing liquidity or borrow assets against collateral.

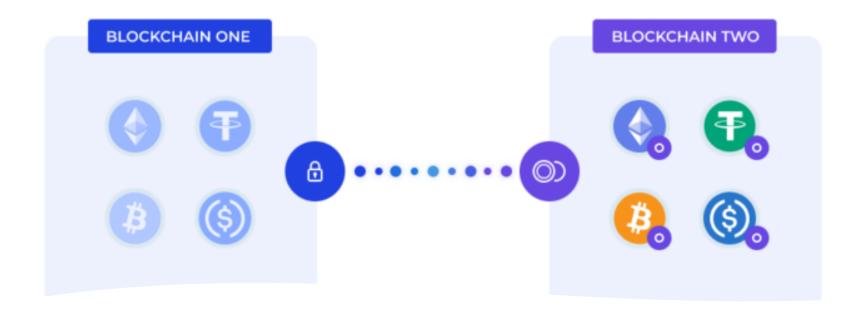
- Stablecoins are cryptocurrencies pegged to the value of traditional fiat currencies, providing stability in volatile markets.
- Examples include DAI, USDC, and USDT.
- Stablecoins are often used in DeFi lending and borrowing.

Decentralized Asset Management

- DeFi platforms offer decentralized asset management services, allowing users to pool their funds together and participate in yield farming or liquidity provision.
- Examples include Yearn Finance and Curve Finance.

Insurance

 DeFi insurance platforms like Nexus Mutual and Cover offer decentralized insurance coverage for smart contract vulnerabilities, hacks, and other risks associated with the DeFi ecosystem.



Oracles

- Oracles provide real-world data to smart contracts.
- DeFi platforms use oracles to fetch external information, such as price feeds, to facilitate accurate and secure execution of smart contracts.

Cross-Chain Solutions

 Cross-chain solutions like Polkadot and Cosmos aim to connect different blockchain networks, enabling interoperability between various DeFi platforms and ecosystems.

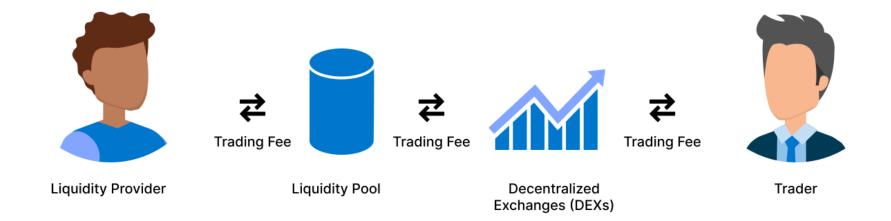
Wallets

- Wallets are essential for users to store and manage their crypto assets.
- DeFi users often use non-custodial wallets, such as MetaMask, Trust Wallet, or Ledger, to interact with decentralized applications.

Governance Tokens

- Many DeFi projects have introduced governance tokens that grant holders the right to participate in the decisionmaking process of the platform.
- Users can propose and vote on changes to the protocol

Yield Farming and Liquidity Mining


- Yield farming involves providing liquidity to DeFi platforms in exchange for rewards, often in the form of additional tokens.
- Liquidity mining incentivizes users to contribute to the liquidity of decentralized exchanges and other platforms.

Liquidity pool

- is a smart contract where tokens are locked for the purpose of providing liquidity.
- is a smart contract that contains a reserve of two or more cryptocurrency tokens in a decentralized exchange (DEX).
- Liquidity pools encourage investors to earn passive income on cryptocurrencies that would otherwise be idle.
- Some of the important concepts required to understand how liquidity pools and decentralized exchanges work include:
 - liquidity providers,
 - · liquidity tokens and
 - · automated market makers.

Liquidity providers

- refer to entities or services that facilitate the availability of funds in cryptocurrency markets.
- they play a crucial role in ensuring smooth trade operations by offering a constant supply of digital assets for buying or selling.

Liquidity provider tokens

- (or LP tokens) are tokens issued to liquidity providers on a decentralized exchange (DEX) that run on an automated market maker (AMM) protocol.
- Uniswap, Sushi and PancakeSwap are some examples of popular DEXs that distribute LP tokens to their liquidity providers.

Automated Market Makers

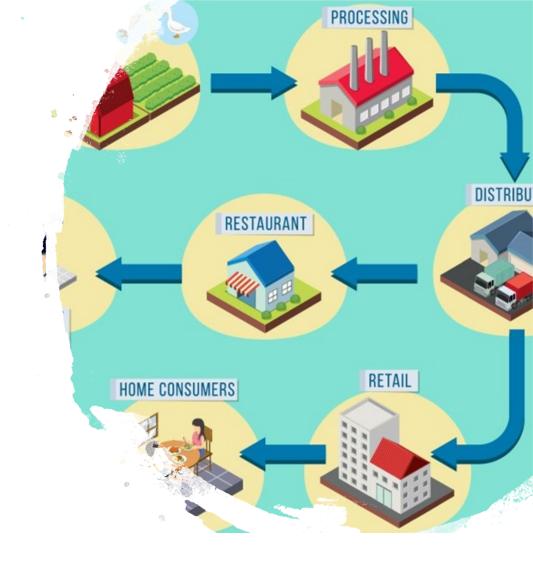
- (AMMs) allow digital assets to be traded without permission and automatically by using liquidity pools instead of a traditional market of buyers and sellers.
- On a traditional exchange platform, buyers and sellers offer up different prices for an asset.

Impermanent Loss

- Liquidity pools are primarily in pairs e.g. ETH/USD.
- Providing liquidity for DEXs is a type of yield farming and some investors see it as more profitable than just buying and holding because LPs receive rewards from trading fees.
- However, LPs lose money due to Impermanent Loss (IL)

Blockchain in Agriculture

 Blockchain technology has the potential to bring transparency, traceability, and efficiency to various aspects of the agriculture industry.


Blockchain in Agriculture

- Here are some ways in which blockchain can be applied in agriculture:
 - Supply Chain Traceability
 - Smart Contracts for Agreements
 - Quality Assurance
 - Payment and Transactions
 - Data Management and Sharing
 - Asset Tokenization
 - Insurance and Risk Management
 - Regulatory Compliance
 - Decentralized Marketplaces
 - · Carbon Footprint Tracking

Supply Chain Traceability

- Provenance Tracking:
- Blockchain can be used to create an immutable and transparent ledger of every transaction within the supply chain.
- This allows consumers to trace the journey of agricultural products from the farm to the table, ensuring the authenticity of the product and providing information about its origin, processing, and transportation.

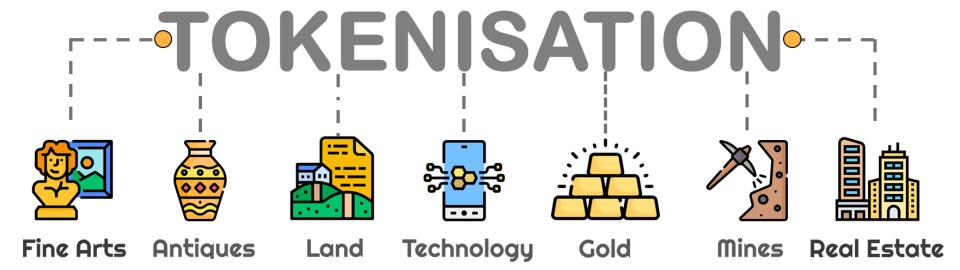
Smart Contracts for Agreements

- Automated Transactions:
- Smart contracts, which are selfexecuting contracts with the terms directly written into code, can be employed for various agreements in agriculture.
- This includes contracts between farmers and suppliers, distributors, or buyers.
- Automated transactions can streamline processes and reduce the risk of fraud.

Quality Assurance

- Record-Keeping:
- Blockchain can be used to maintain a secure and unalterable record of data related to crop quality, certifications, and compliance with regulatory standards.
- This information can be easily accessible to stakeholders, reducing the chances of fraud or misinformation.

Payment and Transactions


- Financial Transactions:
- Blockchain can facilitate transparent and secure financial transactions within the agriculture supply chain.
- This is particularly beneficial for international trade, where parties may not have established relationships and trust.
- Blockchain ensures that payment is made only when predetermined conditions are met.

Data Management and Sharing

- Decentralized Data Storage:
- Decentralized storage on the blockchain can enhance data security and integrity.
- Farmers can control access to their data and share it with trusted parties, such as researchers, insurers, or government agencies, without compromising privacy.

- Fractional Ownership:
- Blockchain can enable the tokenization of agricultural assets, allowing farmers to raise capital by selling fractional ownership of their land, equipment, or crops.
- This can provide new opportunities for investment and financial inclusion in the agriculture sector.
- Asset Tokenization

Insurance and Risk Management

- Parametric Insurance:
- Blockchain, combined with smart contracts, can automate insurance processes.
- Parametric insurance, where payouts are triggered by predefined parameters (such as weather conditions), can be efficiently managed on a blockchain, reducing delays in claims processing.

Regulatory Compliance

- Immutable Records:
- Blockchain's immutability ensures that once data is recorded, it cannot be altered.
- This feature is beneficial for compliance purposes, providing a trustworthy and transparent record that can assist in regulatory audits.

Decentralized Marketplaces

- Direct Transactions
- Blockchain can support decentralized marketplaces, allowing farmers to connect directly with buyers.
- This eliminates the need for intermediaries, reduces transaction costs, and ensures fair compensation for farmers.

Carbon Footprint Tracking

- Environmental Impact
- Blockchain can be used to track and verify the environmental impact of agricultural practices.
- This is particularly relevant in sustainable and organic farming, where consumers are increasingly interested in the carbon footprint of the products they purchase.

References

- Abreu, P. W., Aparicio, M., & Costa, C. J. (2018). Blockchain technology in the auditing environment. In 2018 13th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1-6). IEEE.
- Aparicio, J. T., Romao, M. & Costa, C. J. (2022) "Predicting Bitcoin prices: The effect of interest rate, search on the internet, and energy prices," 2022 17th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1-5, IEEE
- Bernardino, C, Costa, J. & Aparício, M. (2022) "Digital Evolution: blockchain field research," 2022 17th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1-6, IEEE
- Boritz, J. E. (2005). IS practitioners' views on core concepts of information integrity. International Journal of Accounting Information Systems, 6(4), 260-279.
- Cesario, F., J. Costa, C., Aparicio, M., & Aparicio, J. (2023). Blockchain Technology Adoption: Factors Influencing Intention and Usage. In A. R. da Silva, M. M. da Silva, J. Estima, C. Barry, M. Lang, H. Linger, & C. Schneider (Eds.), Information Systems Development, Organizational Aspects and Societal Trends (ISD2023 Proceedings). Lisbon, Portugal: Instituto Superior Técnico. ISBN: 978-989-33-5509-1. https://doi.org/10.62036/ISD.2023.9
- Christensen, C. M., Bohmer, R., & Kenagy, J. (2000). Will disruptive innovations cure health care?. *Harvard business review*, 78(5), 102-112.
- Christensen, C. M., Raynor, M. E., & McDonald, R. (2015). Disruptive innovation. *Harvard Business Review*, *93*(12), 44-53 Costa, C. J. (2024). DeFi: Concepts and Ecosystem. arXiv preprint arXiv:2412.01357. https://doi.org/10.48550/arXiv.2412.01357
- González-Mendes, S, González-Sánchez, R., Costa, C. & García-Muiña, F. (2023) "Analysing the state of the art of Blockchain application in Smart Cities: A bibliometric study," 2023 18th Iberian Conference on Information Systems and Technologies (CISTI), Aveiro, Portugal, pp. 1-6, doi: 10.23919/CISTI58278.2023.10211371.
- Nagy, D., Schuessler, J., & Dubinsky, A. (2016). Defining and identifying disruptive innovations. *Industrial Marketing Management*, *57*, 119-126.
- Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.
- Raymond, E. (1999). The cathedral and the bazaar. Philosophy & Technology, 12(3), 23.

